用户名: 密码: 验证码:
多无人机协同编队仿生飞行控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着单架无人机技术的发展日趋成熟,军事和民事领域对无人机的任务需求变得苛刻,人们开始关注生物界编队鸟群(如大雁、天鹅等)长途迁徙的现象,分析生物系统的进化特征与行为规律,利用多无人机协同编队飞行(Coordinated Formation Flight,简称CFF)与生物系统(个体或群体)的某些原理和行为相似性,将仿生学引入到CFF研究中,以期获得类似鸟群长途迁徙的功效,如降低飞行阻力、节省燃油、延长巡航距离等。由于多无人机CFF控制技术具有广阔的工程应用前景,因此这一项目已在世界范围内激发了科研人员越来越高的研究热情,但又因该项目需要涉及多学科和多技术领域,因此研究难度高。目前国外虽已取得了显著的研究成果,但离工程应用还有很大的差距,而国内研究才刚刚起步,还属于理论跟踪性研究,所以系统深入的研究多无人机CFF控制技术,逐步实现其工程应用已成燃眉之际。本文正是基于多无人机CFF控制技术的国内外发展背景,根据实验室的实际情况,从多无人机编队飞行的基本原理到功能的硬件实现,采取环环相扣的研究方法,完成了多无人机CFF控制技术的前期研究工作。全文研究的多无人机CFF控制关键技术主要包括四个方面:多无人机CFF的气动耦合模型、CFF中单架UAV的运动学和动力学模型、CFF控制器以及硬件在环的CFF测试平台构建技术。
     论文首先总结了前人在这一领域内已有的研究成果,并在此基础上对紧密编队飞行中非常重要的气动耦合问题进行了系统的研究,然后分析对比了几种常见的涡流模型,利用简化的飞机结构和一种近似平均有效风和风梯度的计算方式,针对“长机-僚机”的V型编队方式和非线性6 DOF的刚性飞机,确立了适合多无人机CFF动态特性研究的气动耦合模型,继而分析这种气动耦合对飞机各种参量所产生的影响作用,并相应完成了对已有的标准飞机气动力和力矩系数方程组的调整工作。
     其次,利用第一阶段的工作成果,论文给出了“长机-僚机”编队方式下多无人机CFF模型,通过惯性坐标轴系、速度坐标轴系与机体坐标轴系之间的转换关系,深入的分析了受翼尖涡流影响的CFF中单架无人机的运动特性,同时给出了其特有的运动学和动力学模型。
     论文的核心研究内容之一是如何设计出一种能够确保僚机实时跟随长机飞行航迹的飞行控制器。在本文前期工作的基础上,利用多无人机CFF中的单架无人机的非线性动力学模型,针对飞机特有的运动规律,即飞机的状态变量可按时间尺度的不同分成慢变量(θ,ψ,?)和快变量( p, q ,r),对应的给出了双环控制器的设计方法:外环利用带积分消除跟随航迹稳态误差的变结构滑模控制器,内环则采用基于神经网络消除逆误差的动态逆控制器。整个设计过程紧紧围绕多无人机CFF系统建立的要求,由长机航迹信息已知的理想假设,到完全不用知晓情况下实施目标跟随,并保持特定的编队队形,层层深入地系统研究了飞行跟随控制律,最后利用Matlab7.1对其进行仿真验证。仿真结果表明该飞行控制器能够确保僚机在长机产生的涡流场中保持编队飞行的队形结构。
     本文另一个核心研究内容是硬件在环的多无人机CFF测试平台的研制。文中详细的阐述了多无人机CFF系统的设计要求和软硬件实现过程。整个系统主要由三个子系统组成:无人机飞行控制系统(Flight Control System,简称FCS)、基于Statemate构建的无人机虚拟样机(Virtual Prototype,简称VP)以及地面测试系统。硬件测试平台的设计中加入了FCS-VP思想,主要是基于低成本考虑,而FCS-VP虽然是一种数字化的软件模型,但其设计理念与系统设计自动化(System Design Automation,SDA)完全一致,可以对应的完成物理原型应该具备的所有功能,且具有研究过程用时短,飞行航迹监控实时性强等优势,并能随机的对飞机实施各种干扰,动态的显示编队飞行控制器的性能好坏。经过多次双机编队飞行的检测实验,结果表明基于多无人机CFF测试平台系统的双机编队飞行正常,达到设计要求,同时也进一步证明了本文所研究的编队飞行控制系统相关理论算法是正确和有效的。
With maturing development of the single UAV technology, task requirments of UAV are changed to rigorousness in military and civil fields, and then more and more attention is paid to the flight phenomena made by migration birds (such as Canadian geese, swan) during long distance journey, which suggested followers are able to take advantage of significant amount of power-savings due to drag reduction induced by the vortices generated from the leader’s wings. In the wake of this feature of migration birds, more and more study passions are focused on the project of multi-UAV biomimetic CFF in the whole world in order to accomplish the complicated missions safely and effectively in military field. As great benefits are drawn from the applications of multi-UAV CFF, especially the applications, so it is urgent to enhance the research work of this field to shorten the gap to the foreign countries and accumulate knowledge in theory aspect for the development of our UAVs in the future. This thesis analyzes multi-UAV CFF from four major standpoints: aerodynamic coupling, dynamic modeling, control desiging and CFF testbed based on hardware-in-the-loop.
     This thesis discusses firstly the very important problem of aerodynamic coupling involved in close-proximate flight in-depth after summarizing previous researches on multi-UAV CFF, and introduces three different vortex models, and then a simple and versatile multi-UAV model has been evolved by introducing“Leader- Follower”frame as its reference in the dynamic modeling. Nonlinear 6-DOF, rigid body, equations of motion developed in the LF frame are used to model the UAVs in the group. The nonlinear equations of motion contain the wind effect terms and their time derivatives to represent the aerodynamic coupling involved in CFF. These wind terms are obtained using an averaging technique that computes the effective induced wind components and wind gradients in the UAV’s body frame. This way, the equations of motion based on the assumption that the plane is exposed to uniform wind components and gradients can be used. This is because the non-uniform wind field is very complicated to analyze multi-UAV CFF dynamic characteristics so that the averaing technique is used to approximate the non-uniform wind field as uniform wind components and gradients.
     An algorithm that generates a safe and feasible trajectory for the formation-keeping and formation-reconfiguration of multi-UAV CFF is one of kernel study contents of this thesis. It is a combination of integral controller, including Variable Structure System Sliding Mode Control and Nonlinear Dynamic Inversion Control with Neutral Network. A nonlinear, 6 DOF multi-UAV simulation has been developed in MATLAB 7.1 to test the efficacies of the dynamic models and the nonlinear controller. Simulation results show that the controller is capable of producing both efficient formation-keeping and formation-reconfiguration under the effect of vortex-induced wind.
     At the end of this thesis, the other kernel study content is the design and building process of hardware-in-the-loop testbed system of multi-UAV CFF which is described in detail. Three subsystems constitute the testbed system: the flight control system based on DSP technique, the flight control system-virtual prototype based on Statemate technique and ground test subsystem. Although, Virtual Prototype (VP) is digitized software model, it is a new technology in correspondence with the idea of System Design Automation (SDA), which realizes all functions of physical prototype. Finally, we implement the proposed control scheme on the testbed, and the flight tests display successfully that the follower can fly along the flight path of the leader UAV and keep formation distance, and to further ensure that the theory and design of multi-UAV CFF controller are effective and correct.
引文
[1] Bearc R, Lawton J, Hadaegh F. A Coordination Architecture for Spacecraft Formation Control [J]. IEEE Transaction on control Systems Technology, 2001, 9(6): 777-790.
    [2] Bangash Z, Sanchez R, Ahmed A, etc. Aerodynamics of Formation Flight [C]. The 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004. AIAA 2004-725.
    [3] Hamer M. Formation Flying for Future Planes [J]. New Scientist Magazine, 1995: 8-12.
    [4] Darrah M A, Niland W M, Stolarik B M. Multiple UAV dynamic task allocation using mixed integer linear programming in a SEAD mission [C]. American Institute of Aeronautics and Astronautics, 2006: 1-11.
    [5]朱战霞,袁建平.无人机编队飞行问题初探[J].飞行力学, 2003, 21(2): 5-12.
    [6]鲍中行.军事仿生谈[M].北京:国防大学出版社, 1990.
    [7]李言俊,高阳.仿生技术及其应用[J].安阳工学院学报,2005, 13(1): 28-32.
    [8]陈尔奎,喻俊志,王硕,等.多仿生机器鱼群体及单体控制体系结构的研究[J].中国科学院研究生院学报,2003, 20(2): 232-237.
    [9]邹海荣,龚振邦,罗均.仿生眼的研究现状与发展趋势[J].机器人,2005, 27(5): 469-474.
    [10] Jacobsen R A, Barber M R. Filght Test Techniques for Wake-Vortex Minmization Studies [C]. NASA symposium held at WASHINGTON, D.C. 1976: 193-220.
    [11] Lissaman P B S, Shollenberger C A. Formation flight of birds [J]. Science, 1970, 168(3934): 1003-1005.
    [12] Hagenauer B. NASA Studies Wingtip Vortices. Aerospace Engineering Online: Technology Update, 2002. http://www.sae.org/aeromag/techupdate/02-2002/page5.htm.
    [13] Iannotta B. Vortex Draws Flight Research Forward [J]. Aerospace America, 2002: 26-30.
    [14] William B. Drag Reduction from Formation Flight [R]. Flying Aircraft in Bird-Like Formations Could Significantly Increase Range, 2002.
    [15] Ray R, Cobleigh B, Vachon M, John C St. Flight Test Techniques used to Evaluate Performance Benefits during Formation Flight [C]. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Monterey, California, 2002. AIAA 2002-4492.
    [16] Wagner G., Jacques D, Blake W, Pachter M. An Analytical Study of Drag Reduction in Tight Formation Flight [C]. AIAA Atmospheric Flight Mechanics Conference, Montreal, Quebec, 2001. AIAA 2001-4075.
    [17] Saber R O, Murray R M. Distributed Structural Stabilization and Tracking for Formations of Dynamic Multi-agents [C]. Proceedings of the 41st IEEE Conference on Decision and Control LasVegas,Nevada,USA, 2002: 209-215.
    [18] Erfu Y, Yoichiro M, Tsutomu M. Dual Controller Approach to Three-Dimensional Autonomous Formation Control [J]. Journal of Guidance, Control, and Dynamics. 2004:336-346.
    [19] Giulietti F, Pollini L, Innocenti M. Formation Flight Control: A Behavioral Approach [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, 2001. AIAA-2001-4239.
    [20] Stipanovic D M, Inalhan G, Teo R, Tomlin C J. Decentralized Overlapping Control of a Formation of Unmanned Aerial Vehicles [C]. Proceedings of the 41st IEEE Conference on Decision and Control, 2002: 2829-2835.
    [21] Walls J, Howard A, Homaifar A, et al. A Generalized Framework for Autonomous Formation Reconfiguration of Multiple Spacecraft [C]. Aerospace Conference, 2005: 397- 406.
    [22] Jennifer L H, James E M, Norma V C. The NASA Dryden Flight Test Approach to an Aerial Refueling System [C]. NASA/TM 2005-212859.
    [23] Ajay V, Chang-Nien W, Vincent C, etc. UAV Formation Command and Control Management[C]. AIAA 2003-6572.
    [24] Andrew L, Ralph R, et al. Teamed UAVs - a New Approach with Intelligent Agents [C]. Proceedings of Aerospac conference of the 2nd AIAA Unmanned Unlimited Systems, Technologies, and Operations,San Diego,California. AIAA 2003-6574.
    [25] Krishna K M, Hexmoor H, Pasupuleti S, Llinas J. Parametric Control of Multiple Unmanned Air Vehicles over an Unknown Hostile Habitat[C]. Proceedingof IEEE KIMAS, Boston, MA 2005.
    [26] Seiler P, Pant A, Hedrick K. Analysis of Bird Formations [C]. Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada, USA, 2002.
    [27] Wagner G, Jacques D, et al. An Analytical Study of Drag Reduction in Tight Formation Flight [C]. The AIAA Atmospheric Flight Mechanics Conference, Montreal, Quebec, 2001. AIAA 2001-4075.
    [28]吴霞,郑建华.小卫星编队飞行队形控制与仿真,[硕士学位论文].中国科学院研究生院,2006.
    [29] Saber O R,Murray R M. Graph Rigidity and Distributed Formation Stabilization of Multi-vehicle Systems [C]. Proceeding of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, USA, 2002.
    [30] Nettleton E, Ridley M, Sukkarieh S. Implementation of a Decentralised Sensing Network aboard Multiple UAVs[C]. Rroceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, Nevada USA, 2002.
    [31] Bortoff S A. Path planning for UAVs [C]. Proceedings of the American Control Conference, Chicago, Illinois, USA, 2000: 364-368.
    [32] McLain T W, Chandler P R, Rasmussen S, Pachter M. Cooperative Control of UAV Rendezvous [C]. Proceedings of the American Control Conference, Arlington, VA, 2001, (3): 2309-2314.
    [33] McLain T, Beard R. Trajectory Planning for Coordinated Rendezvous of Unmanned Air Vehicles [C]. Proceeding of Guidance, Navigation and Control Conference, AIAA, 2000. AIAA 2000-4369.
    [34] Anderson E, Beard R, McLain T. Real-time Dynamic Trajectory Smoothing for Unmanned Air Vehicles [C]. IEEE Transactions on Control Systems Technology, Bortoff, S.A, 2003.
    [35]柳长安.无人机航路规划方法研究,[博士学位论文].西北工业大学,2003.
    [36]高晓光,符小卫,宋绍梅.多UCAV航迹规划研究[J].系统工程理论与实践,2004, (5): 140-143.
    [37]孟波波,高晓光,丁琳.基于突发任务多无人作战飞机攻击多目标研究[J].系统仿真学报,2007, 19(1): 176-179.
    [38]丁琳,高晓光,王健,王娜.针对突发威胁的无人机多机协同路径规划的方法[J].火力与指挥控制,2005, 30(7):5-8.
    [39]宋绍梅,张克,关世义.基于层次分解策略的无人机多机协同航线规划方法研究[J].战术导弹技术,2004, (1): 44-48.
    [40] Hespanha J P, Kizilocak H H, Ateskan Y S. Probabilistic Map Building for Aircraft-Tracking Radars [C]. Proceedings of the American Control Conference, Arlington, VA, 2001(6): 4381-4386.
    [41] Hallam C, Harrison K J, Ward J A. A Multiobjective Optimal Path Algorithm [J]. Digital Signal Processing, 2001(11): 133-143.
    [42] Dogan A. Probabilistic Approach in Path Planning for UAVs [C]. IEEE International Symposium on Intelligent Control, Houston, TX, 2003.
    [43]龙涛,孙汉昌,朱华勇,沈林成.战场环境中多无人机任务分配的快速航路预估算法[J].国防科技大学学报,2006, 28(5): 109-113.
    [44] Pfeiffer B, Batta R, Klamroth K, Nagi R. Path Planning for UAVs in the Presence of Threat Zones Using Probabilistic Modeling [J]. Operations Research, 2005.
    [45]杨遵,雷虎民.一种多无人机协同侦察航路规划算法仿真[J].系统仿真学报,2007, 19(2): 433-436.
    [46]左益宏,柳长安,李挺.基于目标分配的无人机航路规划[J].飞行力学,2005, 23(1): 93-96.
    [47]叶媛媛,闵春平.多无人机协同航路规划的共同进化方法[J].计算机仿真,2007, 24(5): 37-149.
    [48] Shannon T, Anthony C, Eric J. Trajectory Optimization for n-Vehicles Using a Reduced Order Formulation [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, 2006. AIAA 2006-6206.
    [49] Brian R G, Joseph F H, Anthony M D, et al. Optimal Path Planning of UAVs Using DirectCollocation with Nonlinear Programming [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006, Keystone, Colorado. AIAA 2006-6199.
    [50] Godbole D N, Tariq S, Vipin G. Active Multi-Model Control for Dynamic Maneuver Optimization of Unmanned Air Vehicles [C]. Proceeding of the IEEE International Conference On Robotics & Automation, 2000: 1257- 1262.
    [51] Arimoto S, Noborio H, Fukuda S, Noda A. A Feasible Approach to Automatic Planning of Collision-Free Robot Motions [C]. The Fourth International Symposium, 1988: 479-488.
    [52] Stewart M G, Johnson E N. 3D Obstacle Avoidance in Adversarial Environments for Unmanned Aerial Vehicles [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, 2006, Keystone, Colorado. AIAA 2006-6542.
    [53] Larson R, Pachter M, Mears M. Path Planning by Unmanned Air Vehicles for Engaging an Integrated Radar Network [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005. AIAA 2005-6191.
    [54] Pollini L, Mati R, Innocenti M. A Synthetic Environment for Simulation of Vision-Based Formation Flight [C]. AIAA Modeling and Simulation Technologies Conference and Exhibit, Austin, Texas, 2003. AIAA-2003-5376.
    [55] Pollini L, Innocenti M, Mati R. Vision Algorithms for Formation Flight and Aerial Refueling with Optimal Marker Labeling [C]. AIAA Modeling and Simulation Technologies Conference and Exhibit, San Francisco, California, 2005. AIAA-2005-6010.
    [56] Min-Jea Tahk, Chang-Su Park, Chang-Kyung Ryoo. Line-of-Sight Guidance Laws for Formation Flight [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 708-716.
    [57] Sattigeri R, Calise A, Kim B, et al. 6-DOF Nonlinear Simulation of Vision-Based Formation Flight [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005. AIAA 2005-6002.
    [58] Eric A O. GPS Sensing for Formation Flying Vehicles, [Doctoral Dissertation].The Department of Aeronautics & Astronautics of Stanford University, 1999.
    [59] Wang P K C, Hadaegh F Y. Coordination and Control of Multiple Microspacecraft Moving in fFormation [J]. The Journal of the Astronautical Sciences, 1996, 44(3): 315-355.
    [60] Freund E, Hoyer H. Real-Time Pathfinding in Multi-Robot Systems Including Obstacle Avoidance [J]. The International Journal of Robotics Research, 1988, 7(1): 42-70.
    [61] Chang C, Chung M J, Bien Z. Collision-Free Motion Planning for Two Articulated Robot Arms Using Minimum Distance Function [J]. Robotica, 1990, (8): 137-144.
    [62] Dimarogonas D V, Kyriakopoulos K J. Formation Control and Collision Avoidance for Multi-Agent Systems and a Connection between Formation Infeasibility and Flocking Behavior[C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, 2005.
    [63] Kosecka J, Tomlin C, Pappas G, Sastry S. Generation of Conflict Resolution Maneuvers for Air Traffic Management [C]. Proceeding of IEEE Conference on Intelligent Robotics and System, 1997, (3): 1598-1603.
    [64] Jimmy K, Mark P. Conflict Detection and Resolution for Free Flight [J]. Air Traffic Control Quarterly, 1997, 5(3): 181-212.
    [65] Richards A, HowJonathan P. Aircraft Trajectory Planning with Collision Avoidance Using Mixed Integer Linear Programming [C]. Proceeding of the American Control Conference, 2002.
    [66] Jianghai H. Multi-Agent Coordination: Theory and Application, [Doctoral Dissertation]. Engineering-Electrical Engineering and Computer Sciences of the University of California at Berkeley, 2003.
    [67] Zeghal K. A Review of Different Approaches Based on Force Fields for Airborne Conflict Resolution [C]. in Proceeding of AIAA Guidance, Navigation, and Control Conf., Boston, MA, 1998: 818-827. AIAA 98-4240.
    [68] Paielli R A, Erzberger H. Conflict Probability Estimation for Free Flight [J]. Journal of Guidance, Control and Dynamics, 1997, 20(3): 588-596.
    [69] Yeung-Jaw J. A Collision Avoidance Algorithm for the Mobile Robot and the Robot Manipulator in Multi-Robot System, [Doctoral Dissertation]. The University of Texas at Arlington, 1991.
    [70] Erzberger H, Paielli R A, Isaacson D R. Conflict Detection and Resolution in the Presence of Prediction Error [A]. The 1st USA/Europe Air Traffic Management R&D Seminar, Paris, 1997.
    [71] Hu J, Prandini M, Sastry S. Probabilistic Safety Analysis in Three Dimensional Aircraft Flight [C]. Proceeding of 42nd IEEE International Conference on Decision and Control, Maui, Hawaii, 2003, (5): 5335- 5340.
    [72] Prandini M, Hu J, Lygeros J, Sastry S. A Probabilistic Approach to Aircraft Conflict Detection [J]. IEEE Transactions on Intelligent Transportation Systems, 2000, 1(4): 199-220.
    [73] Yang L, Kuchar J. Prototype Conflict Alerting Logic for Free Flight [C]. Proceeding of the 35th AIAA Airspace Science Meeting, 1997. AIAA 97-0220.
    [74] Boskovic J D, Sai-Ming L, Mehra R K. Semi-Globally Stable Formation Flight Control Design in Three Dimensions [C]. Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, FL, USA, 2001, (2): 1059-1064.
    [75] Galzi D, Shtessel Y. UAV Formations Control Using High Order Sliding Modes [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005. AIAA 2005-6367.
    [76] Li Y,Li B,Sun Z,Song Y D. Fuzzy Technique Based Close Formation Flight Control [C]. The 31st Annual Conference of IEEE of Industrial Electronics Society, 2005: 40-44.
    [77] Cao Z Q, Tan M, Wang S, Fan Y, Zhang B. The Optimization Research of Formation Control for Multiple Mobile Robots [C]. Proceedings of the 4th World Congress on Intelligent Control and Automation, 2002: 1270-1274.
    [78] Reif J H, Wan H. Social Potential Fields: A Distributed Behavioral Control for Autonomous Robots [J]. Robotics and Autonomous Systems, 1999, 27: 171-194.
    [79] Masaki Y, Masahiro S. Formation Control of SMC with Mulitple Coordinate Systems [C]. Proceedings of the International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004: 1023-1028.
    [80] Tan K H, Lewis M A. Virtual Structures for High-Precision Cooperative Mobile Robotic Control [C]. Proceedings of the 1996 IEEE/RSJ International Conference Intelligent Robots and Systems, 1996, 1: 132-139.
    [81] Leonard N E, Fiorelli E. Virtual Leaders, Artificial Potentials and Coordinated Control of Groups [C]. Proceedings of the 40th IEEE Conference on Decision and Control, 2001: 2968-2973.
    [82] Beard R W, Lawton J, Hadaegh F Y. A Coordination Architecture for Spacecraft Formation Control [C]. IEEE Transactions on Control Systems Technology, 2001, 9(6): 777-790.
    [83] Yan J, Bitmead R R. Coordinated Control and Information Architecture [C]. The 42nd IEEE Conference on Decision and Control, 2003, 4: 3919-3923.
    [84] Hong S W, Shin S W, Ahn D S. Formation Control Based on Artificial Intelligence for Multi-Agent Coordination [C]. Proceedings of the IEEE International Symposium on Industrial Electronics, 2001, 1: 429-434.
    [85] Pollini M L, Mati I R. Vision Algorithms for Formation Flight and Aerial Refueling with Optimal Marker Labeling [C]. AIAA Modeling and Simulation Technologies Conference and Exhibit, San Francisco, California, 2005. AIAA 2005-6010.
    [86] Pruett S H, Slutz G J, and etc. Hardware-In-The-Loop Simulation using Open Control Platform [C]. AIAA Modeling & Simulation Technologies Conference, Austin, Texas, 2003: 1-11.
    [87] Nettleton E, Ridley M, Sukkarieh S, and et al. Implementation of a Decentralised Sensing Network aboard Multiple UAVs [J]. Telecommunication Systems, 2004: 253-284.
    [88] How J, Kuwata Y, King E. Flight Demonstrations of Cooperative Control for UAV Teams [C]. AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit, Chicago, Illinois, 2004. AIAA 2004-6490.
    [89]胡云安,左斌.无人机近距离编队飞行模型建立及控制器设计[J].飞行力学,2005, 23(2): 47-55.
    [90]胡军,都基焱,刘文清.多无人机控制与定位系统的研究[J].航空科学技术,2004, (3): 29-32.
    [91]左益宏,柳长安,罗昌行.多无人机监控航路规划[J].飞行力学,2004, 22(3): 31-34.
    [92]符小卫,高晓光.多架无人作战飞机协同作战的几个关键问题[J].电光与控制,2003, 10(3): 19-22.
    [93]刘金星,佟明安.多架无人作战飞机攻击行为的协调[J].飞行力学,2003, 21(2): 16-19.
    [94]安崇君,刘长卫.飞机尾涡对飞行安全的影响[J].飞行力学,2000, 18(4): 69-72.
    [95]柳长安,王和平,李为吉.基于遗传算法的无人机协同侦察航路规划[J].飞机设计,2003, (3): 47-52.
    [96]杨莘元,蒲书缙,马惠珠.多传感器目标识别的优化融合[J].宇航学报,2005, 26(1): 47-51
    [97]史志富,张安,张耀中,刘海燕. UCAV编队协同对地攻击决策系统研究[C].第一届中国导航、制导与控制学术会议,中国,北京,2007: 516-519.
    [98]朱兴动,张六韬,王正.多无人机鲁棒自适应紧密编队控制方法研究[C].第一届中国导航、制导与控制学术会议,中国,北京,2007: 540-543.
    [99]叶文,朱爱红,范洪达.多无人作战飞机协同航路规划研究[C].第一届中国导航、制导与控制学术会议,中国,北京,2007: 520-523.
    [100]吴迪,朱凤仙,李明,殷福亮.基于Hopfield神经网络的UAV-ad hoc网络协同通信路由算法[C].第一届中国导航、制导与控制学术会议,中国,北京,2007: 549-555.
    [101] Hummel D. The Use of Aircraft Wakes to Achieve Power Reductions in Formation Flight [C]. Proceedings of the AGARD FDP Symposium on Characterization and Modification of Wakes from Lifting Vehicles in Fluid, Trondheim, Norway, 1996.
    [102] Chichka1 D F, Wolfe1 J D, Speyer J L. Aerodynamically Coupled Formation Flight of Aircraft [C]. Proceedings of the 10th Mediterranean Conference on Control and Automation, Lisbon, Portugal, 2002.
    [103] McGill S. Compound Aircraft Transport Study: Wingtip-Docking Compared to Formation Flight [C]. The 41st Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2003. AIAA 2003-607.
    [104] Bilanin A J, Teske M E. Viscous Effects in Aircraft Trailing Vortices [C]. NASA symposium, Washington, D.C., 1976: 61-128.
    [105] Jacobsen R A, Barber M R. Filght-Test Techniques for Wake-Vortex Minmization Studies [C]. NASA Symposium, Washington, D.C., 1976: 193-220.
    [106] Venkataramanan S, Dogan A. Modeling of Aerodynamic Coupling Between Aircraft in Close Proximities [C]. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island, 2004. AIAA 2004-5172.
    [107] Venkataramanan S. Dynamics and Control of Multiple UAVs Flying in Close Proximity, [Doctoral Dissertation]. University of Texas at Arlinton, 2004.
    [108]牟勇飚,无人机编队中的气动耦合问题研究,[硕士学位论文].西安:西北工业大学,2006
    [109] Selcuk B, Georgios E F, George J. Pappas. Experimental Cooperative Control of Fixed-Wing Unmanned Aerial Vehicles [C]. Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004: 4292-4298.
    [110] Seanor B, Campa G, Gu Y, et al. Formation Flight Test Results for UAV Research Aircraft Models [C]. AIAA 1st Intelligent Systems Technical Conference, Chicago, Illinois, 2004: 1-14.
    [111]曹建福,韩崇昭,方洋旺.非线性系统理论及应用[M].西安:西安交通大学出版社,2006.
    [112]刘燕斌.高超声速飞行器建模及其先进飞行控制机理的研究,[博士学位论文].南京:南京航空航天大学,2008.
    [113] Alberto Isidori (著),王奔和庄圣贤(译).非线性控制系统(第三版)[M].北京:电子工业出版社,2005.
    [114] Singh S N, Pachter M, and et al. Input-Output Invertibility and Sliding Mode Control for Close Formation Flying of Multiple UAVs [C]. AIAA Guidance, Navigation, and Control Conference, Denver CO, 2000. AIAA 2000-4374.
    [115]田宏奇.滑模控制理论及其应用[M].重庆:重庆大学出版社,1997.
    [116] Hess R A, Wells S R. Sliding Mode Control Applied to Reconfigurable Flight Control Design [A]. In: AIAA Guidance, Navigation, and Control Conference and Exhibit. Monterey, CA, AIAA 2002-0245.
    [117]吴文海.针对机动目标的现代战机追踪/拦截导引律研究,[博士学位论文].南京:南京航空航天大学,2003.
    [118] Schumacher C J, Kumar R. Adaptive Control of UAV in Close-Coupled Formation Flight [C]. Proceedings of IEEE American Control Conference, Chicago, Illinois, 2000: 849-853.
    [119] Schumacher C, Singh S. Nonlinear Control of Multiple UAVS in Close-Coupled Formation Flight [C]. AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, 2000. AIAA 2000-4373.
    [120] Widrow B和Walach E (著),刘树棠和韩崇昭(译).自适应逆控制[M].西安:交通大学出版社,2000.
    [121] Singh S N. Adaptive Feedback Linearization Nonlinear Close Formation Control of UAVs [C]. Proceedings of American Control Conference, 2000: 854–858.
    [122] Anderson M R, Robbins A C. Formation Flight as a Cooperative Game [J]. AIAA-98-4124.1998: 244-251.
    [123]高隽.人工神经网络原理及仿真实例[M].北京:机械工业出版社,2003.
    [124]刘林,郭恩友等.飞行控制系统的分系统[M].北京:国防工业出版社,2003.
    [125]邬伟江.无人机飞控系统测试平台的研究与实现,[硕士学位论文].南京:南京航空航天大学,2006.
    [126]程林.无人机飞控与地检系统的综合设计与实现,[硕士学位论文].南京:南京航空航天大学,2008.
    [127]杨忠.无人机飞控系统虚拟原型及物理验证相关技术研究,[博士后研究工作报告].南京:南京航空航天大学,2004.
    [128]姚轶非.基于DSP嵌入式FCC的相关技术研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [129] Kordon F, Henkel F. An Overview of Rapid System Prototyping Today [J]. Design Automation for Embedded Systems, 2003, 8(4): 275-282.
    [130] Damm W, Klose J. Verification of a Radio-Based Signaling Scheme Using the Statemate Verification Environment [J]. Formal Methods in System Design, 2001, 19(2): 121-141.
    [131] Harel D, Naamad A. The Statemate Semantics of Statecharts [J]. ACM Transactions on Software Engineering and Methodology, 1996, 5(4): 293-333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700