用户名: 密码: 验证码:
滑油冷却器强化换热与阻力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
换热设备在核电厂、船舶动力系统中占有很大比重,提高换热设备的换热效率,使之具有高效节能的特点是当前的一个重要研究课题。实现上述特点就要依靠传热强化技术的应用,而应用什么样的传热强化技术要取决于工质的热力学特性和流体力学特性。本文采用水冷却68#润滑油的方式,研究了高粘性流体在一种新型针翅套管滑油冷却器内的传热与阻力特性。首先通过单管实验,研究了影响针翅套管元件传热与阻力的主要因素,并对其传热强化机理进行了分析;然后在此基础上制造针翅套管滑油冷却器,并对其进行实验研究;通过与其它类型滑油冷却器的比较,对针翅套管滑油冷却器的综合性能进行了评价;为了全面了解针翅套管元件内的流动与传热情况,最后还用数值模拟的方法对其进行了研究。得到的研究结果对针翅套管滑油冷却器的优化设计和工程应用具有实际意义。本文的主要研究工作如下:
     1.以高粘性润滑油为工质,对新型复合强化传热元件—针翅套管元件进行传热和阻力特性研究。探究它与普通流道的差别以及影响其性能的主要因素。建立针翅管针翅传热模型,在等壁温条件下对环形通道内充分发展层流对流换热问题进行研究,分析针翅套管强化传热的机理,推导针翅套管换热元件的优化参数。另外,对实验数据进行分析整理,拟合针翅套管在进行双侧强迫对流换热时的传热与阻力实验关联式。
     2.对针翅套管滑油冷却器进行实验研究,和相应的单管进行对比分析。水流量和油流量的分配不均、针翅管加工质量以及管束效应是导致单管和管束换热存在差别的主要因素。研究水流量对针翅套管滑油冷却器换热效果的影响,并确定了1#针翅套管滑油冷却器的最佳水流量范围为18~22m3/h。对两种针翅套管滑油冷却器进行了性能评价,结果表明,它们的同功耗下强化指标是对应光滑套管滑油冷却器的1.4~1.9倍,同时用“单位压降下的单位体积释热率”这一参数对换热器的综合性能评价进行了补充。
     3.对自支撑式、套管式和板壳式滑油冷却器进行实验研究,并将它们和实验用及工程用光管滑油冷却器进行对比分析。与光管滑油冷却器相比,它们的换热效果明显提高,体现了小型化与高效化的特点,并对其油侧换热与阻力实验数据进行了回归分析,得到的实验关联式能较好的兼顾关键因素对滑油冷却器换热与流动特性的影响,在一定范围内可推广使用。在Webb评价准则的基础上,以滑油冷却器壳程(油侧)流动为研究对象,推导适合本实验研究的性能评价指标计算公式,评价公式计算结果表明,针翅套管滑油冷却器的综合性能最佳,当压力损失和体积相同时,换热量约为基准滑油冷却器的1.86~2.16倍。同时,还从加工工艺出发,指出自支撑式滑油冷却器在石油化工等存在高粘性流体换热的领域应具有较好的应用前景。
     4.由于实验的方法存在成本高、效率低的缺点,本文最后用数值模拟的方法对针翅套管元件进行研究,探讨这种方法对具有复杂几何结构的针翅套管元件的可行性。通过模拟值与实验值的对比,表明二者的最大误差在20%左右,从物理模型的建立、计算域的离散等方面分析了误差来源。对计算域的温度分布云图、压力分布云图和速度矢量图进行分析,研究针翅套管元件强化传热的机理,由于针翅的扰动,增大了壁面处的温度梯度,使润滑油主流区的温度分布更加均匀,强化了传热。
Heat exchanger accounts for a large part in nuclear power plants and ship systems. Incurrent, it is a very important issue to improve heat exchanger’s compactness and itsefficiency. The heat transfer enhancement technology can be used to solve the problem. Whatkind of enhanced heat transfer technonlogy should be adopted is up to the performance ofthermohydraulics of the working fluid. The68#lubrication oil was cooled by water. In thepresent study, the heat transfer and flow performance of high viscosity fluid in the Pin-FinCasing (PFC) oil cooler is experimental and numerical studied. The major influencing factorsof the PFC on the heat transfer, pressure drop and the heat transfer enhancement theory isinvestigated, and a basis for the design of high efficiency bundle is provide. In addition, thecomparison of the transfer efficiency between the bundle and tube unit is also studied. On thebasis of comparison between PFC oil cooler and the others, the paper evaluated itscomprehensive properties. In addition, the numerical simulation on the performance of PFCwas adopted to supplement the experiment. The results show that PFC takes on the high heattransfer efficiency and structure security. The present work has a very important significancefor the PFC optimization and its application. The main experimental results and conclusionsare as follows:
     1. High viscosity lubricant was used as working fluid in this paper. Heat transfer andpressure drop performance of PFC (a new complex enhanced heat unit) were researched inthis paper. The results show that PFC has a very good heat transfer enhancement propertywith high viscosity fluid. Its property of bilateral forced convection heat transfer and pressuredrop is different from the common channel. The relative height and pitch of pin-fin in theannular space are the main influence factors. The paper established the heat transfer modelfor pin-fin tube, investigated the convection heat transfer of fully developed laminar inannular space at the same wall temperature, analyzed the heat transfer enhancement theory ofPFC, provided an optimal parameterb/dD0.5which including aspect ratio b/d andchannel width D. According to the analysis on the experiment data, a formula about heattransfer and flow resistance for PFC at bilateral forced convection heat transfer has been putforward in the peper, and which has a very good agreement with the experiment data.
     2. The experimental research on PFC was carried out in the paper, and the heat transfercharacteristic was compared with that in the tube unit. The difference between bundle andtube unit was caused mainly by mass flow matching, pin-fin mass, and bundle effect. Whileat the same mass flow rate condition, the pressure drop of bundle is not different from that oftube unit. The influence of water mass flow rate on heat transfer efficiency is mainly up to itsthermal resistance. When the thermal resistance on oil side losts its dominance, the heattransfer efficiency can be improved greatly by increasing water mass flow. Looking for theoptimal water mass flow can obtain the greatest heat transfer efficiency. The paper evaluatedthe performance of the two lubricating oil cooler. The results show that, at the same powerconsumption, both of them show a better heat transfer property. The parameter heat load ofunit volume at unit pressure drop was supplied for estimating the evaluation criterion of heatexchangers. The evaluation criterion can be used to select one type of PFC oil cooler whichcan compared with other oil cooler.
     3. The experiments on three type enhancement lubricating oil coolers (Self-supporting,PFC, Plate-shell) were carried out in the paper. The three type lubricating oil coolers werecompared with plain tube used in experiment and engineering. These coolers take on highheat transfer efficiency and the advantage of miniaturization. The paper analysed the heattransfer and resistance data at oil side. The formula proposed in the paper estimate theinfluence of the critical factors on lubricating oil coolers, and it can be extend at a certainrange. On the basis of Webb criterian, the paper investigated the shell side of lubricating oilcoolers, and deduced an evaluation criterian formula which is appropriate for this experiment.The lubricating oil cooler property is estimated by the present formulation. The results showthat the performance of the three enhancemen lubricating oil coolers is better than that of theplain tube lubricating oil coolers and PFC is the best one among them. According to themachined processing, the self-supporting lubricating oil coolers have a good prospect ofapplication at high viscosity fluid field.
     4. The experiment cost is extremely expensive and its effiency is relatively low. Becauseof the above disadvantage, a numerical simulation on PFC has been carried out in the paper toinvestigate its heat transfer and fluid field at the condition of bilateral forced convection heattransfer. The numerical results were compared with the experiment data. The results showthat, numerical simulation can exactly predict the flow field, and the maximum error between numerical and experiment is about20%. The paper analyzed the error source from the viewof models and calculation zone dispersion. According to the analysis of the contours oftemperature, pressure and velocity vector, it is found that, there will be a wake region at thebottom of the pin-fin, which will deteriorate the heat transfer effect. The pin-fin can enhancethe temperature gradient at the tube wall, and make the lubricating oil temperature moreuniform. The temperature distribution at the tube takes on wave shape which can reinforcethe metal heat conduction. So, PFC can enhance the heat transfer effect.
引文
[1]林宗虎.核电站的发展历程及应用前景.自然杂志,2012,34(2):63-68页
    [2] Bergles A.E. Handbook of heat transfer applications. New York: McGraw-Hill,1985,13P
    [3] Bergles A.E. Heat transfer enhancement the encouragement and accommodation ofhigh heat fluxes. ASME Journal of Heat Transfer,1997,119:8-19P
    [4] Bergles A.E. Exhft for fourth generation heat transfer technology. ExperimentalThermal&Fluid Science,2002,26:335-344P
    [5]林宗虎,汪军,李瑞阳等.强化传热技术.北京:化学工业出版社,2007
    [6]邹华生,钟理,伍钦.流体力学与传热.广州:华南理工大学出版社,2004,150-151页
    [7]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998,130-131页
    [8]彭炳初,庄礼贤,陈广怀.空气压缩机后冷却器传热强化试验研究.化学工程,1996,24:13-16页
    [9] Kalinin E K,Dreytser G A,et al. Improvement of heat transfer in tubular heattransfer exchangers by the use of grooved tubes. Heat Transfer-Soviet Research,1981,13(4):30-40P
    [10] Webb R L,Eckert E R G,Goldsteln. Heat transfer and friction in tubes withrepeated-rib roughness. Int. J. Heat and Mass Transfer,1971,14:601-617P
    [11] Gee D L,Webb R L. Forced convection heat transfer in helically rib-roughenedtubes. Int. J. Heat and Mass Transfer,1980,23:1127-1136P
    [12]贾檀,陆应生,庄礼贤.横纹管的传热与流体力学特性研究.化工学报,1990,41(5):612-616页
    [13] James G,Withers. New Wrinkie in Condenser Tubing,Power Engineering,1971,75(6):44P
    [14]孙中宁,杜泽,黄渭堂等.单头螺纹槽管管内湍流对流换热.核动力工程,1998,19(5):420-423页
    [15]王春来,高金芳,高春生等.应用流体旋转法强化单相流体管内强制对流换热.工业锅炉.1999,2:20-22页
    [16]崔海亭,袁修干,姚仲鹏.选用螺旋槽管经验计算公式问题的探讨.石油机械,2001,29(7):42-44页
    [17] Rabas T J,Panchal C B,et al. Comparison of River-water Fouling Rates forSpirally Indented and Plain Tubes. Heat Transfer Engineering,1993,14(4):58-73P
    [18] Vasil’chenko Y A,Barbaritskaya M S. Resistance with Nonisothermal Fluid Flowin Tubes with Longitudinal Fins. Thermal Engineering,1969,16:17-23P
    [19] Vasil’chenko Y A,Barbaritskaya M S. Heat Transfer in Tubes with LongitudinalFins. Thermal Engineering,1969,16:66-68P
    [20] Watkinson A P,Miletti D L,Tarasoff P. Turbulent Heat Transfer and Pressure Dropin Internally Finned Tubes. AICHE Symposium Series,1974,69(131):94-103P
    [21] Watkinson A P,Miletti D L,Kubanek G R. Heat Transfer and Pressure Drop inInternally Finned Tubes in Turbulent Air Flow. ASHRAE Transactions,1975,81:330-337P
    [22] Vlakancic A. Experimental Investigation of Internally Finned Tube Geometries onTurbulent Heat Transfer and Fluid Flow. M.S.Thesis,Rensselaer PolytechnicInstitute,Troy,New York,1996
    [23] Yun R,Kim Y,Seo K,et al. A generalized correlation for evaporation heat transferof refrigerants in micro-fin tubes. Int. J. Heat Mass Transfer,2002,45:2003-2010P
    [24] Copetti J B,Macagnan M H,Souza D,et al. Experiments with micro-fin tube insingle phase. Int. J. Refrigeration,2004,27:876-883P
    [25] Chamra L M,Mago P J,Tan M O,et al. Modeling of condensation heat transfer ofpure refrigerants in micro-fin tubes. Int. J. Heat Mass Transfer,2005,48:1293-1302P
    [26] Olivier J A,Liebenberg L,Thome J R,et al. Heat transfer,pressure drop,and flowpattern recognition during condensation inside smooth,helical micro-fin,andherringbone tubes. Int. J. Refrigeration,2007,30:609-623P
    [27] Al-Fahed S F, Chamra L M, Chakroun W. Pressure drop and heat transfercomparison for both microfin tube and twisted-tape inserts in laminar flow. Exp.Thermal Fluid Sci,1999,18(4):323-333P
    [28] Wang R L, Rose J W. Prediction of effective friction factors for single-phase flowin horizontal microfin tubes. Int. J, Refrigeration,2004,27(8):904-913P
    [29] Webb R L, Narayanamurthy R, Thors P. Heat transfer and friction characteristics ofinternal helical-rib roughness. ASME J. Heat transfer,2000,122:134-142P
    [30]李晓伟.通道湍流换热强化的数值与实验研究.清华大学博士学位论文,北京,2008
    [31] Bergles A.E. Enhancement of heat transfer. Proc,6th Int Heat Transfer Conf.Toronto, Vol6,1978,89-108P
    [32] Rabas T J, Webb R L, Thors Pand Kim N K. Influence of three-dimensionalhelically dimpled tubes. Journal of Enhanced Heat Transfer,1993(1):53-64P
    [33] Q Liao, X Zhu, M D Xin. Augmentation of turbulent convection heat transfer intube with three-dimensional internal extended surfaces. Journal of Enhanced HeatTransfer,2000,7:139-151P
    [34]吴汝胜,杨丽明等.整体针翅管针翅温度场的数值分析与试验研究.化工设备与防腐蚀,2001,12(6):17-21页
    [35]杨丽明,钱颂文.针翅管的强化传热试验研究.流体机械,2000,30(9):10-12页
    [36]阎昌琪,侯山高,曹夏昕.滑油冷却器强化换热实验研究.核动力工程,2008,29(2):16-19页
    [37]王佳林.滑油冷却器强化换热技术实验研究.哈尔滨:哈尔滨工程大学硕士学位论文,2005
    [38]钱颂文,马小明等.三维整体翅强化传热管的传热和压降性能研究与比较.化工学报,2002,53(7):700-704页
    [39]方江敏,马小明,钱颂文.斜针翅管强化混合管束换热器的优化设计.化工设备与管道,2002,39(3):26-29页
    [40]牛广林.整体针翅管滑油冷却器强化换热及数值计算研究.哈尔滨:哈尔滨工程大学博士学位论文,2012
    [41]阎昌琪,孙中宁,曹夏昕.一种针翅管与光管混合排列的自支撑式换热器,国家发明专利
    [42]王镭.滑油冷却器强化传热实验研究.哈尔滨:哈尔滨工程大学硕士学位论文,2009
    [43]丁铭,阎昌琪,缪红建等.整体针翅管强化传热实验研究.核动力工程,2005,5(26):452-455页
    [44]丁铭,阎昌琪,孙立成.整体针翅管流动阻力特性实验研究.核动力工程,2007,1(28):68-71页
    [45] Veysel Ozceyhan, Necdet Altuntop. Heat Transfer and Thermal Stress Analysis inGrooved Tubes. Academy Proceedings in Engineering Sciences,2005,30(4):537-553P
    [46] J. E. O’Brien, M. S. Sohal, T. D. Foust, et a1. Heat Transfer Enhancement ForFinned-Tube Heat Exchangers With Vortex Generators: Experimental AndNumerical Results.12th International Heat Transfer Conference, Grenoble:2002.
    [47]孙中宁,阎昌琪,谈和平等.窄环隙流道强迫对流换热实验研究.核动力工程,2003,24(4):350-353P
    [48] SHI Shuai, YAN Chang-qi, NIU Guang-lin. Numerical Study of Heat Transfer andPressure Drop of Integral Pin-Fin Tubes. Asia-Pacific Power and EnergyEngineering Conference, Wuhan:2011
    [49] Liu R L, Su G H, Qiu S Z, et a1.Experimental Investigation on Single-PhaseConvection Heat Transfer in Annular Gap.Proceedings of the Fourth InternationalSymposium on Multiphase Flow and Heat Transfer, Xi’an, China,1999:680-685P
    [50]陈育平,朱德书.针肋套管传热及阻力性能试验研究.华东船舶工业学院学报(自然科学版),2001,15(6):74-77页
    [51]丁铭.滑油冷却器单管传热和流动特性实验研究.哈尔滨:哈尔滨工程大学硕士学位论文,2004
    [52]史良文,査正清,李卫东.高粘度物料的强化传热技术.矿冶,1997,6(2):17-20页
    [53]栾志坚.新型板式换热器内高粘性流体传热与流动特性研究.济南:山东大学博士学位论文,2009
    [54] Rethumadhavan R, Rao M R. Turbulent flow heat transfer and fluid friction inhelical-wire-coil-inserted tubes. Int. J. Heat Mass Transfer,1983,26(12):1833-1845P
    [55] Drizhyus M R M, Shkema R K, Shanchyauskas. Heat transfer in twisted strean ofwater in a tube. Int. Chem. Eng,1980,20(3):486-489P
    [56]徐天华,崔乃瑛,谭盈科.管内插入物强化高粘流体传热.化学工程,1988,16(6):7-15页
    [57]朱冬生.插入物强化管壳式换热器管内高粘度流体的传热.石油炼制与化工,1998,29(7):39-41页
    [58] Webb R L. Principle of enhanced heat transfer. New York: Hemisphere PublicationCorporation,1995
    [59] Incropera F P, Dewitt D P. Introduction to heat transfer, third ed. New York: Wiley&Sons,1996,396P
    [60] Cengel Y A. Heat transfer, a practical approach, Boston: WCB McGraw,1998,378P
    [61] Guo Z Y, Li D Y, Wang B X. A novel concept for convective heat transferenhancement. Int J Heat Mass Transfer,1998,41:2221-2225P
    [62] Wang S, Li Z X, Guo Z Y. Novel concept and device of heat transfer augmentation.In: Proceedings of11th International Conference of Heat transfer,5:405-408P
    [63] Guo Z Y, Wang S. Novel concept and approaches of heat transfer enhancement. In:Cheng P, ed. Proceedings of symposium on energy engineering in the21st century
    [64]过增元.对流换热的物理机制及其控制:速度场与热流场的协同.科学通报,2000,45(19):2118-2122页
    [65] Tao W Q, He Y L, Liu X et al. A unified theory for enhancing single phase transportphenomena. In: Imayishi N, ed. Proceedings of2001IAMS International Seminarfor Use in Litnium Batteries and Transport Phenomena in Materials Processing,2001, Kasuga, Kyushu University,77-90P
    [66] Tao W Q, Guo Z Y, Wang B X. Field synergy principle for enhancing convectiveheat transfer-its extension and numerical verifications, Int J Heat Mass Transfer,2002,45:3849-3856P
    [67] Tao W Q, He Y L, Wang Q W et al. A unified analysis on enhancing single phaseconvective heat transfer with field synergy principle. Int J Heat Mass Transfer,2002,45:4871-4879P
    [68]黄渭堂,刘天才,孙中宁等.螺纹槽管传热与阻力特性的实验研究.哈尔滨工程大学学报,1998,19(1):29-34页
    [69]马晓茜.重油加热器强化传热方式的探讨.电站辅机,1995.(4):45-47页
    [70]黄渭堂,阎昌琪,孙中宁等.冷凝器小型化技术研究.核科学与工程,1998,18(2):228-234页
    [71]黄渭堂,阎昌琪,孙中宁等.钛螺纹槽管传热及流动阻力的实验研究.核动力工程,2001,22(5):456-459页
    [72]吴双应,辛明道.扭带管内油的受迫对流换热实验.重庆大学学报(自然科学版),1995,18(1):113-117页
    [73]靖增,张登富.高粘性流体在管内强化对流换热的实验研究.石油炼制与化工.1989,10:13-16页
    [74]杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998,165-170页
    [75] Shah R K, Joshi S D. Handbook of single-phase convective heat transfer. New York:Wiley-Interscience,1987: Chapter5.
    [76] Wendt B, Greber J I, Hingst W R. Structure and development of streamwise vortexarrays embedded in a turbulent boundary layer. AIAA J.1995,16:376-688P
    [77] Biswas G, Torii K, Fuji D, et al. Numerical and experimental determination of flowsturcture and heat transfer effects of longitudinal vortices in a channel flow. Int. J.Heat Mass Transfer,1996,39(16):3441-3451P
    [78] Lau S. Experimental study of the turbulent flow in a channel with periodicallyarranged longitudinal vortex generators. Exp. Therm. Fluid Sci.,1995,11:255-261P
    [79] Meng J A, Liang X G, Li Z X, et al. Numerical study on low Reynolds numberconvection in alternate elliptical axis tube. Journal of Enhanced Heat Transfer,2004,11(4):307-313P
    [80] Meng J A, Liang X G, Chen Z J, et al. Experimental study on convective heattransfer in alternating elliptical axis tubes. Exp. Therm. Fluid Sci.,2005,29(4):457-465P
    [81] Li X W, Yan H, Meng J A, et al. Visualization of longitudinal vortex flow in anenhanced heat transfer tube. Exp. Therm. Fluid Sci.,2007,31(6):601-608P
    [82] Eibeck P A, Eaton J K. Heat transfer effects of a longitudinal vortex embedded in aturbulent boundary layer. ASME J. Heat Transfer,1985,109:16-24P
    [83] Sohankar A, Davidson L. Effect of inclined vortex generators on heat transferenhancement in a threedimensional channel. Numerical Heat Transfer Part A,2001,39:433-448P
    [84]李志信,过增元.对流传热优化的场协同理论.北京:科学出版社,2010,106-109页
    [85] Yang S M, Zhang Z Z. An experimental study of natural convection heat transferfrom a horizontal cylinder in high Rayleigh number laminar and turbulent regions.In: Hewitt G F. ed. Proceeding of the10th International Heat Transfer Conference.Brighton,1994,7:185-189P
    [86] Yang S M, Jiang C J. Criterion of transition to transitional correlation of naturalconvection heat transfer from horizontal cylinder in air. In: Wang B X. ed. Heattransfer science and technology. Beijing: Higher Education Press,1996.181-186P
    [87]杨世铭.自然对流换热基本规律研究的新进展.见:陶文铨,林汉涛,李长发等编.传热学的研究与进展.北京:高等教育出版社,1995.17-26页
    [88] W. Nusselt. Zuschriften and die Redaktion. Z. Ver. Dtsch. Ing.57, S.197,1913
    [89]孙德兴.水力直径作为当量直径的适用范围、缺欠与修正.工程热物理学报,1987,8(4):357-362页
    [90]孙德兴.非圆断面通道层流摩擦阻力与换热理论研究的新进展,1994,15(1):78-83页
    [91]孙德兴,李凤琴.关于流动阻力与换热计算中的定性尺寸与当量直径.哈尔滨建筑工程学院学报,1989,22(4):93-98页
    [92] Zhao T S, Bi Q C. Pressure Drop Characteristics of Gas-liquid Tow-phase Flow inVertical Miniature Triangular Channels. Int J Heat Mass Transfer,2001,44:2523-2534P
    [93]路广遥,孙中宁,王经,等.窄缝环形通道内流动阻力特性的实验研究.核动力工程,2006,27(3):28-31页
    [94]孙立成,阎昌琪,孙中宁.窄环隙内强迫流动阻力特性的实验研究.核动力工程,2003,24(4):359-362页
    [95]曾和义,秋穗正,苏光辉,等.环形窄缝通道单相流动特性研究.原子能科学技术,2007,41(5):575-579页
    [96]孙中宁,孙立成,阎昌琪等.窄缝环形流道单相摩擦阻力特性实验研究.核动力工程,2004,25(2):123-127页
    [97]李斌,何安定,王跃社等.窄缝环形管内流动与传热实验研究Ⅱ.摩擦阻力特性[J].化工机械,2001,28(2):67-70页.
    [98]孟继安,陈泽敬,李志信等.管内对流换热的场协同分析及换热优化.工程热物理学报,2003,24(4):652-654页
    [99]屈治国,何雅玲,陶文铨.平直开缝翅片传热特性的三维数值模拟及场协同原理分析.工程热物理学报,2003,24(5):825-827页
    [100]李志信,过增元.对流传热优化的场协同理论.北京:科学出版社,2010,184-190页
    [101]李华.太阳棒管纵向流油品传热和压降性能与针翅结构的优化研究.广州:华南理工大学,1996
    [102] E.M.Sparrow, M.A.Ansari, P.C.Stryker, et al. Enhanced Heat Transfer from aHorizontal Finned Tube Situated in a Vertical Channel. Journal of Heat Transfer,1986, Volume108(1):62-69P
    [103]吴汝胜,岑汉钊,钱颂文等.太阳棒针翅管的传热模型及数值解.石油化工设备,1997,26(1):3-7页
    [104]陶文铨.计算传热学的近代进展.北京:科学出版社,2000
    [105]贾力,方肇洪,钱兴华.高等传热学.北京:高等教育出版社,2003:119,193-197页
    [106] Webb R L. Principles of enhanced heat transfer. New York: John Wiley&Sons,1994
    [107]石帅.滑油冷却器强化传热及小型化技术研究.哈尔滨工程大学硕士学位论文,2010:46-48页
    [108] Grimson E D. Correlation and utilization of new data on flow resistance and heattransfer for crossflow of gases over tube banks. Trans ASME,1937,59:583-594P
    [109]茹卡乌斯卡斯А А.换热器内的对流换热.马昌文,曲滋泉,肖宏才译.北京:科学出版社,1986.337-370页
    [110]兰州石油研究所.换热器.北京:中国石化出版社,1986
    [111] Bell K. J. Final report of the cooperative research program on shell and tube heatexchanger. U. Del. Eng. Exp. Sta. Bull, No.5,1963
    [112] Bell K. J. Delaware method for shell side design, Heat exchangers-thermalhydraulic fundamentals snd design, ed. Hemisphere/McGraw-Hill, Washington, D.C.,1981.581-618P
    [113]姚玉英,黄凤廉,陈常贵等.化工原理.天津:天津科学技术出版社,1992
    [114] Muley A. Heat transfer and pressure drop in plate heat exchangers [Ph. D. Thesis].Cincinnati: University of Cincinnati,1997.
    [115] Bejan A. General criterion for rating heat-exchanger performance. Int. J. Heat MassTransfer,1978,2l:655-658P
    [116] Prasad R C, Shen J. Performance evaluation of convective heat transferenhancement devices using energy analysis. Int. J. Heat Mass Transfer,1993,36(17):4193-4197P
    [117]姚寿广,屠传经,朱德书.管内强化换热元件综合热力性能分析及评价.动力工程,2002,22(3):1798-1803页
    [118]吴双应,陈燕,李友荣等.恒热流工况下强化传热管传佣性能的评价.热科学与技术,2006,5(2):133-138页
    [119]邓先和,张亚君,邢华伟.换热器在多种冲刷条件下的传热强化性能评价.华南理工大学学报,2002,30(3):44-46页
    [120] Bergles A E. Performance evaluation criteria for enhanced heat transfer surface.Proceedings of fifth international heat transfer conference,1974,2:239-243P
    [121] Webb R L, Eckert E. R. G.. Application of rough surfaces to heat exchanger design.Int. J. Heat mass transfer,1972,15,1467-1658P
    [122] Webb R L. Performance evaluation criteria for use of enhanced heat transfersurfaces in heat exchanger design. Int. J. Heat Mass Transfer,1981,24(4):715-726P
    [123]过增元,黄素逸.场协同原理与强化传热新技术.北京:中国电力出版社,2004,213-216页
    [124] Prithiviraj M., Andrews M. J. Comparison of a three dimensional numerical modelwith existing methods for prediction of flow in shell-and-tube heat exchangers.Heat Transfer Eng.,1999,20(2):15-19P
    [125] Sorensen D N,Hvid S L,Hnasen M B.Local heat transfer and flow distributionalthree-pass industiral heat exchanger. Iinternational Jounals of Heat and Masstransfer2001,44:3179-3187P
    [126] Missirlis D,Yakinthos K,Palikaras A. Experimental and numerical investigation ofthe flow field through a heat exchnager for aeor-engine applications. InternationalJournal of Heat and Fluid Flow,2005,26(3):440-58P
    [127]王福军.计算流体动力学分析:CFD软件原理与应用.北京:清华大学出版社,2004,131-132页
    [128] W. P. Jones, B. E. Launder. The calculation of low-Reynolds-number phenomenawith a two-equation model of turbulence. Int J Heat Mass Transfer,16:1973,1119-1130P
    [129] P. J. Heggs, P. R. Stones. The effects of non-uniform heat transfer coefficients in thedesign of finned tube Air-cooled heat exchangers. International Heat TransferConference.7th, Munchen,1982, Vol.3,209-214P
    [130] F. F. M. Saboya. E. M. Sparrow. Local and average heat transfer coefficients forone-row plate fin and tube heat exchangers configurations. J. Heat Transfer,1964,Vol.96,265-272P
    [131] Fukui. S, Sakamoto. M. Some experimental results on heat transfer characteristicsof air cooled heat exchangers for air conditioning devices. Bull, JSME,1968, Vol.11,303-311P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700