用户名: 密码: 验证码:
喉鳞癌患者树突状细胞(DCs)功能及Hep-2总RNA转染DCs抗喉癌的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【研究背景与目的】
     喉癌是耳鼻喉科常见的恶性肿瘤之一,发病率处于耳鼻咽喉各部分恶性肿瘤的第三位。在喉癌的病理类型中,以喉鳞癌最为常见,一般占全部喉恶性肿瘤的95~99%。目前喉癌的治疗以手术、放疗及化疗为主。近年来,虽然手术、放化疗技术发展迅速,但喉鳞癌患者特别是晚期患者的的长期生存率在过去10年中未见明显提高。因此,进一步改善喉癌患者预后的研究势在必行。
     以往的研究证实,抗肿瘤免疫在肿瘤发生发展的过程中有重要作用。机体的抗肿瘤免疫应答是以T淋巴细胞、NK细胞和巨噬细胞介导的细胞免疫应答为主。在此过程中,首先由抗原递呈细胞(antigen-presenting cell,APC)捕获、加工处理抗原并将抗原信息传递给T淋巴细胞,才能进而引发特异性免疫应答。树突状细胞(dendritic cell,DC)是已知体内功能最强的APC,能在体内外直接激活初始T细胞(na(?)ve T cell),促进辅助性T细胞和细胞毒性T细胞的生成,同时也能够促进B淋巴细胞生成抗体,是启动、调控并维持免疫应答的中心环节。
     由于DC在体内免疫应答中重要而独特的作用,近年来,以DC为基础的肿瘤免疫治疗研究越来越受到关注。已有研究证实,通过体外细胞因子联合培养扩增DC,模拟DC体内成熟过程,以不同形式的抗原物质,如人工合成肿瘤多肽、肿瘤细胞裂解产物、肿瘤蛋白抗原、凋亡肿瘤细胞、DNA或RNA负载DC,再将致敏DC回输体内作为疫苗可诱导机体产生有效的抗肿瘤免疫应答。树突状细胞应用于抗喉鳞癌的研究尚处于初级阶段。由于目前尚未发现喉癌肿瘤特异性抗原,因此肿瘤全抗原成为制备疫苗的主要手段。已有报道应用喉癌细胞裂解产物负载树突状细胞或用电融合的方法制备疫苗诱导产生有效的抗肿瘤免疫反应。最近研究发现,以RNA负载DC能够引发更为强大的抗肿瘤效应,而且已有实验证实了其优越的安全性及广阔的应用前景。但以RNA负载DC的抗喉鳞癌研究国内外尚未见报道。
     另外,树突状细胞免疫学功能的强弱取决于DC的免疫状态。众所周知,肿瘤患者的DC存在缺陷,但由于T细胞活化的MHC限制性,临床上应用DC诱导抗肿瘤免疫应答必须使用肿瘤患者自身的DC,因而研究恶性肿瘤患者DC的数目及功能显得尤为重要。另一方面,虽然DC为基础的免疫治疗有其独特的优势,但近期内仍无法作为主要的临床治疗手段。对于喉鳞癌患者,手术及放疗仍然不失为目前最有效的治疗方法。因此研究喉鳞癌患者DC免疫状态,除了考虑疾病本身对DC的影响,尚需考虑目前常规治疗方法对DC的影响。
     本研究检测手术及术后辅助放疗对喉癌患者外周血循环DC亚型及外周血单核细胞来源DC(monocyte-derived DCs,MoDes)功能的影响,以探讨喉癌免疫治疗的时机;同时,以EGFP标记的喉癌Hep-2株总RNA转染MoDCs,研究其诱导Hep-2细胞特异性的细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)的能力及对喉鳞癌的特异性杀伤效应,为临床以DC为基础的抗喉癌治疗提供实验基础和理论依据。
     第一部分健康人外周血树突状细胞亚型检测及培养、鉴定
     【目的】建立简便可靠的外周血树突状细胞亚型检测方法,培养鉴定外周血单核细胞来源树突状细胞。
     【方法】采集15例健康人外周血,采用三色流式细胞计量术检测外周血HLA-DR~+lineage~-树突状细胞及其亚型myeloid DC(mDC)、plasmacytoid DC(pDC)在外周血WBC所占百分比并计算其绝对数。采用淋巴细胞分离液自外周血分离获得单核细胞,体外经人重组细胞因子GM-CSF、IL-4和TNF-α诱导培养,获得成熟外周血单核细胞来源DC。倒置显微镜下观察DC形态,透射电镜观察DC超微结构,流式细胞仪检测其表型,混合淋巴细胞反应(MLR)检测刺激自体T淋巴细胞增殖的能力。
     【结果】健康人LIN~-DR~+细胞在WBC中所占百分比为0.41±0.13%,绝对数为22.75±5.22/μl,mDC在WBC中所占百分比为0.28±0.13%,绝对数为15.12±4.66/μl,pDC在WBC中所占百分比为0.068±0.032%,绝对数为3.78±1.40/μl;培养获得具有典型形态特征的外周血单核细胞来源DC;健康人LIN阴性细胞中,共刺激分子CD80(B7-1)、CD86(B7-2)阳性细胞所占百分比分别为46.5±7.1%和51.1±9.6%,同时多数DC表达DC成熟标志CD83和HLA-DR,阳性细胞百分比分别为62.6±10.3%和73.4±8.1%,表明单核细胞经细胞因子诱导后大部分分化为成熟DC;证实少量DC即可刺激自体淋巴细胞产生较强的增殖效应。
     【结论】流式细胞仪检测外周血DC亚群简便、可靠;联合应用细胞因子GM-CSF、IL-4和TNF-α能够自外周血中成功分离、诱导培养具有典型形态特征及功能活性的单核细胞来源DC。
     第二部分手术及术后放疗对喉鳞癌患者外周血树突状细胞亚型及功能的影响
     【目的】研究手术及术后辅助放疗对喉鳞癌患者外周血树突状细胞亚型及外周血单核细胞来源树突状细胞功能的影响。
     【方法】采集46例经病理证实的喉鳞癌患者及15例健康志愿者外周血。46名喉鳞癌患者中男性44例,女性2例,年龄分布为32~76岁,平均年龄为57.57±10.09岁。根据2002年国际抗癌联盟(UICC)制定的TNM分期标准,Ⅰ期14例,Ⅱ期8例,Ⅲ期11例,Ⅳ期13例。46例患者入院后均接受手术治疗,28例患者手术后接受颈部直线加速器放射治疗。接受单纯手术治疗的患者(n=18)及接受手术+放疗的患者(n=28)均于治疗前、治疗中及治疗后分三次采集外周血标本。采用三色流式细胞计量术检测外周血HLA-DR~+lineage~-树突状细胞及其亚型mDC、pDC在外周血WBC所占百分比并计算其绝对数。采用淋巴细胞分离液自外周血分离获得单核细胞,体外经人重组细胞因子GM-CSF、IL-4和TNF-α诱导培养,获得外周血单核细胞来源DC,流式细胞仪检测其表型,混合淋巴细胞反应(MLR)检测刺激自体T淋巴细胞增殖的能力。
     【结果】治疗前喉鳞癌患者外周血mDC计数、MoDC表面分子表达及刺激自体T淋巴细胞增殖能力均低于健康人;经手术治疗后,接受辅助放疗和未接受辅助放疗的患者其mDC计数、MoDC表面分子CD80,CD83,HLA-DR的表达均明显高于治疗前,但仅在术后未接受辅助放疗的患者中观察到CD86表达及刺激自体T淋巴细胞增殖能力的恢复。
     【结论】喉鳞癌患者DC存在缺陷;手术治疗可提高喉鳞癌患者外周血mDC计数及MoDC的功能;术后辅助放疗不影响外周血mDC计数的正常化,但对MoDC功能具有抑制作用。
     第三部分以EGFP标记的喉癌Hep-2细胞株总RNA转染树突状细胞的特异性抗喉癌实验研究
     【目的】探讨以EGFP为标记观察喉鳞癌Hep-2细胞株总RNA转染树突状细胞的可行性;探讨转染后DC诱导特异性识别Hep-2细胞的细胞毒性T淋巴细胞的可能性及特异性杀伤效应。
     【方法】采用淋巴细胞分离液自健康人外周血分离获得单核细胞,体外经人重组细胞因子GM-CSF、IL-4诱导培养,获得未成熟DC,观察细胞形态,流式细胞技术鉴定其表型;培养喉癌Hep-2细胞株,采用脂质体转染技术将携带绿色荧光蛋白质粒pEGFP-N1转染至Hep-2细胞株,通过G418筛选稳定表达EGFP的细胞株;Trizol一步法提取稳定转染的Hep-2细胞株总RNA,检测其完整性及纯度;以共孵育及电穿孔法将RNA导入未成熟DC,并以TNF-α促成熟;应用荧光显微镜观察并计算转染效率;通过流式细胞技术、混合淋巴细胞反应检测RNA转染后对DC表型、刺激T细胞增殖能力的影响;将转染后DC与同种异体T淋巴细胞共培养7天,收集效应细胞作为特异性CTL,通过~(51)Cr释放法检测其对Hep-2细胞株的特异性杀伤效应。
     【结果】pEGFP-N1质粒转染喉癌Hep-2细胞株,经G418筛选可获得稳定表达EGFP的细胞株,荧光显微镜下可见绿色荧光,经20次传代后荧光仍无消失,Hep-2细胞形态及生长特性未见明显改变;经Trizol一步法提取稳定转染的Hep-2细胞株总RNA 80~100μg/10~7细胞,分光光度法测定OD260/OD280=1.83,RNA电泳显示18S、28S条带,证实RNA的完整性;共孵育及电穿孔转染法转染效率分别为7~9%和21~23%;RNA导入未成熟DC后,细胞表达绿色荧光持续20~24小时;Hep-2-EGFP-RNA转染组DC表面分子CD83、HLA-DR表达较转染前及对照转染组显著升高,阳性细胞百分比达89.5%、95.4%,刺激同种异体T淋巴细胞增殖的能力显著提高;Hep-2-EGFP-RNA转染组DC体外诱导的CTLs可特异性杀伤喉癌Hep-2细胞,但对结肠癌HT-29细胞及卵巢癌OVCAR3细胞无杀伤活性。
     【结论】绿色荧光蛋白可作为喉癌Hep-2细胞RNA转染DC的标记;转染喉癌Hep-2细胞总RNA促进DC成熟,提高DC刺激同种异体T淋巴细胞增殖的能力,并能够产生喉癌Hep-2细胞特异性杀伤效应。
Laryngeal squamous cell carcinoma(LSCC)is one of the most common malignancies, with an increasing occurrence of new cases and deaths annually.Despite all the progresses made in surgical,radiotherapy and chemotherapy techniques,long-term survival of LSCC patients has not been improved significantly over the past three decades,which poses a formidable challenge for physicians in ENT department.Thus, studies of certain key issues pertinent to LSCC,such as tumor immunology,are of great importance in getting insight into the mechanisms underlying the pathogenesis of LSCC and,in turn,resulting in effective therapeutics eventually.
     It has been suggested that anti-tumor immunity plays a pivotal role in the initiation and progression of malignancy.Induction of an effective anti-tumor immune response requires the activation of effector cells by antigen-presenting cells(APCs) that are responsible for the presentation of tumor-specific antigens.Of particular interest is the role of dendritic cells(DCs),the key APCs which are specialized in taking up,processing,and presenting tumor antigen to stimulate na(?)ve T cells and to initiate strong tumor antigen-specific immune responses.
     Because of the important role in initiating,modulating and keeping immune response,DC-based immune therapy becomes the focus of present antitumor researches.It has been demonstrated that DCs could induce in present of combination cytokines.DCs pulsed with tumor antigens administered in different forms,such as peptides,cell lysates,proteins,apoptotic cells,DNA or RNA,could induce specific antitumor immune response.DC-based anti laryngeal carcinoma immune therapy is at its very beginning.Because of the fail in recognizing tumor specific antigens of laryngeal squamous cell carcinoma,DC pulsed with whole tumor-derived material present as a main strategy.It has been reported that DCs loaded with tumor lysates and fusions of DCs with tumor cells could induce effective anti-tumor effects in LSCC.Recently,it has been demonstrated that DCs transfected with specific or whole cell ribonucleic acid(RNA)is more effective and safe than DNA vector constructs. However,little is known about the antitumor effects of RNA pulsed DCs in LSCC.
     However,patients with advanced cancer including squamouse cell carcinoma of the head and neck(SCCHN)are known to be immunologically compromised,which allows malignant cells to evade the host's anti-tumor defenses.The MHC restriction made it necessary to use autologous DCs in immune therapy.On the other hand,it would be ideal to use DC-based immunotherapy as a first choice,but in fact,it is more likely to be of use as an adjuvant treatment together with the conventional therapies.In concerning of laryngeal SCC,surgery and radiotherapy is still regarded as the most efficient treatment strategy world wide.Therefore,it is important to understanding changes of DCs in malignant tumor patients not only caused by the disease per se,but also by other aspects,such as different therapeutic regimens or other clinical features.
     In this study,we firstly investigate the effects of surgery and adjunctive radiotherapy on both circulating dendritic cells(DCs)and MoDCs of LSCC patients. Then we investigate the influence of Hep-2 cells total RNA transfection on monocyte derived dendritic cells(DCs)and the possibility of induction of antigen specific anti-tumor effects,as well as the feasibility of EGFP as a marker during RNA transfection.The aims of this current research are providing insight into the immune system status of LSCC patients,meanwhile assisting us in developing the proper DC-based anti-cancer immunotherapeutic strategies.
     PARTⅠCirculating Dendritic Cell Subsets detection by FACS and Induction of DC from Human Peripheral Blood Monoeyte
     Objective To investigate the convenient and reliable assay for circulating dendritic cell subsets detection,induct DC from peripheral blood monocyte of healthy donors.
     Methods Peripheral blood samples were collected from 15 healthy donors.Using multicolor flow cytometry,the percentages of lineage negative(LIN~-)and HLA-DR~+ DC precursors,as well as their HLA~+LIN~-CD11c+(myeloid)and HLA~+LIN~-CD123~+ (lymphoid)subsets,were determined in whole blood.Moreover,monocyte-derived DCs were generated utilizing granulocyte macrophage colony-stimulating factor (GM-CSF),interleukin-4(IL-4)and tumor necrosis factor-α(TNF-α).The morphous of cultured cells were observed using inverted microscope and electron microscope, then the phonotype of MoDCs was measured by flow cytometry and the ability to stimulate autologous T cells were tested in mixed leukocyte reaction(MLR).
     Results The percentages of HLA-DR~+ DC precursors,HLA~+LIN~-CD11c+ DCs and HLA~+LIN~-CD123~+ DCs in peripheral WBCs were 0.414±0.13%,0.284±0.13%, 0.068±0.032%,respectively.The absolute numbers of these cells were 22.75±5.22/μl, 15.12±4.66/μl and 3.78±1.40/μl,respectively.Mature monocyte derived DCs of healthy donors displayed typical characteristics of morphology,which were non-adherent,displayed many fine spines on surface,rich chondriosome and poor lysosome in endoplasm.They expressed high level of CDS0,CD83,CD86 and HLA-DR,the percentages of positive expression of these surface marks were 46.54±7.1%,62.64±10.3%,51.14±9.6%and 73.44±8.1%.Few MoDCs could induce the proliferation of autologous T cells at the ratio of 1:10.
     Conclusion Multicolor FACS is convenient and reliable for circulating dendritic cell subsets detection but need proper gating strategy.We could successful isolate and culture mature DCs from peripheral blood of healthy donor in presence of GM-CSF, IL-4 and TNF-α.Those cells maintained the typical morphological characteristics and had immune activities.
     PARTⅡTherapeutic Influence on Circulating and Monocyte-derived Dendritic Cells in Laryngeal Squamous Cell Carcinoma Patients
     Objective To investigate the effects of surgery and adjunctive radiotherapy on both circulating dendritic cells(DCs)and MoDCs of LSCC patients.
     Methods Forty-six laryngeal SCC patients and 15 age-matched healthy control subjects were enrolled in this study.Both in patients underwent surgery only(n=18) and those accepted adjunctive radiotherapy after tumor removal(n=28),blood samples were taken before,during and after conventional treatment.Three-color flow cytometry was used for circulating DC subsets determination.Moreover, monocyte-derived DCs were generated utilizing granulocyte macrophage colony-stimulating factor(GM-CSF)and interleukin-4(IL-4),then the phonotype of MoDCs was measured by flow cytometry and the ability to stimulate autologous T cells were tested in mixed leukocyte reaction(MLR).
     Results The pre-operative mDC counts,MoDC surface molecular expression and stimulatory capacity were impaired in patients in comparison with controls.The number of mDC and the expression of CDS0,CD83,HLA-DR on MoDC were significantly increased as compared to those pre-treatment both in patients underwent surgery only and surgery followed with adjunctive radiotherapy.However,the recovery of CD86 expression and allostimulatory activity was only observed in patients accepted surgery only.
     Conclusion Surgical resection of laryngeal squamous cell carcinoma(LSCC) could be associated with improved circulating myeloid dendritic cell(mDC)number and monocyte-derived dentritic cell(MoDC)function.Although adjunctive radiotherapy after surgery did not effect the normalization of mDC number,it may have an impact on MoDC function.
     PARTⅢInduction of Laryngeal Squamous Cell Carcinoma Specific Anti-tumor Effects Using Dendritic Ceils Transfected with Hep-2 Cells Total RNA Marked with EGFP in Vitro
     Objective To investigate the influence of Hep-2 cells total RNA transfection on monocyte derived dendritic cells(DCs)and the possibility of induction of laryngeal squamous cell carcinoma specific anti-tumor effects,as well as the feasibility of EGFP as a marker during RNA transfection.
     Methods Immature dendritic cells were generated from peripheral blood monocyte of healthy donor in the present of granulocyte macrophage colony stimulating factor(GM-CSF)and interleukin-4(IL-4).Hep-2 cells were transfected with plasmid pEGFP-N1 using liposome and stably selected by G418.Total Hep-2-EGFP cellular RNA was generated using Trizol following the manufacturer's protocol,the integrity and purity of total RNA were detected.Immature DCs were transfected with total RNA of Hep-2-EGFP cells by simple co-incubation and electroporation.Transfection efficiency was detected by fluorescence microscope. After transfection,DCs were incubated with TNF-αfor maturation.The phonotype of matured MoDCs transfected with total RNA was measured by flow cytometry and the ability to stimulate autologous T cells was tested in mixed leukocyte reaction(MLR). For CTL induction,RNA transfected DCs were incubated with allogeneic T cells for 7 days,and the cytolytic activity of induced CTLs was analyzed by a standard ~(51)Cr-release assay.
     Results EGFP was stably expressed in Hep-2 cells,the green fluorescence lasted for at least 20 generations.To attest the intactness of total Hep-2-EGFP cellular RNA, all RNA preparations were subjected to electrophoresis in gel under denaturing conditions with clear visualization of intact 18S and 28S ribosomal bands.Simple co-incubation and electroporation yield transfection efficiency of 7~9%and 21~23% respectively.The expression of maturation marks,such as CD83 and HLA-DR,on DCs transfected with total Hep-2-EGFP cellular RNA was significant higher than on those simply matured.Allogeneic T cell proliferation induced by transfected DCs was significantly higher than untransfected DCs.DCs transfected with total Hep-2 cellular RNA were capable of stimulating CTLs that specific recognized and lysed Hep-2 ceils, but not HT-29 cells(colon cancer)and OVCAR3 cells(ovarian cancer).
     Conclusion EGFP could be used as a marker to observe the effect of transfection of DCs with total Hep-2 tumor cellular RNA.Transfection with total Hep-2 cellular RNA could up-regulation the expression of DC maturation marks,promote the stimulatory capacity to allogenic T cells,and induce specific CTL against Hep-2 cells. Thus,toal tumor RNA-transfected DCs may represent a broadly applicable vaccine strategy to induce potentially therapeutic T cell responses in laryngeal squamous cell carcinoma patients.
引文
1.Guermonprez R Valladeau J,Zitvogel L,Thery C,Amigorena S:Antigen presentation and T cell stimulation by dendritic cells.Annu Rev Immunol 2002:20:621-667.
    2.李明松,袁爱力:肝癌患者外周血树突状细胞免疫状态的研究.中国癌症杂志 1998;8:85-87.
    3.Bjercke S,Onsrud M,Gaudernack G:Suppressive effect of monocytes in vitro in patients with carcinoma of the uterine cervix.Acta Obstet Gynecol Scand 1986;65:619-624.
    4.李丹,刘海燕,于燕,等:脐血HLA-Ⅰ类抗原血清学分型与基因分型的比较研究.中华血液杂志 2000;21:397-399.
    5.Hsu FJ,Benike C,Fagnoni F,Liles TM,Czerwinski D,Taidi B,Engleman EG,Levy R:Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.Nat Med 1996;2:52-58.
    6.Peiper M,Goedegebuure PS,Linehan DC,Ganguly E,Douville CC,Eberlein TJ: The HER2/neu-derived peptide p654-662 is a tumor-associated antigen in human pancreatic cancer recognized by cytotoxic T lymphocytes. Eur J Immunol 1997;27:1115-1123.
    7. Qin Z, Blankenstein T: CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 2000; 12:677-686.
    8. Dembic Z, Schenck K, Bogen B: Dendritic cells purified from myeloma are primed with tumor-specific antigen (idiotype) and activate CD4+ T cells. Proc Natl Acad Sci U S A 2000;97:2697-2702.
    9. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H: The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 1998;188:2357-2368.
    10. Terheyden P, Straten P, Brocker EB, Kampgen E, Becker JC: CD40-ligated dendritic cells effectively expand melanoma-specific CD8+ CTLs and CD4+ IFN-gamma-producing T cells from tumor-infiltrating lymphocytes. J Immunol 2000;164:6633-6639.
    11. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD, Jr.: Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med 1996; 183:283-287.
    12. Jenne L, Arrighi JF, Jonuleit H, Saurat JH, Hauser C: Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res 2000;60:4446-4452.
    13. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998;392:245-252.
    14. Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991-1045.
    15. Fanger NA, Maliszewski CR, Schooley K, Griffith TS: Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 1999;190:1155-1164.
    16. Chapoval AI, Tamada K, Chen L: In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells. Blood 2000;95:2346-2351.
    17. Steinman RM, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142-1162.
    18. Steinman RM, Nussenzweig MC: Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 2002;99:351-358.
    19. Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, Kandemir A, Lee PP, Schuler G, Knop J, Enk AH: A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 2001;93:243-251.
    20. Dhodapkar MV, Steinman RM: Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 2002;100:174-177.
    21. Barratt-Boyes SM, Watkins SC, Finn OJ: In vivo migration of dendritic cells differentiated in vitro: a chimpanzee model. J Immunol 1997; 158:4543-4547.
    22. Lenz A, Heine M, Schuler G, Romani N: Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest 1993;92:2587-2596.
    23. Chen L: Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004;4:336-347.
    24. Grabbe S, Beissert S, Schwarz T, Granstein RD: Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol Today 1995;16:117-121.
    25. Lynch DH, Andreasen A, Maraskovsky E, Whitmore J, Miller RE, Schuh JC: Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med 1997;3:625-631.
    26. Borges L, Miller RE, Jones J, Ariail K, Whitmore J, Fanslow W, Lynch DH: Synergistic action of fms-like tyrosine kinase 3 ligand and CD40 ligand in the induction of dendritic cells and generation of antitumor immunity in vivo. J Immunol 1999; 163:1289-1297.
    27. Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, Caron D, Maliszewski C, Davoust J, Fay J, Palucka K: Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000;165:566-572.
    28. Daro E, Pulendran B, Brasel K, Teepe M, Pettit D, Lynch DH, Vremec D, Robb L, Shortman K, McKenna HJ, Maliszewski CR, Maraskovsky E: Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 2000; 165:49-58.
    29. Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ, Jr.: Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998;161:2094-2098.
    30. Pulendran B, Smith JL, Jenkins M, Schoenborn M, Maraskovsky E, Maliszewski CR: Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. J Exp Med 1998; 188:2075-2082.
    31. Baskar S, Glimcher L, Nabavi N, Jones RT, Ostrand-Rosenberg S: Major histocompatibility complex class II+B7-1+ tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice. J Exp Med 1995;181:619-629.
    32. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 1996;196:121-135.
    33. Ostrand-Rosenberg S: Tumor immunotherapy: the tumor cell as an antigen-presenting cell. Curr Opin Immunol 1994;6:722-727.
    34. Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D, Boone T, Hsu H, Fu YX, Nagata S, Ni J, Chen L: Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med 2000;6:283-289.
    35. Klein C, Bueler H, Mulligan RC: Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 2000;191:1699-1708.
    36. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993;90:3539-3543.
    37. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G: Dendritic cells as vectors for therapy. Cell 2001;106:271-274.
    38. Schuler G, Schuler-Thurner B, Steinman RM: The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003; 15:138-147.
    39. Fong L, Engleman EG: Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000; 18:245-273.
    40. Nencioni A, Muller MR, Grunebach F, Garuti A, Mingari MC, Patrone F, Ballestrero A, Brossart P: Dendritic cells transfected with tumor RNA for the induction of antitumor CTL in colorectal cancer. Cancer Gene Ther 2003;10:209-214.
    41. Muller MR, Grunebach F, Nencioni A, Brossart P: Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol 2003; 170:5892-5896.
    42. Mitchell DA, Nair SK: RNA transfected dendritic cells as cancer vaccines. Curr Opin Mol Ther 2000;2:176-181.
    43. Rains N, Carman RJ, Chen W, Stubbs RS: Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal cancer. Hepatogastroenterology 2001 ;48:347-351.
    44. Hadzantonis M, O'Neill H: Review: dendritic cell immunotherapy for melanoma. Cancer Biother Radiopharm 1999;14:11-22.
    45. Suciu-Foca Cortesini N, Piazza F, Ho E, Ciubotariu R, LeMaoult J, Dalla-Favera R,Cortesini R:Distinct mRNA microarray profiles of tolerogenic dendritic cells.Hum Immunol 2001;62:1065-1072.
    46.Gallo O,Libonati GA,Gallina E,Fini-Storchi O,Giannini A,Urso C,Bondi R:Langerhans cells related to prognosis in patients with laryngeal carcinoma.Arch Otolaryngol Head Neck Surg 1991;117:1007-1010.
    47.李晓燕,中岛格,董频:喉咽癌树突状细胞表型抗原表达.中国耳鼻咽喉头颈外科 2005;12:231-234.
    48.李晓燕,中岛格,董频:树突状细胞表型抗原在喉咽癌颈部淋巴结中的表达.临床耳鼻咽喉头颈外科杂志 2006;20:110-113.
    49.Weise JB,Hilpert F,Heiser A,Gorogh T,Meyer JE,Weimer J,Kruger C,Rosenau A,Wieckhorst W,Arnold N,Pfisterer J,Kabelitz D,Maune S:Electrofusion generates diverse DC-tumour cell hybrids for cancer immunotherapy.Anticancer Res 2004;24:929-934.
    50.Kacani L,Wurm M,Schwentner I,Andrle J,Schennach H,Sprinzl GM:Maturation of dendritic cells in the presence of living,apoptotic and necrotic tumour cells derived from squamous cell carcinoma of head and neck.Oral Oncol 2005;41:17-24.
    51.吴硕,徐秀玉,徐平:喉癌患者树突状细胞的体外培养和功能研究.中国耳鼻咽喉头颈外科 2006;13:149-152.
    1. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN: Characterization of human blood dendritic cell subsets. Blood 2002;100:4512-4520.
    2. Robinson SP, Patterson S, English N, Davies D, Knight SC, Reid CD: Human peripheral blood contains two distinct lineages of dendritic cells. Eur J Immunol 1999;29:2769-2778.
    3. Steinman RM, Cohn ZA: Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 1973;137:1142-1162.
    4. Strunk G, Ederhof T: Machines for automated evolution experiments in vitro based on the serial-transfer concept. Biophys Chem 1997;66:193-202.
    5. Liu YJ: Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001;106:259-262.
    6. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998;392:245-252.
    7. Steinman RM, Nussenzweig MC: Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 2002;99:351-358.
    8. Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, Kandemir A, Lee PP, Schuler G, Knop J, Enk AH: A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 2001;93:243-251.
    9. Dhodapkar MV, Steinman RM: Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 2002;100:174-177.
    10. Barratt-Boyes SM, Watkins SC, Finn OJ: In vivo migration of dendritic cells differentiated in vitro: a chimpanzee model. J Immunol 1997;158:4543-4547.
    11. Ho CS, Lopez JA, Vuckovic S, Pyke CM, Hockey RL, Hart DN: Surgical and physical stress increases circulating blood dendritic cell counts independently of monocyte counts. Blood 2001;98:140-145.
    12. Burnet FM: The concept of immunological surveillance. Prog Exp Tumor Res 1970;13:l-27.
    13. Chen L: Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004;4:336-347.
    14. Nencioni A, Grunebach F, Schmidt SM, Muller MR, Boy D, Patrone F, Ballestrero A, Brossart P: The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol 2008;65:191-199.
    15. Fong L, Engleman EG: Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000; 18:245-273.
    16. Curiel-Lewandrowski C, Mahnke K, Labeur M, Roters B, Schmidt W, Granstein RD, Luger TA, Schwarz T, Grabbe S: Transfection of immature murine bone marrow-derived dendritic cells with the granulocyte-macrophage colony-stimulating factor gene potently enhances their in vivo antigen-presenting capacity. J Immunol 1999; 163:174-183.
    17. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM: Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176:1693-1702.
    18. Romani N, Gruner S, Brang D, Kampgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G: Proliferating dendritic cell progenitors in human blood. J Exp Med 1994; 180:83-93.
    19. De Smedt T, Pajak B, Muraille E, Urbain J, Leo O, Moser M: Positive and negative regulation of dendritic cell function by lipopolysaccharide in vivo. Adv Exp Med Biol 1997;417:535-540.
    20. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 1996;196:121-135.
    21. Luft T, Pang KC, Thomas E, Hertzog P, Hart DN, Trapani J, Cebon J: Type I IFNs enhance the terminal differentiation of dendritic cells. J Immunol 1998;161:1947-1953.
    22. Sallusto F, Lanzavecchia A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994; 179:1109-1118.
    23. Wong BR, Josien R, Lee SY, Sauter B, Li HL, Steinman RM, Choi Y: TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell-specific survival factor. J Exp Med 1997; 186:2075-2080.
    24. Rouard H, Leon A, Klonjkowski B, Marquet J, Tenneze L, Plonquet A, Agrawal SG, Abastado JP, Eloit M, Farcet JP, Delfau-Larue MH: Adenoviral transduction of human 'clinical grade' immature dendritic cells enhances costimulatory molecule expression and T-cell stimulatory capacity. J Immunol Methods 2000;241:69-81.
    1.Perales MA,Blachere NE,Engelhorn ME,Ferrone CR,Gold JS,Gregor PD,Noffz G,Wolchok JD,Houghton AN:Strategies to overcome immune ignorance and tolerance.Semin Cancer Biol 2002;12:63-71.
    2.李爱民:肿瘤放射免疫治疗面临的问题及其对策.国外医学肿瘤学分册1999;26:160.
    3.Botti C,Seregni E,Ferrari L,Martinetti A,Bombardieri E:Immunosuppressive factors:role in cancer development and progression.Int J Biol Markers 1998;13:51-69.
    4.Sette A,Chesnut R,Fikes J:HLA expression in cancer:implications for T cell-based immunotherapy.Immunogenetics 2001;53:255-263.
    5.Dong H,Strome SE,Salomao DR,Tamura H,Hirano F,Flies DB,Roche PC,Lu J,Zhu G;Tamada K,Lennon VA,Celis E,Chen L:Tumor-associated B7-H1promotes T-cell apoptosis:a potential mechanism of immune evasion.Nat Med 2002;8:793-800.
    6.Jodo S,Kobayashi S,Nakajima Y,Matsunaga T,Nakayama N,Ogura N,Kayagaki N,Okumura K,Koike T:Elevated serum levels of soluble Fas/APO-1(CD95)in patients with hepatocellular carcinoma.Clin Exp Immunol 1998;112:166-171.
    7.Hu HM,Urba WJ,Fox BA:Gene-modified tumor vaccine with therapeutic potential shifts tumor-specific T cell response from a type 2 to a type 1 cytokine profile.J Immunol 1998;161:3033-3041.
    8.Dembic Z,Schenck K,Bogen B:Dendritic cells purified from myeloma are primed with tumor-specific antigen(idiotype)and activate CD4+ T cells.Proc Natl Acad Sci U S A 2000;97:2697-2702.
    9.Hung K,Hayashi R,Lafond-Walker A,Lowenstein C,Pardoll D,Levitsky H:The central role of CD4(+)T cells in the antitumor immune response.J Exp Med 1998;188:2357-2368.
    10.Jenne L,Arrighi JF,Jonuleit H,Saurat JH,Hauser C:Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res 2000;60:4446-4452.
    11. Terheyden P, Straten P, Brocker EB, Kampgen E, Becker JC: CD40-ligated dendritic cells effectively expand melanoma-specific CD8+ CTLs and CD4+ IFN-gamma-producing T cells from tumor-infiltrating lymphocytes. J Immunol 2000;164:6633-6639.
    12. Nasi ML, Lieberman P, Busam KJ, Prieto V, Panageas KS, Lewis JJ, Houghton AN, Chapman PB: Intradermal injection of granulocyte-macrophage colony-stimulating factor (GM-CSF) in patients with metastatic melanoma recruits dendritic cells. Cytokines Cell Mol Ther 1999;5:139-144.
    13. Thurnher M, Radmayr C, Ramoner R, Ebner S, Bock G, Klocker H, Romani N, Bartsch G: Human renal-cell carcinoma tissue contains dendritic cells. Int J Cancer 1996;68:1-7.
    14. Ishida T, Oyama T, Carbone DP, Gabrilovich DI: Defective function of Langerhans cells in tumor-bearing animals is the result of defective maturation from hemopoietic progenitors. J Immunol 1998;161:4842-4851.
    15. Chaux P, Moutet M, Faivre J, Martin F, Martin M: Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab Invest 1996;74:975-983.
    16. Enk AH, Jonuleit H, Saloga J, Knop J: Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer 1997;73:309-316.
    17. Gerlini G, Tun-Kyi A, Dudli C, Burg G, Pimpinelli N, Nestle FO: Metastatic melanoma secreted IL-10 down-regulates CDl molecules on dendritic cells in metastatic tumor lesions. Am J Pathol 2004;165:1853-1863.
    18. Urn SH, Mulhall C, Alisa A, Ives AR, Karani J, Williams R, Bertoletti A, Behboudi S: Alpha-fetoprotein impairs APC function and induces their apoptosis. J Immunol 2004; 173:1772-1778.
    19. Tourkova IL, Yamabe K, Foster B, Chatta G, Perez L, Shurin GV, Shurin MR: Murine prostate cancer inhibits both in vivo and in vitro generation of dendritic cells from bone marrow precursors. Prostate 2004;59:203-213.
    20.Kiertscher SM,Luo J,Dubinett SM,Roth MD:Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells.J Immunol 2000;164:1269-1276.
    21.Ratta M,Fagnoni F,Curti A,Vescovini R,Sansoni P,Oliviero B,Fogli M,Ferri E,Della Cuna GR,Tura S,Baccarani M,Lemoli RM:Dendritic cells are functionally defective in multiple myeloma:the role of interleukin-6.Blood 2002;100:230-237.
    22.Gallo O,Libonati GA,Gallina E,Fini-Storchi O,Giannini A,Urso C,Bondi R:Langerhans cells related to prognosis in patients with laryngeal carcinoma.Arch Otolaryngol Head Neck Surg 1991;117:1007-1010.
    23.李晓燕,中岛格,董频:喉咽癌树突状细胞表型抗原表达.中国耳鼻咽喉头颈外科 2005;12:231-234.
    24.李晓燕,中岛格,董频:树突状细胞表型抗原在喉咽癌颈部淋巴结中的表达.临床耳鼻咽喉头颈外科杂志 2006;20:110-113.
    25.周梁,陶磊:喉癌及下咽癌手术治疗进展.临床耳鼻咽喉头颈外科杂志2007;21:625-629.
    26.张琳,孔维佳:头颈肿瘤放疗新进展.临床耳鼻咽喉头颈外科杂志2007;21:668-672.
    27.Ho CS,Lopez JA,Vuckovic S,Pyke CM,Hockey RL,Hart DN:Surgical and physical stress increases circulating blood dendritic cell counts independently of monocyte counts.Blood 2001;98:140-145.
    28.Takahashi K,Toyokawa H,Takai S,Satoi S,Yanagimoto H,Terakawa N,Araki H,Kwon AH,Kamiyama Y:Surgical influence of pancreatectomy on the function and count of circulating dendritic cells in patients with pancreatic cancer.Cancer Immunol Immunother 2006;55:775-784.
    29.Forastiere AA,Goepfert H,Maor M,Pajak TF,Weber R,Morrison W,Glisson B,Trotti A,Ridge JA,Chao C,Peters G,Lee DJ,Leaf A,Ensley J,Cooper J:Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer.N Engl J Med 2003;349:2091-2098.
    30.Cao MD,Chen ZD,Xing Y:Gamma irradiation of human dendritic cells influences proliferation and cytokine profile of T cells in autologous mixed lymphocyte reaction. Cell Biol Int 2004;28:223-228.
    31. Merrick A, Errington F, Milward K, O'Donnell D, Harrington K, Bateman A, Pandha H, Vile R, Morrison E, Selby P, Melcher A: Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br J Cancer 2005;92:1450-1458.
    1.Banchereau J,Palucka AK:Dendritic cells as therapeutic vaccines against cancer.Nat Rev Immunol 2005;5:296-306.
    2.Zarour HM,Kirkwood JM:Melanoma vaccines:early progress and future promises.Semin Cutan Med Surg 2003;22:68-75.
    3.Motzer RJ,Berg W,Ginsberg M,Russo P,Vuky J,Yu R,Bacik J,Mazumdar M:Phase Ⅱ trial of thalidomide for patients with advanced renal cell carcinoma.J Clin Oncol 2002;20:302-306.
    4.Heiser A,Coleman D,Dannull J,Yancey D,Maurice MA,Lallas CD,Dahm,P,Niedzwiecki D,Gilboa E,Vieweg J:Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors.J Clin Invest 2002;109:409-417.
    5.Mitchell DA,Nair SK:RNA transfected dendritic cells as cancer vaccines.Curr Opin Mol Ther 2000;2:176-181.
    6.Rains N,Cannan RJ,Chen W,Stubbs RS:Development of a dendritic cell (DC)-based vaccine for patients with advanced colorectal cancer.Hepatogastroenterology 2001;48:347-351.
    7.Weise JB,Hilpert F,Heiser A,Gorogh T,Meyer JE,Weimer J,Kruger C,Rosenau A,Wieckhorst W,Arnold N,Pfisterer J,Kabelitz D,Maune S:Electrofusion generates diverse DC-tumour cell hybrids for cancer immunotherapy.Anticancer Res 2004;24:929-934.
    8.吴硕,徐秀玉,徐平.:喉癌患者树突状细胞的体外培养和功能研究.中国耳鼻咽喉头颈外科 2006;13:149-152.
    9.J.萨姆布鲁克DW拉,黄培堂,等译:分子克隆实验指南(第三版).北京:科学出版社 2002;8:30-32.
    10.唐瑶云,肖健云,赵素萍,等:自杀基因质粒表达载体pcDNA3.1(-)CMV.CD 的构建及进行喉癌Hep-2细胞株转染研究.临床耳鼻咽喉头颈外科学杂志2005;19:988-991.
    11.Milazzo C,Reichardt VL,Muller MR,Grunebach F,Brossart P:Induction of myeloma-specific cytotoxic T cells using dendritic cells transfected with tumor-derived RNA. Blood 2003; 101:977-982.
    12. Brossart P, Grunebach F, Stuhler G, Reichardt VL, Mohle R, Kanz L, Brugger W: Generation of functional human dendritic cells from adherent peripheral blood monocytes by CD40 ligation in the absence of granulocyte-macrophage colony-stimulating factor. Blood 1998;92:4238-4247.
    13. Grabbe S, Beissert S, Schwarz T, Granstein RD: Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol Today 1995;16:117-121.
    14. Lynch DH, Andreasen A, Maraskovsky E, Whitmore J, Miller RE, Schuh JC: Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med 1997;3:625-631.
    15. Borges L, Miller RE, Jones J, Ariail K, Whitmore J, Fanslow W, Lynch DH: Synergistic action of fms-like tyrosine kinase 3 ligand and CD40 ligand in the induction of dendritic cells and generation of antitumor immunity in vivo. J Immunol 1999; 163:1289-1297.
    16. Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, Caron D, Maliszewski C, Davoust J, Fay J, Palucka K: Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000; 165:566-572.
    17. Pulendran B, Smith JL, Jenkins M, Schoenborn M, Maraskovsky E, Maliszewski CR: Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. J Exp Med 1998;188:2075-2082.
    18. Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ, Jr.: Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998; 161:2094-2098.
    19. Daro E, Pulendran B, Brasel K, Teepe M, Pettit D, Lynch DH, Vremec D, Robb L, Shortman K, McKenna HJ, Maliszewski CR, Maraskovsky E: Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 2000; 165:49-58.
    20. Pan ZK, Ikonomidis G, Lazenby A, Pardoll D, Paterson Y: A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nat Med 1995; 1:471-477.
    21. Paglia P, Medina E, Arioli I, Guzman CA, Colombo MP: Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 1998;92:3172-3176.
    22. Klein C, Bueler H, Mulligan RC: Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 2000;191:1699-1708.
    23. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993;90:3539-3543.
    24. Scott-Taylor TH, Pettengell R, Clarke I, Stuhler G, La Barthe MC, Walden P, Dalgleish AG: Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. Biochim Biophys Acta 2000;1500:265-279.
    25. DeMatos P, Abdel-Wahab Z, Vervaert C, Hester D, Seigler H: Pulsing of dendritic cells with cell lysates from either B16 melanoma or MCA-106 fibrosarcoma yields equally effective vaccines against B16 tumors in mice. J Surg Oncol 1998;68:79-91.
    26. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF: Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 1999;93:780-786.
    27. Choudhury A, Gajewski JL, Liang JC, Popat U, Claxton DF, Kliche KO, Andreeff M, Champlin RE: Use of leukemic dendritic cells for the generation of antileukemic cellular cytotoxicity against Philadelphia chromosome-positive chronic myelogenous leukemia. Blood 1997;89:1133-1142.
    28. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N: Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998;188:1359-1368.
    29. Fields RC, Shimizu K, Mule JJ: Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A 1998;95:9482-9487.
    30. Kugler A, Seseke F, Thelen P, Kallerhoff M, Muller GA, Stuhler G, Muller C, Ringert RH: Autologous and allogenic hybrid cell vaccine in patients with metastatic renal cell carcinoma. Br J Urol 1998;82:487-493.
    31. Kugler A, Stuhler G, Walden P, Zoller G, Zobywalski A, Brossart P, Trefzer U, Ullrich S, Muller CA, Becker V, Gross AJ, Hemmerlein B, Kanz L, Muller GA, Ringert RH: Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 2000;6:332-336.
    32. Stuhler G, Trefzer U, Walden P: Hybrid cell vaccination in cancer immunotherapy. Recruitment and activation of T cell help for induction of anti tumour cytotoxic T cells. Adv Exp Med Biol 1998;451:277-282.
    33. Smit WM, Rijnbeek M, van Bergen CA, de Paus RA, Vervenne HA, van de Keur M, Willemze R, Falkenburg JH: Generation of dendritic cells expressing bcr-abl from CD34-positive chronic myeloid leukemia precursor cells. Hum Immunol 1997;53:216-223.
    34. Jenne L, Arrighi JF, Jonuleit H, Saurat JH, Hauser C: Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res 2000;60:4446-4452.
    35. Eibl B, Ebner S, Duba C, Bock G, Romani N, Erdel M, Gachter A, Niederwieser D, Schuler G: Dendritic cells generated from blood precursors of chronic myelogenous leukemia patients carry the Philadelphia translocation and can induce a CML-specific primary cytotoxic T-cell response. Genes Chromosomes Cancer 1997;20:215-223.
    36. Ludewig B, Ochsenbein AF, Odermatt B, Paulin D, Hengartner H, Zinkernagel RM: Immunotherapy with dendritic cells directed against tumor antigens shared with normal host cells results in severe autoimmune disease. J Exp Med 2000;191:795-804.
    37. Nencioni A, Muller MR, Grunebach F, Garuti A, Mingari MC, Patrone F, Ballestrero A, Brossart P: Dendritic cells transfected with tumor RNA for the induction of antitumor CTL in colorectal cancer. Cancer Gene Ther 2003;10:209-214.
    38. Muller MR, Tsakou G, Grunebach F, Schmidt SM, Brossart P: Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood 2004; 103:1763-1769.
    39. Boczkowski D, Nair SK, Snyder D, Gilboa E: Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184:465-472.
    40. Nair SK, Morse M, Boczkowski D, Cumming RI, Vasovic L, Gilboa E, Lyerly HK: Induction of tumor-specific cytotoxic T lymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells. Ann Surg 2002;235:540-549.
    41. Silke Gronau MS, Herbert Riechelmann: Dendritic cells pulsed with tumor-derived lysate augment T cell mediated tumor cell lysis. Otolaryngology-Head and Neck Surgery 2004; 131:176-177.
    42. Weise JB, Maune S, Gorogh T, Kabelitz D, Arnold N, Pfisterer J, Hilpert F, Heiser A: A dendritic cell based hybrid cell vaccine generated by electrofusion for immunotherapy strategies in HNSCC. Auris Nasus Larynx 2004;31:149-153.
    43. Zhang L, Zhang H, Liu W, Wang H, Jia J, Si X, Ren J: Specific antihepatocellular carcinoma T cells generated by dendritic cells pulsed with hepatocellular carcinoma cell line HepG2 total RNA. Cell Immunol 2005;238:61-66.
    44. Ponsaerts P, Van Tendeloo VF, Berneman ZN: Cancer immunotherapy using RNA-loaded dendritic cells. Clin Exp Immunol 2003;134:378-384.
    45. Weissman D, Ni H, Scales D, Dude A, Capodici J, McGibney K, Abdool A, Isaacs SN, Cannon G, Kariko K: HIV gag mRNA transfection of dendritic cells (DC) delivers encoded antigen to MHC class I and II molecules, causes DC maturation, and induces a potent human in vitro primary immune response. J Immunol 2000; 165:4710-4717.
    46. Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Feigner PL: Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465-1468.
    47. Heiser A, Maurice MA, Yancey DR, Coleman DM, Dahm P, Vieweg J: Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T-cell responses against antigens expressed by primary and metastatic tumors. Cancer Res 2001 ;61:3388-3393.
    48. Nair SK, Boczkowski D, Morse M, Cumming RI, Lyerly HK, Gilboa E: Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA. Nat Biotechnol 1998;16:364-369.
    49. Ueno H, Tcherepanova I, Reygrobellet O, Laughner E, Ventura C, Palucka AK, Banchereau J: Dendritic cell subsets generated from CD34+ hematopoietic progenitors can be transfected with mRNA and induce antigen-specific cytotoxic T cell responses. J Immunol Methods 2004;285:171-180.
    50. Grunebach F, Muller MR, Nencioni A, Brossart P: Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes. Gene Ther 2003;10:367-374.
    1.Wallich R,Bulbuc N,Hammerling GJ,Katzav S,Segal S,Feldman M:Abrogation of metastatic properties of tumour cells by de novo expression of H-2K antigens following H-2 gene transfection.Nature 1985;315:301-305.
    2.Wortzel RD,Urban JL,Philipps C,Fitch FW,Schreiber H:Independent immunodominant and immunorecessive tumor-specific antigens on a malignant tumor:antigenic dissection with cytolytic T cell clones.J Immunol 1983;130:2461-2466.
    3.Restifo NP,Esquivel F,Asher AL,Stotter H,Barth RJ,Bennink JR,Mule JJ, Yewdell JW, Rosenberg SA: Defective presentation of endogenous antigens by a murine sarcoma. Implications for the failure of an anti-tumor immune response. J Immunol 1991;147:1453-1459.
    4. Burnet FM: The concept of immunological surveillance. Prog Exp Tumor Res 1970;13:l-27.
    5. Qin Z, Blankenstein T: CD4+ T cell-mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity 2000;12:677-686.
    6. Dembic Z, Schenck K, Bogen B: Dendritic cells purified from myeloma are primed with tumor-specific antigen (idiotype) and activate CD4+ T cells. Proc Natl Acad Sci U S A 2000;97:2697-2702.
    7. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H: The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 1998;188:2357-2368.
    8. Terheyden P, Straten P, Brocker EB, Kampgen E, Becker JC: CD40-ligated dendritic cells effectively expand melanoma-specific CD8+ CTLs and CD4+ IFN-gamma-producing T cells from tumor-infiltrating lymphocytes. J Immunol 2000;164:6633-6639.
    9. Celluzzi CM, Mayordomo JI, Storkus WJ, Lotze MT, Falo LD, Jr.: Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med 1996; 183:283-287.
    10. Jenne L, Arrighi JF, Jonuleit H, Saurat JH, Hauser C: Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res 2000;60:4446-4452.
    11. Banchereau J, Steinman RM: Dendritic cells and the control of immunity. Nature 1998;392:245-252.
    12. Matzinger P: Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991-1045.
    13. Fanger NA, Maliszewski CR, Schooley K, Griffith TS: Human dendritic cells mediate cellular apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med 1999;190:1155-1164.
    14. Chapoval AI, Tamada K, Chen L: In vitro growth inhibition of a broad spectrum of tumor cell lines by activated human dendritic cells. Blood 2000;95:2346-2351.
    15. Strunk G, Ederhof T: Machines for automated evolution experiments in vitro based on the serial-transfer concept. Biophys Chem 1997;66:193-202.
    16. Liu YJ: Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 2001;106:259-262.
    17. Steinman RM, Nussenzweig MC: Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A 2002;99:351-358.
    18. Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L, Kandemir A, Lee PP, Schuler G, Knop J, Enk AH: A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 2001;93:243-251.
    19. Dhodapkar MV, Steinman RM: Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 2002;100:174-177.
    20. Barratt-Boyes SM, Watkins SC, Finn OJ: In vivo migration of dendritic cells differentiated in vitro: a chimpanzee model. J Immunol 1997;158:4543-4547.
    21. Lenz A, Heine M, Schuler G, Romani N: Human and murine dermis contain dendritic cells. Isolation by means of a novel method and phenotypical and functional characterization. J Clin Invest 1993;92:2587-2596.
    22. Chen L: Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol 2004;4:336-347.
    23. Austyn JM, Weinstein DE, Steinman RM: Clustering with dendritic cells precedes and is essential for T-cell proliferation in a mitogenesis model. Immunology 1988;63:691-696.
    24. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S: Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002;20:621-667.
    25.李明松,袁爱力:肝癌患者外周血树突状细胞免疫状态的研究.中国癌症杂志 1998;8:85-87.
    26.Bjercke S,Onsrud M,Gaudernack G:Suppressive effect of monocytes in vitro in patients with carcinoma of the uterine cervix.Acta Obstet Gynecol Scand 1986;65:619-624.
    27.李丹,刘海燕,于燕,等:脐血HLA-Ⅰ类抗原血清学分型与基因分型的比较研究.中华血液杂志 2000;21:397-399.
    28.Hsu FJ,Benike C,Fagnoni F,Liles TM,Czerwinski D,Taidi B,Engleman EG,Levy R:Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells.Nat Med 1996;2:52-58.
    29.Peiper M,Goedegebuure PS,Linehan DC,Ganguly E,Douville CC,Eberlein TJ:The HER2/neu-derived peptide p654-662 is a tumor-associated antigen in human pancreatic cancer recognized by cytotoxic T lymphocytes.Eur J Immunol 1997;27:1115-1123.
    30.Nasi ML,Lieberman P,Busam KJ,Prieto V,Panageas KS,Lewis JJ,Houghton AN,Chapman PB:Intradermal injection of granulocyte-macrophage colony-stimulating factor(GM-CSF)in patients with metastatic melanoma recruits dendritic cells.Cytokines Cell Mol Ther 1999;5:139-144.
    31.Rubel DM,Barnetson RS,Halliday GM:Bioactive tumour necrosis factor alpha but not granulocyte-macrophage colony-stimulating factor correlates inversely with Langerhans's cell numbers in skin tumours.Int J Cancer 1998;75:210-216.
    32.Cumberbatch M,Kimber I:Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes,and possibly provides one stimulus for Langerhans' cell migration.Immunology 1992;75:257-263.
    33.Bigotti G,Coli A,Castagnola D:Distribution of Langerhans cells and HLA class Ⅱ molecules in prostatic carcinomas of different histopathological grade.Prostate 1991;19:73-87.
    34.Bethwaite PB,Holloway LJ,Thornton A,Delahunt B:Infiltration by immunocompetent cells in early stage invasive carcinoma of the uterine cervix:a prognostic study. Pathology 1996;28:321-327.
    35. Thurnher M, Radmayr C, Ramoner R, Ebner S, Bock G, Klocker H, Romani N, Bartsch G: Human renal-cell carcinoma tissue contains dendritic cells. Int J Cancer 1996;68:1-7.
    36. Troy A, Davidson P, Atkinson C, Hart D: Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer. J Urol 1998;160:214-219.
    37. Nestle FO, Burg G, Fah J, Wrone-Smith T, Nickoloff BJ: Human sunlight-induced basal-cell-carcinoma-associated dendritic cells are deficient in T cell co-stimulatory molecules and are impaired as antigen-presenting cells. Am J Pathol 1997;150:641-651.
    38. Chaux P, Moutet M, Faivre J, Martin F, Martin M: Inflammatory cells infiltrating human colorectal carcinomas express HLA class II but not B7-1 and B7-2 costimulatory molecules of the T-cell activation. Lab Invest 1996;74:975-983.
    39. Gunzer M, Grabbe S: Dendritic cells in cancer immunotherapy. Crit Rev Immunol 2001 ;21:133-145.
    40. Grabbe S, Beissert S, Schwarz T, Granstein RD: Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol Today 1995;16:117-121.
    41. Lynch DH, Andreasen A, Maraskovsky E, Whitmore J, Miller RE, Schuh JC: Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med 1997;3:625-631.
    42. Borges L, Miller RE, Jones J, Ariail K, Whitmore J, Fanslow W, Lynch DH: Synergistic action of fms-like tyrosine kinase 3 ligand and CD40 ligand in the induction of dendritic cells and generation of antitumor immunity in vivo. J Immunol 1999;163:1289-1297.
    43. Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, Caron D, Maliszewski C, Davoust J, Fay J, Palucka K: Flt3 -ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000;165:566-572.
    44. Daro E, Pulendran B, Brasel K, Teepe M, Pettit D, Lynch DH, Vremec D, Robb L, Shortman K, McKenna HJ, Maliszewski CR, Maraskovsky E: Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 2000;165:49-58.
    45. Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ, Jr.: Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol 1998; 161:2094-2098.
    46. Pulendran B, Smith JL, Jenkins M, Schoenborn M, Maraskovsky E, Maliszewski CR: Prevention of peripheral tolerance by a dendritic cell growth factor: flt3 ligand as an adjuvant. J Exp Med 1998;188:2075-2082.
    47. Pan ZK, Ikonomidis G, Lazenby A, Pardoll D, Paterson Y: A recombinant Listeria monocytogenes vaccine expressing a model tumour antigen protects mice against lethal tumour cell challenge and causes regression of established tumours. Nat Med 1995; 1:471-477.
    48. Paglia P, Medina E, Arioli I, Guzman CA, Colombo MP: Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 1998;92:3172-3176.
    49. Tamada K, Shimozaki K, Chapoval AI, Zhu G, Sica G, Flies D, Boone T, Hsu H, Fu YX, Nagata S, Ni J, Chen L: Modulation of T-cell-mediated immunity in tumor and graft-versus-host disease models through the LIGHT co-stimulatory pathway. Nat Med 2000;6:283-289.
    50. Ostrand-Rosenberg S: Tumor immunotherapy: the tumor cell as an antigen-presenting cell. Curr Opin Immunol 1994;6:722-727.
    51. Baskar S: Gene-modified tumor cells as cellular vaccine. Cancer Immunol Immunother 1996;43:165-173.
    52. Baskar S, Glimcher L, Nabavi N, Jones RT, Ostrand-Rosenberg S: Major histocompatibility complex class II+B7-1+ tumor cells are potent vaccines for stimulating tumor rejection in tumor-bearing mice. J Exp Med 1995;181:619-629.
    53. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC: Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 1993;90:3539-3543.
    54. Klein C, Bueler H, Mulligan RC: Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 2000; 191:1699-1708.
    55. Romani N, Reider D, Heuer M, Ebner S, Kampgen E, Eibl B, Niederwieser D, Schuler G: Generation of mature dendritic cells from human blood. An improved method with special regard to clinical applicability. J Immunol Methods 1996;196:137-151.
    56. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N: Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 1996;196:121-135.
    57. Sallusto F, Lanzavecchia A: Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 1994;179:1109-1118.
    58. Schuler G, Schuler-Thurner B, Steinman RM: The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003; 15:138-147.
    59. Fong L, Engleman EG: Dendritic cells in cancer immunotherapy. Annu Rev Immunol 2000; 18:245-273.
    60. Nencioni A, Brossart P: Cellular immunotherapy with dendritic cells in cancer: current status. Stem Cells 2004;22:501-513.
    61. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl-Goldstein KE, Engleman EG, Blume KG, Levy R: Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma—a feasibility study. Blood 1999;93:2411-2419.
    62. Reichardt VL, Milazzo C, Brugger W, Einsele H, Kanz L, Brossart P: Idiotype vaccination of multiple myeloma patients using monocyte-derived dendritic cells. Haematologica 2003;88:1139-1149.
    63. Dorfel D, Appel S, Grunebach F, Weck MM, Muller MR, Heine A, Brossart P: Processing and presentation of HLA class I and II epitopes by dendritic cells after transfection with in vitro-transcribed MUC1 RNA. Blood 2005;105:3199-3205.
    64. Brossart P, Heinrich KS, Stuhler G, Behnke L, Reichardt VL, Stevanovic S, Muhm A, Rammensee HG, Kanz L, Brugger W: Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 1999;93:4309-4317.
    65. Schmidt SM, Schag K, Muller MR, Weck MM, Appel S, Kanz L, Grunebach F, Brossart P: Survivin is a shared tumor-associated antigen expressed in a broad variety of malignancies and recognized by specific cytotoxic T cells. Blood 2003;102:571-576.
    66. Schmidt SM, Schag K, Muller MR, Weinschenk T, Appel S, Schoor O, Weck MM, Grunebach F, Kanz L, Stevanovic S, Rammensee HG, Brossart P: Induction of adipophilin-specific cytotoxic T lymphocytes using a novel HLA-A2-binding peptide that mediates tumor cell lysis. Cancer Res 2004;64:1164-1170.
    67. Singh-Jasuja H, Emmerich NP, Rammensee HG: The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol Immunother 2004;53:187-195.
    68. Nencioni A, Muller MR, Grunebach F, Garuti A, Mingari MC, Patrone F, Ballestrero A, Brossart P: Dendritic cells transfected with tumor RNA for the induction of antitumor CTL in colorectal cancer. Cancer Gene Ther 2003;10:209-214.
    69. Muller MR, Grunebach F, Nencioni A, Brossart P: Transfection of dendritic cells with RNA induces CD4- and CD8-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol 2003; 170:5892-5896.
    70. Gallo O, Libonati GA, Gallina E, Fini-Storchi O, Giannini A, Urso C, Bondi R: Langerhans cells related to prognosis in patients with laryngeal carcinoma.Arch Otolaryngol Head Neck Surg 1991;117:1007-1010.
    71.李晓燕,中岛格,董频:喉咽癌树突状细胞表型抗原表达.中国耳鼻咽喉头颈外科 2005;12:231-234.
    72.李晓燕,中岛格,董频:树突状细胞表型抗原在喉咽癌颈部淋巴结中的表达.临床耳鼻咽喉头颈外科杂志 2006;20:110-113.
    73.Hoffmann TK,Muller-Berghaus J,Ferris RL,Johnson JT,Storkus WJ,Whiteside TL:Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck.Clin Cancer Res 2002;8:1787-1793.
    74.Almand B,Clark JI,Nikitina E,van Beynen J,English NR,Knight SC,Carbone DP,Gabrilovich DI:Increased production of immature myeloid cells in cancer patients:a mechanism of immunosuppression in cancer.J Immunol 2001;166:678-689.
    75.Xiao Jie Ma XLP,Zheng Hua Lv,et al:Therapeutic Influence on Circulating and Monocyte-derived Dendritic Cells in Laryngeal Squamous Cell Carcinoma Patients.Acta Otolaryngologica 2008;in press.
    76.Weise JB,Hilpert F,Heiser A,Gorogh T,Meyer JE,Weimer J,Kruger C,Rosenau A,Wieckhorst W,Arnold N,Pfisterer J,Kabelitz D,Maune S:Electrofusion generates diverse DC-tumour cell hybrids for cancer immunotherapy.Anticancer Res 2004;24:929-934.
    77.Kacani L,Wurm M,Schwentner I,Andrle J,Schennach H,Sprinzl GM:Maturation of dendritic cells in the presence of living,apoptotic and necrotic tumour cells derived from squamous cell carcinoma of head and neck.Oral Oncol 2005;41:17-24.
    78.吴硕,徐秀玉,徐平:喉癌患者树突状细胞的体外培养和功能研究.中国耳鼻咽喉头颈外科 2006;13:149-152.
    79.Couch M,Saunders JK,O'Malley BW,Jr.,Pardoll D,Jaffee E:Genetically engineered tumor cell vaccine in a head and neck cancer model.Laryngoscope 2003;113:552-556.
    80. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MR: Mechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1995;l:95-103.
    81. Lathers DM, Achille N, Kolesiak K, Hulett K, Sparano A, Petruzzelli GJ, Young MR: Increased levels of immune inhibitory CD34+ progenitor cells in the peripheral blood of patients with node positive head and neck squamous cell carcinomas and the ability of these CD34+ cells to differentiate into immune stimulatory dendritic cells. Otolaryngol Head Neck Surg 2001; 125:205-212.
    82. Fichelson S: The FLT3/FLK2 ligand: structure, functions and prospects. Eur Cytokine Netw 1998;9:7-22.
    83. Dong J, Bohinski RJ, Li YQ, Van Waes C, Hendler F, Gleich L, Stambrook PJ: Antitumor effect of secreted Flt3 -ligand can act at distant tumor sites in a murine model of head and neck cancer. Cancer Gene Ther 2003; 10:96-104.
    1. Hadden JW. The immunopharmacology of head and neck cancer: an update. Int J Immunopharmacol 1997; 19:629-644.
    2. Ohm JE, Gabrilovich DI, Sempowski GD, Kisseleva E, Parman KS, Nadaf S, et al. VEGF inhibits T-cell development and may contribute to tumor-induced immune suppression. Blood 2003;101:4878-4886.
    3. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998;392:245-252.
    4. MacDonald KP, Munster DJ, Clark GJ, Dzionek A, Schmitz J, Hart DN. Characterization of human blood dendritic cell subsets. Blood 2002;100:4512-4520.
    5. Ito A, Kanto T, Kuzushita N, Tatsumi T, Sugimoto Y, Miyagi T, et al. Generation of hepatitis C virus-specific cytotoxic T lymphocytes from healthy individuals with peptide-pulsed dendritic cells. J Gastroenterol Hepatol 2001; 16:309-316.
    6. Delia Bella S, Gennaro M, Vaccari M, Ferraris C, Nicola S, Riva A, et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer 2003;89:1463-1472.
    7. Zhang J, Xu J, Jia S. Infiltration of dendritic cells into cervical lymph nodes in laryngeal carcinoma. Zhonghua Er Bi Yan Hou Ke Za Zhi 2000;35:472-474.
    8. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 2000;6:1755-1766.
    9. Hoffmann TK, Muller-Berghaus J, Ferris RL, Johnson JT, Storkus WJ, Whiteside TL. Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res 2002;8:1787-1793.
    10. Bellik L, Gerlini G, Parenti A, Ledda F, Pimpinelli N, Neri B, et al. Role of conventional treatments on circulating and monocyte-derived dendritic cells in colorectal cancer. Clin Immunol 2006;121:74-80.
    11. Nencioni A, Grunebach F, Schmidt SM, Muller MR, Boy D, Patrone F, et al. The use of dendritic cells in cancer immunotherapy. Crit Rev Oncol Hematol 2007.
    12. Pinzon-Charry A, Maxwell T, Lopez JA. Dendritic cell dysfunction in cancer: a mechanism for immunosuppression. Immunol Cell Biol 2005;83:451-461.
    13. Tourkova IL, Yamabe K, Foster B, Chatta G, Perez L, Shurin GV, et al. Murine prostate cancer inhibits both in vivo and in vitro generation of dendritic cells from bone marrow precursors. Prostate 2004;59:203-213.
    14. Kiertscher SM, Luo J, Dubinett SM, Roth MD. Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J Immunol 2000;164:1269-1276.
    15. Aalamian M, Pirtskhalaishvili G, Nunez A, Esche C, Shurin GV, Huland E, et al. Human prostate cancer regulates generation and maturation of monocyte-derived dendritic cells. Prostate 2001;46:68-75.
    16. Ho CS, Lopez JA, Vuckovic S, Pyke CM, Hockey RL, Hart DN. Surgical and physical stress increases circulating blood dendritic cell counts independently of monocyte counts. Blood 2001 ;98:140-145.
    17. Takahashi K, Toyokawa H, Takai S, Satoi S, Yanagimoto H, Terakawa N, et al. Surgical influence of pancreatectomy on the function and count of circulating dendritic cells in patients with pancreatic cancer. Cancer Immunol Immunother 2006;55:775-784.
    18. Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, et al. Concurrent chemotherapy and radiotherapy for organ preservation in advanced laryngeal cancer. N Engl J Med 2003;349:2091-2098.
    19. Cao MD, Chen ZD, Xing Y. Gamma irradiation of human dendritic cells influences proliferation and cytokine profile of T cells in autologous mixed lymphocyte reaction. Cell Biol Int 2004;28:223-228.
    20. Merrick A, Errington F, Milward K, O'Donnell D, Harrington K, Bateman A, et al. Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naive T-cell priming. Br J Cancer 2005;92:1450-1458.
    1. Lynch DH, Andreasen A, Maraskovsky E, Whitmore J, Miller RE, Schuh JC: Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med 1997;3:625-631.
    2. Pulendran B, Banchereau J, Burkeholder S, Kraus E, Guinet E, Chalouni C, Caron D, Maliszewski C, Davoust J, Fay J, Palucka K: Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000; 165:566-572.
    3. Klein C, Bueler H, Mulligan RC: Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med 2000;191:1699-1708.
    4. Zarour HM, Kirkwood JM: Melanoma vaccines: early progress and future promises. Semin Cutan Med Surg 2003;22:68-75.
    5. Motzer RJ, Berg W, Ginsberg M, Russo P, Vuky J, Yu R, Bacik J, Mazumdar M: Phase II trial of thalidomide for patients with advanced renal cell carcinoma. J Clin Oncol 2002;20:302-306.
    6. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J: Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 2002; 109:409-417.
    7. Scott-Taylor TH, Pettengell R, Clarke I, Stuhler G, La Barthe MC, Walden P, Dalgleish AG: Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. Biochim Biophys Acta 2000; 1500:265-279.
    8. Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N: Immature dendritic cells phagocytose apoptotic cells via alphavbeta5 and CD36, and cross-present antigens to cytotoxic T lymphocytes. J Exp Med 1998;188:1359-1368.
    9. DeMatos P, Abdel-Wahab Z, Vervaert C, Hester D, Seigler H: Pulsing of dendritic cells with cell lysates from either B16 melanoma or MCA-106 fibrosarcoma yields equally effective vaccines against B16 tumors in mice. J Surg Oncol 1998;68:79-91.
    10. Choudhury BA, Liang JC, Thomas EK, Flores-Romo L, Xie QS, Agusala K, Sutaria S, Sinha I, Champlin RE, Claxton DF: Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 1999;93:780-786.
    11. Banchereau J, Palucka AK: Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005;5:296-306.
    12. Grabbe S, Beissert S, Schwarz T, Granstein RD: Dendritic cells as initiators of tumor immune responses: a possible strategy for tumor immunotherapy? Immunol Today 1995; 16:117-121.
    13. Nencioni A, Muller MR, Grunebach F, Garuti A, Mingari MC, Patrone F, Ballestrero A, Brossart P: Dendritic cells transfected with tumor RNA for the induction of antitumor CTL in colorectal cancer. Cancer Gene Ther 2003;10:209-214.
    14. Muller MR, Tsakou G, Grunebach F, Schmidt SM, Brossart P: Induction of chronic lymphocytic leukemia (CLL)-specific CD4- and CD8-mediated T-cell responses using RNA-transfected dendritic cells. Blood 2004; 103:1763-1769.
    15. Boczkowski D, Nair SK, Snyder D, Gilboa E: Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184:465-472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700