用户名: 密码: 验证码:
大肠癌患者自体树突状细胞免疫治疗技术临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠癌包括结肠癌和直肠癌,是最常见的消化道恶性肿瘤之一。在世界范围内,大肠癌发病率居恶性肿瘤第4位,已占全身恶性肿瘤的12%-15%,每年有102万新发病例和53万死亡病例。自上世纪70年代以来,我国大肠癌发病率和死亡率有不断上升趋势(以结肠癌上升为主),并且青年期(<30岁)大肠癌发病率高是我国大肠癌的一个显著临床特点。因大肠癌早期症状不明显,多数患者就诊时已发生区域或远处转移,单纯手术治疗不能显著改善患者预后,因此综合治疗成为目前治疗大肠癌的重要方法。生物治疗作为大肠癌综合治疗的组成部分,即可以独立运用,又可与手术及放、化疗结合,具有疗效高、特异性强、副作用小等优点,已成为研究的热点之一。
     树突状细胞(DC)是目前已知功能最强大的专职抗原递呈细胞,是机体T细胞特异性免疫应答的直接启动和调控者。它最大的特点是能够显著刺激初始型T细胞的增殖,在免疫反应的诱导中具有独特的地位。DC在外周组织中摄取抗原,加工分解成抗原肽与MHC-I/II类分子结合,然后移行到周围淋巴器官通过MHC分子递呈抗原给T淋巴细胞,激发特异性抗肿瘤免疫反应。与其他抗原递呈细胞相比,DC表达MHC-I/II类分子、共刺激分子和粘附分子的水平更高,因此在刺激T细胞增殖,抗肿瘤免疫中起重要作用。早在1995年国外学者就开展了DC治疗肿瘤的I期临床试验,以DC为载体开发的DC肿瘤疫苗在前列腺癌、恶性黑色素瘤、结肠癌、乳腺癌、卵巢癌、多发性骨髓瘤、脑胶质瘤、肾细胞癌等恶性肿瘤患者治疗中取得了显著的疗效。DC肿瘤疫苗用于结直肠癌的研究也表明其安全有效,不仅可降低结直肠癌患者癌胚抗原(CEA)水平,甚至可使肺部转移病灶消失。以DC为载体开发的DC肿瘤疫苗已成为现今最先进、最有希望的肿瘤免疫治疗方法之一。
     由于大肠癌是一种免疫原性较弱的肿瘤,且肿瘤细胞缺乏共刺激分子或某些粘附分子,并可通过抗原调变、下调MHC分子表达等机制介导肿瘤免疫逃逸,从而影响免疫治疗效果。另有研究表明,肿瘤患者体内DC数量减少及功能缺陷,使其无法有效递呈肿瘤抗原,亦是肿瘤免疫逃逸的主要原因之一。因此,提高肿瘤患者体内DC的数量并维持其强大的抗原识别、呈递功能是实施抗肿瘤免疫治疗的关键措施之一。正因为此,应用足够数量和功能正常的DC细胞进行细胞免疫治疗或基于DC细胞的抗肿瘤疫苗研究工作越来越受到重视。
     对肿瘤患者提供外源性DC细胞进行细胞免疫治疗的方法现已经历了以下阶段的发展:早期多采用已知肿瘤相关抗原肽或肿瘤细胞mRNA修饰致敏DC,但疗效不佳。随着研究的深入,改用肿瘤全抗原致敏DC的方法,即,将肿瘤细胞与DC融合或用肿瘤细胞裂解物负载DC制成杂交疫苗,用于胃癌、肝细胞癌及大肠癌治疗的临床研究取得较好的抗肿瘤效果。而最近研究发现,DC表面表达多种热休克蛋白(HSP)受体(如CD91,CD40,TLR2/4或LOX1),HSP可作用于DC或单核细胞,刺激其产生细胞因子(IL-12,TNFa,IL-6等),增强机体非特异性免疫反应。2004年免疫学权威杂志《Immunity》报道,与多肽负载的DC相比,HSP70-抗原肽复合物负载的DC在体外激发CD8+ T的能力远远高于前者(1000倍)。提示如果将HSP与DC进行有机结合,发挥二者各自的优势,将会产生更强的免疫激发作用。
     有鉴于此,本研究对大肠癌患者热休克凋亡自体的大肠癌细胞抗原制备、自身的树突状细胞体外诱导、以及抗原负载方法等进行了初步探讨,并比较了分别负载热休克诱导凋亡大肠癌细胞株和肿瘤细胞裂解物两种不同抗原的DC对大肠癌细胞的杀伤效果,并探讨了热休克凋亡的人自体大肠癌细胞致敏自体的树突状细胞疫苗对大肠癌患者术后免疫功能的影响,为制备大肠癌细胞肿瘤疫苗研究提供技术基础。
     研究共分为三个部分:
     第一部分自体大肠癌细胞负载树突状细胞的方法研究
     目的:建立自体热休克凋亡大肠癌(包括结肠、直肠癌)细胞抗原制备、树突状细胞体外诱导、以及抗原负载方法,为制备树突状细胞肿瘤疫苗提供技术基础。方法:采用酶消化法从手术切除的14例大肠癌新鲜组织获得单细胞悬液,热休克处理后用桦脂酸诱导其凋亡制备成细胞抗原;采集外周静脉血,分离单个核细胞,经GM-CSF与IL-4体外诱导成未成熟树突状细胞,负载细胞抗原后制备成DC肿瘤疫苗;苔盼蓝染色进行细胞总数及活细胞计数,计算细胞活率;用FITC-Annexin-Ⅴ和PI标记细胞,流式细胞仪检测,计算细胞凋亡率。软琼脂克隆法检测细胞体外成瘤能力;按《中华人民共和国药典》2005版第三部规定的方法进行内毒素检测。
     结果: (1)肿瘤细胞抗原得率:(11.81±0.65)×106/g组织;平均凋亡率:(93.16±2.31)%;(2)imDC平均得率为(9.75±0.82)×106(/121.64)×106个PBMC,细胞活率>95%;imDC表型分析:CD11c+CD14-、CD11c+HLA-DR+、CD11c+CD80+、CD11c+CD83+、CD11c+CD86+表达率分别为(87.58±2.56)%、(87.97±0.98)%、(2.21±0.69)%、(4.85±1.22)%、(5.02±0.95)%;(3)DC平均得率为(6.76±0.98)×106/(9.75±0.82)×106个imDC,细胞活率>95%,DC表型:CD11c+CD14-、CD11c+HLA-DR+、CD11c+CD80+、CD11c+CD83+、CD11c+CD86+表达率分别为( 93.45±1.25 ) %、(89.79±1.35)%、(87.85±1.62)%、(70.74±6.45)%、(95.54±2.18)%。内毒素检测均合格(≤5 IU/mL)。
     结论:本方法稳定、安全、可靠,可制备出成熟DC。
     第二部分两种不同方式负载大肠癌细胞株的树突状细胞体外刺激淋巴细胞抗肿瘤活性的比较
     目的:比较树突状细胞以两种不同方式负载大肠癌细胞株体外刺激淋巴细胞的抗瘤活性。
     方法:分离30例大肠癌患者外周血单核细胞体外诱导DC,分别负载热休克诱导凋亡大肠癌细胞株和肿瘤细胞裂解物,以此刺激淋巴细胞作为效应细胞,大肠癌细胞株为靶细胞,MTT法测定效应细胞对靶细胞的杀伤作用。
     结果:负载热休克大肠癌细胞的DC与负载肿瘤细胞裂解物的DC都显示对靶细胞的杀伤活性,但前者的杀伤率显著高于后者(P<0.05)。
     结论:负载热休克肿瘤细胞的DC是一个更为有效的负载方式。
     第三部分自体DC治疗对大肠癌患者术后免疫功能的影响
     目的:探讨热休克凋亡的人自体大肠癌细胞致敏的树突状细胞疫苗对大肠癌术后免疫功能的影响。
     方法:从大肠癌患者外周血单个核细胞中诱导DC,并用重组人粒细胞-巨噬细胞集落刺激因子和白介素-4刺激活化,经热休克凋亡自体大肠癌细胞致敏制备DC疫苗。将28例大肠癌术后患者随机分为DC疫苗治疗组14例,化疗对照组14例。对两组病例治疗前后免疫功能、临床疗效进行观察比较。
     结果:DC疫苗组治疗后外周血CD3+、CD4+/CD8+及NK细胞比率较治疗前明显升高(P<0.05),且明显高于对照组化疗后的CD3+、CD4+/CD8+及NK细胞比率(P<0.05);DC疫苗治疗后患者血清IL-2、IL-12、IFN-γ水平较治疗前明显升高(P<0.05),且明显高于对照组(P<0.05),生存时间明显延长。
     结论:大肠癌术后行热休克凋亡自体大肠癌细胞致敏的DC疫苗治疗,可提高患者的细胞免疫水平。
Colorectal cancer,including colon and rectal cancer, is one of the most common malignant tumors in the digestive tract. In the worldwide scale, incidence rate of colorectal cancer ranks No.4 that has occupied 12%-15% of the whole body malignant tumor and there are 1,020,000 new cases and 530,000 death cases each year. Since the 70s of last century, China's morbidity and mortality of colorectal cancer have showed a rising trend (by colon cancer rise primarily), and the high incidence of colorectal cancer in adolescent (<30 years old) is a significant clinical feature in our country. The incipient symptoms of colon cancer are not obvious,so the regional or distant metastasis has occurred when most of patients come for treatment. Surgical treatment can not significantly improve the prognosis of patients alone, so currently the combined therapy is an important method. As an integral part of comprehensive treatment, biological treatment of colorectal cancer can be used independently, or combined with surgery, radiotherapy and chemotherapy,which has the merits of high efficacy, strong specificity, few side effects,etc. Now it has become one of the research hot spots.
     Dendritic cells (DC) is known as the most powerful professional antigen-presenting cells,and DC is the direct initiator and regulator of body's T cell-specific immune responses. The biggest feature of DC is the ability to stimulate the proliferation of naive T cells significantly which has a unique position in the immune response induction. DC uptake antigen in peripheral tissue, process and decompose it to antigenic peptides, which combined with MHC-I/II molecules, migrate to peripheral lymphoid organs, present antigen to T lymphocytes through the MHC molecules, then stimulate specific anti-tumor immune response. Compared to other antigen-presenting cells, DC expresses higher levels of MHC-I/II molecules, costimulatory molecules and adhesion molecules, therefore it plays an important role in stimulating T cell proliferations and anti-tumor immunity. As early as 1995, foreign scholars began to carry out the phase I clinical trials of cancer therapeutics with DC. DC vaccine has achieved remarkable effects in prostate cancer, malignant melanoma, colon cancer, breast cancer, ovarian cancer, multiple myeloma, brain glioma, renal cell carcinoma and other malignant tumors . Study of DC tumor vaccine for colorectal cancer therapy also shows that the safty and clinical effect. It can reduce carcinoembryonic antigen (CEA) levels of colorectal cancer patients, and even makes lung metastases disappeared. DC cancer vaccines have been one of the most advanced and promising cancer immunotherapy methods nowaday,.
     The colorectal cancer is one kind of weak immunogenicity tumor. The tumor cells lack costimulatory molecules or some adhesion molecules, and can arise tumor immune escape mediated by antigenic modulation,also can reduce expression of MHC molecule, thus affect the immune therapeutic effect. Another study shows that the reduction of DC and functional defects in cancer patients, so that it can not present tumor antigen effectively,which is also one of the main mechanism of tumor immune escape. Therefore, raising the number of DC in vivo of cancer patients, maintaining its strong antigen recognition and presenting function is one of the key measures to implement the anti-tumor immunotherapy. Because of this, application of sufficient quantity and functional DC for treatment or DC-based anti-tumor vaccine research is becoming increasingly important.
     Immunotherapy approaches for cancer patients with exogenous DC have developed through the following stages: earlier using the known tumor-associated antigen peptides or mRNA of tumor cells to modificate and allergize DC, but the effects are poor. With deeper study, switching over to use tumor entire antigen to sensitize DC. That is, use the integration of tumor cells with DC or DC loaded with tumor cell lysate to produce hybrid vaccine, which obtain a better anti-tumor effects in gastric cancer, hepatocellular carcinoma and colorectal cancer treatment. The recent study found that DC express a variety of heat shock protein (HSP) receptors (such as CD91, CD40, TLR2 / 4 or LOX1) in the surface. HSP can act on DC or monocytes to stimulate the production of cytokines (IL-12, TNF-α, IL-6, etc.) and enhance the non-specific immune response. In 2004,《Immunity》reported that DC loaded with HSP70-peptide complexes can stimulate CD8+ T much higher (1000 times) compared to DC loaded with peptide, which indicated that integrating HSP with DC to play their respective strengths will produce a stronger immune stimulating effect.
     In view of this, this study is to explore the methods both for preparation of auto-heat shocked apoptotic colorectal cancer cells as tumor antigens from fresh surgery tumor tissue and the induction of dendritic cell as well as the antigen loading system in vitro,and to compare the lymphocytic antitumor activity stimulated in vitro by dendritic cell (DC) loaded with colorectal cancer cell strain in two different ways and to investigate the effects of dendritic cell (DC) loaded with autologous heat shock-induced apoptotic colorectal cancer cell on the immune function of the postoperative patients with colorectal carcinoma.This study provides a technical basis for the DC vaccines preparation of colorectal cancer.
     Study is divided into the following three parts:
     Part I Study on the method of Dendritic Cells Loaded with Auto Colorectal Cancer Cells
     Objective: To establish the methods both for preparation of auto-heat shocked apoptotic colorectal cancer (colon carcinoma, rectal carcinoma) cells as tumor antigens from fresh surgery tumor tissue and in vitro dendritic cell induction as well as the antigen loading system through which dendritic cell based tumor vaccine could be developed.
     Methods: Single colorectal cancer cell suspension was made from 14 fresh colorectal tissue by using enzyme digestion assay. The cell suspension was heated and induced into apoptosis with adding BA (Betulinic Acid). Monocyte derived dendritic cells was prepared from peripheral blood mononuclear cells (PBMC) of the patients with GM-CSF and IL-4 cytokine combination culture. Co-culture of imDC and apoptotic colorectal cancer cells was harvested and its phenotype was analyzed by FACS. Results: (1)The yield rate of single colorectal cancer cell from fresh colorectal cancer tissue was (11.81±0.65)×106/g and average apoptotic rate was (93.16±2.31)%;(2)im DC average yield rate from PBMC was(9.75±0.82)×106/(121.64)×106,and the percentage of live cells was more than 95%. The cell percentages of CD11c+CD14- , CD11c+HLA+DR+ , CD11c+CD80+ , CD11c+CD83+ , CD11c+CD86+ among total population were ( 87.58±2.56 ) % , (87.97±0.98)%,(2.21±0.69)%,(4.85±1.22)%, (5.02±0.95)%, respectively.(3)The average yield rate of DC from co-culture of imDC and tumor cells was(6.76±0.98)×106/(9.73±0.84)×106 with 95% alive cells. The cell percentage of CD11c+CD14-, CD11c+HLA+DR+, CD11c+CD80+, CD11c+CD83+, CD11c+CD86+ were (93.45±1.25)%, (89.79±1.35)%, (87.85±1.62)%, (70.74±6.45)%, (95.54±2.18)%, respectively.
     Conclusions: This method is steady, safe and credible by which potential DC could be developed.
     Part II
     The comparison of lymphocytic antitumor activity stimulated in vitro by dendritic cells (DC) loaded with colorectal cancer cell strain in two different ways
     Objective: To compare the lymphocytic antitumor activity stimulated in vitro by dendritic cells (DC) loaded with colorectal cancer cell strain in two different ways. Methods: DC isolated from peripheral blood mononuclear cell of 30 colorectal cancer peoples were loaded with heat shock-induced apoptotic colorectal cancer cell strain and tumor cell lysates separately. Using lymphocytes stimulated in vitro by DC as effector cells and colorectal cancer cell strain as target cells. The cell-killing effect of effector cells on target cells was determined by MTT method.
     Results: DC loaded with heat shock-induced apoptotic colorectal cancer cell strain and tumor cell lysates both showed the killing activity on target cells , but the killing rate of the former was significantly higher than the latter (P <0.05).
     Conclusions: The method of loading with heat shock-induced apoptotic colorectal cancer cell strain was more effective.
     Part III Effects of Dendritic Cells on the Immune Function of Postoperative Patients with Colorectal Cancer
     Objective: To investigate the effects of dendritic cells (DC) induceded by autologous heat shock-induced apoptotic colorectal cancer cell on the immune function of the postoperative patients with colorectal carcinoma.
     Methods: DC isolated from peripheral blood mononuclear cell of the patients with colorectal cancer were cultured and proliferated in vitro by using rhGM-CSF and rhIL-4,and then were pulsed with autologous heat shock-induced apoptotic colorectal cancer cell itself. 28 postoperative patients with colorectal carcinoma were randomly divided into 2 groups. 14 cases were treated with dendritic cell vaccine. The other 14 cases received only chemotherapy and were established as control group. Immune function, clinical effects in two groups of patients were compared and observed.
     Results: The levels of CD3+, CD4+/CD8+ and NK cells in the DC vaccine group significantly increased after vaccination (all P values < 0.05), while those of the control group had no significant changes. The levels of IL-2, IL-12 and IFN-γin the DC vaccine group significantly increased and life time was delayed significantly after the vaccination. (all P values < 0.05).
     Conclusions: The autologous heat shock-induced apoptotic colorectal cancer cell pulsed DC vaccine can improve the immune function of the postoperative patients with colorectal carcinoma. This method results in fewer side effects and should be recommended.
引文
1.杨工,郑树,金凡,等.结、直肠癌发病率趋势变化的病因探索.[J].实用肿瘤杂志,1998,13(3): 136-137.
    2. Banchereau J,Briere F,Caux C,et al. Immunobiology of dendritic cells.Annu Rev Immunol,2000,18(7):767-811.
    3. Liu KJ,Lu LF,Cheng HT,et al. Concurrent delivery of tumor antigens and activation signals to dendritic cells by irradiated CD40 ligand-transfected tumor cells resulted in efficient activation of specific CD8+ T cells.J Cancer Gene Ther,2004,11( 2) : 135- 147.
    4. Saito H,Matsumoto S,Tsujitani S,et al. Allogeneic gastric cancer cell dendritic cell hybrids induce tumor antigen (carcinoembryonic antigen) specific CD+8 T cells. J Clin Oncol,2005,23(16):25-45.
    5. Young J, Inbaa K.dendritic cells as adjuvnats for classic I major histocompatibility complex-resrticted antitumor immunity. ExP.Med,2000,183:7-11.
    6. DePan C , Riley JP. Hybrids of dendritic cells and tumor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor associated antigens in the context of MHC class I and class II molecules M . J Immunol ,2003 ,170 (10) :5317-5325.
    7. Muprhy G,Ragde H,Kennyq B,et al. Phase I clinical trail-T cell therapy for Prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from Prostate-specific membrnaenatigen. J Prostate.,1996, 29(6):371-376.
    8. Tjoa BA,Eriekson SJ,Bowes VA,et al. Follow-up evaluation of porstate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides.J Prostate, 1997,32(4):272-281.
    9. Salgaller M, Tjoa BA, Lodge AP et al. Dendritic cells–based immunotherapy of prostate cancer . J Irnpnunol.,1998,18(2):109-119.
    10. Tjoa BA,Lodge A,Salgaller M et at. Dendritic cells–based immunotherapy of prostate cancer . J CA . Cnaeer. Clinic. 1999,49(9):117-128.
    11. Tjoa BA,Simmons SJ, Ragde H, et al. Phase II prostate cancer vaccine trail. Report of a study involving 37 patients with disease recurrence following primary treatment. J Prostate,1999, 39(2):54-59.
    12. Muprhy G,Tjoa BA,Simmons SJ et al. Higher-dose dentric cells pulsed with PSMA peptides.J Prostate,2000, 43(2):59-62.
    13. Laberu MS, Roters B, Pers B, et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage.J Immunol, 1999, 162(1): 168-175.
    14. Nair SK, Hull S, Coleman D, et al. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA.J Int Cancer.1999; 82(6): 121-124.
    15. Morse MA , Deng Y , Coleman D , et al. A Phase I Study of Active Immunotherapy with Carcinoembryonic Antigen Peptide (CAP-1)-pulsed, AutologousHuman Cultured Dendritic Cells in Patients with Metastatic Malignancies Expressing Carcinoembryonic Antigen Clin.J Cancer Res, 1999; 5(6): 1331-1338.
    16. Kuglar A, Stuhler G, Walden P, et a1. Regression of human metastatic renal cell carcinoma after vaccination with tumor ce11-dendritic cell hybrids.J Nat Medicine, 2000, 6(3): 332- 336.
    17. Tjoa BA,Simmons SJ,Elgmaal A et al. Follow-up evaluation of phase II prostate cancer vaccine trail. J Prostate,1999 ,40(9):125-129.
    18. Tjoa BA,Simmons SJ, Bowesv A et al. Evaluation of Phasel II clinical trails in Prostate cancer with dendritic cells and PSMA peptides. J Prostate,1998, 36(3):39-44.
    19. McConnell EJ, Pathangey LB, Madsen CS, et al. Dendritic cell-tumor cell fusion and staphylococcal enterotoxin B treatment in a pancreatic tumor model.J surg Res.2002;107(2): 196-202.
    20. Sadanaga N, Nagashima H, Mashino K, et al. Dendritic cell vaccination with MAGE peptide is a noval therapeutic approach for gastrointestinal carcinomas.J Clin Cancer Res. 2001; 7(4): 2277-2284.
    21. Pierpaolo C, Maria G ,Cusi M,et al. Dendritic Cell-Mediated Cross-Presentation of Antigens Derived from Colon Carcinoma Cells Exposed to a Highly Cytotoxic Multidrug Regimen with Gemcitabine , Oxaliplatin , 5-Fluorouracil , and Leucovorin, Elicits a Powerful Human Antigen-Specific CTL Response with Antitumor Activity in Vitro.J The Journal of Immunology. 2005; 175(9): 820-828.
    22. Onji M, Akbar F, Horiike N,et al. Dendritic cell-based immunotherapy for hepatocellular carcinoma.J Gastroenterol. 2001;36(11): 794-797.
    23. Reichard T, Akbar F, Hoturike N et al. Dendritic cell-based immunotherapy for hepatocellular carcinoma. J Gastroenterol. 2007;45(11): 684-687.
    24. Tiemma JM, Pathangey LB, Madsen CS, et al. Dendritic cell-tumor cell fusion and staphylococcal enterotoxin B treatment in a pancreatic tumor model. J surg Res.2003;207(5): 1196-1202.
    25. Huang HL ,Wu BY,You WD , et al . Influence of dendritic cell infiltration on prognosis and biologic characteristics of progressing gastric cancer.J Zhonghua Zhong Liu Za Zhi ,2003 ,25 (5) :4682-4710.
    26. Natsugoe S ,Tokuda K,Nakajo A , et al . Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in gastric cancer.J Cancer Lett ,2000 ,159(1) :103-108.
    27. Brossart F, Meidenbauer N, Dworacki G, et a1. Generation of tumor-specific T -lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells.J Cancer Res, 2004 38(3): 5425-5429.
    28.李明松,袁爱力,谭晓华,等.树突状细胞体外诱导抗肝癌免疫通过诱导肿瘤细胞凋亡抑制裸鼠移植瘤生长[J].中国肿瘤临床, 1999, 26 (3) : 222-224.
    29.唐华,银平章,孔令非,等.冻融抗原冲击致敏的树突状细胞对结肠癌小鼠的治疗作用. [J].中国肿瘤生物治疗杂志. 2000; 7(3):199-202.
    30.吴淼,余佩武,蔡志民,等.负载胃癌酸洗抗原树突状细胞诱导高效特异性的抗胃癌细胞效应. [J].第三军医大学学报.2002; 24(10): 1236-1238.
    31.李明松,袁爱力,黄健翔,等.树突状细胞抑制结直肠癌术后复发和转移初探. [J].中华普通外科杂志. 2000; 15(7): 393-395.
    32.万涛,陈国友,曹雪涛,等.大肠癌树突状细胞治疗性疫苗的I/II期临床研究.第九届全国肿瘤生物治疗会议. 2006; 07.
    33. Tarte K, Klein B.1999. Dendritic cell-based vaccine:a promising approach for cancer immunotherapy. Leukemial 13 :653-663.
    34. Dallal R, Lotze M.2000.The Dendritic cell and human cancer vaccine.Curr.J OPin. Immunol.12:583-588.
    35. Rosenberg S.1999.A new era for cancer immunotherapy based on the genes that encoded cancer antigens. J Immutity 10:281-287.
    36. Liu BY,Chen XH ,Gu QL , et al . Antitumor effects of vaccine consisting of dendritic cells pulsed with tumor RNA from gastric cancer.J WorldJ Gastroenterol ,2004 ,10 (5) :630-633.
    37. Ohshita A ,Yamaguchi Y,Minami K, et al . Generation of TRiDAK (tumorRNA introduced dendritic cells activated killer) cells.J Gan To Kagaku Ryoho ,2003 ,30 (11) :1809-1812.
    38. Basu S, Srivastava PK. Heat shock proteins: the fountainhead of innate and daptive immune response.J Cell Sress Chaperone, 2002, 5( 5): 443-451.
    39. Becker T, Hartl FU, Wieland F,et al. CD40, an extracellular receptor for binding and uptake of HSP70-peptide complexes. J Cell Biol, 2002, 158(7): 1277-1285.
    1. Jefford M, Maraskovsky E, Cebon J, et al. The use of dendritic cells in cancer therapy.J Lancet Oncol, 2001, 2(6): 343-353.
    2. Gliboa E. DC-based cancer vaccines.J Clin Invest, 2007, 117(5): 1195-1203.
    3. Moiseyenko V , Imyanitov E , Danilova A , et al. Cell technologies in immunotherapy of cancer . Adv Exp Med Biol, 2007, 60(1): 387-393.
    4. Vulink A, Radord KJ, Melief C, et al. Dendritic cells in cancer immunotherapy.J Adv Cancer Res, 2008, 99(9): 363-407.
    5. Shi HZ, Tinghua C , Connolly JE, et al. Hyperthermia Enhances CTL Cross-Priming. The Journal of Immunology, 2006, 176(4): 2134–2141.
    6.王书奎.实用流式细胞术彩色图谱[M].上海第二军医大学出版社. 2004:101-105
    7.孟淑芳,林林,李修兰,等.软琼脂克隆法与裸鼠体内接种法检测细胞致瘤性的比较[J].中国生物制品学杂志, 2006, 19(5): 516-519.
    8. Sophie P, Shi HZ, Wan XY, et al. Measuring melanoma-specific cytotoxic T lymphocytes elicited by dendritic cell vaccines with a tumor inhibition assay in vitro.J Immunother, 2005, 28(8): 148-157.
    9. Salskov- Iversen M, Berger CL, Edelson RL. Rapid construction of adendritic cell vaccine through physical perturbation and apoptoticmalignant T cell loading.J Immune Based Ther Vaccines, 2005,3(5): 141-145.
    10. Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer.J Immunol, 2001, 166( 1) : 678- 679.
    11. Shortman K, Caux C. Dendritic cell development: multiple pathways to nature’s adjuvants.J Stem Cells, 1997, 15( 6) : 409- 419.
    12. Liu KJ, Lu LF, Cheng HT, et al. Concurrent delivery of tumor antigens and activation signals to dendritic cells by irradiated CD40 ligand-transfected tumor cells resulted in efficient activation of specific CD8+ T cells.J Cancer Gene Ther, 2004, 11( 2) : 135- 147.
    13. Salgaller M, Thurnher M, Bartshq B, et al.1999. RePort from the international union against cancer (UICC) tumor biology committee. Cancer. 86:2674-2683.
    14. Asdnagaa M,Estrnher H,Bartq B et al.2003. RePort from the international union against cancer (UICC) tumor biology committee. Cancer. 26(9):2674-2683.
    15. Schnurr M, Galambos P, Scholz C, et al. Tumor cell lysate- pulsed human dendritic cells induce a T- cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines.J Cancer Res, 2001, 61( 17) : 6 445- 6450.
    16. Morikawa Y, Tohya K, Ishida H,et al.1995. Dieffrent migration Pattens of antigen- Presentingcells correlate with Thl/ThZ-type responses in mice. Immunology. 85:575-580.
    17. Nestle F,Alijagie S,Gilliet M, et al. Vaccination of melanoma patients with Peptide-or tumor lysate-Pulsed dendritic cells. Nat.Med,1998, 41(3)28-32.
    18. Tjoa BA,Lodgea P,Salgallerm L, et al. Dendritic cells–based immunotherapy of prostate cancer .J CA . Cnaeer. Clin,1999 ,49(3):117-124.
    19. Muprhy G,Tjoa BA,Ragde H,et al. Phase1clinical trail -T cell therapy for Prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from Prostate-specific membrnaenatigen.J Prostate, 1996,29(6):371-380
    20. Laberu MS, Roters B, Pers B, et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage.J Immunol, 1999, 162(3): 168-175.
    21. Small EJ,Fratesi p, Peese DM,et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells .J Clin Oncol,2000,18(23):3894-3903.
    22. Kugler A,StuhlerG,Walden P, et al.Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med,2000,6(3):332-336
    23. Fong L, Hou Y, Rivas A, et al, Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. J Proc Natl Acad Sci USA. 2001; 98(15): 8809-8814.
    24 Figdor CG . Molecular characterization of dendritic cells operating at the interface of innate or acquired immunity . Pathol Biol ( Paris) , 2003, 51( 2) : 61- 63.
    1. Mazzaferro V, Coppa J, Carrabba MG, et al.Vaccination with autologous tumorderived heat-shock protein Gp96 after liver resection for metastatic colorectal cancer.J Clinical Cancer Research, 2003, 9(9): 3235-3241.
    2. Babatz J, Rollig C, Lobel B, et al, Induction of cellular immune response against carcinoembryomic antigen in patients with metastatic tumors after vaccination with altered peptide ligand-loaded dendritic cells. J Cancer Immunol Immunother, 2006, 55(3): 268-276.
    3. Tamir A, Basagila E, Kagahzian A, et al, Induction of tumor-specific T-cell response by vaccination with tumor lysate-loaded dendritic cells in colorectal cancer patients with carcinoembryonic-antigen positive tumors. J Cancer , Immunol Immunother,2007,7(6):1442-1449
    4. Moiseyenko V , Imyanitov E , Danilova A , et al. Cell technologies in immunotherapy of cancer . Adv Exp Med Biol, 2007, 60(1): 387-393.
    5. Small EJ,Fratesi p, Peese DM,et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells.J Clin Oncol,2000,18(23):3894-3903.
    6. Laberu MS, Roters B, Pers B, et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage.J Immunol, 1999, 162(3): 168-175.
    7. Kugler A,StuhlerG,Walden P, et al.Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med,2000,6(3):332-336.
    8. Heiser A, Coleman D, Dannull J, et al.Autologous dendritic cells transfected withprostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors.J The Journal of Clinical Investigation,2002, 109(3):409-418.
    9. Leemhuis T, Wells S, Scheffold C, et al. A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma.J Biol Blood Marrow Transplant, 2005, 11 (3):81-82.
    10. Avigna D. 1999. Dendritic cells: evelopment,function and potential use for cancer immunotherapy. J BloodRev13(1):51-64.
    11. Young J , Inbaa K.1996. Dendritic cells as adjuvnats for classic I major histocompatibility complex-resrticted antitumor immunity. ExP.Med.183:7-11.
    12. Gilboa E , Nair S , Lyerly H,et al.1998. Iimmunotherapy of cancer with dendritic-cell-based vaccines.J Cancer Immunol Immunother 46:82-87.
    13. Tarte K, KleinB,1999. Dendritic cell-based vaccine:a promising approach for cancer immunotherapy. Leukemial 13 :653-663.
    14. DallalR, LotzeM.2000.The Dendritic cell and human cancer vaccine.J Curr. OPin. Immunol.12:583-588.
    15. Rosenberg S.1999.A new era for cancer immunotherapy based on the genes that encoded cancer antigens.J Immutity 10:281-292.
    16. Boezkowski D, Nair S, Nam J,et al. Lyerl H.2000. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transefeted with messenger RNA amplified from tumor cells.J Cancer Res .60:1028-1034.
    17. Becker T, Hartl FU, Wieland F,et al. CD40, an extracellular receptor for binding and uptake of HSP70-peptide complexes. J Cell Biol, 2002, 158(7): 1277-1285.
    18.段民新,刘锟.肺癌患者红细胞免疫功能与外周血T淋巴细胞亚群的改变[J].临床肿瘤学杂志, 2001, 6(2): 109-1l1.
    19.董西林,王亚娟,孙雅娟,等.肺癌患者外周血T细胞亚群及免疫细胞活性的研究[J].西安医科大学学报, 1999, 20(4): 474-475.
    20. Figdor CG . Molecular characterization of dendritic cells operating at the interface of innate or acquired immunity .J Pathol Biol ( Paris) , 2003, 51( 2) : 61- 63.
    21. Basu S, Srivastava PK. Heat shock proteins: the fountainhead of innate and daptive immune response.J Cell Sress Chaperone, 2002, 5( 5): 443-451.
    22. Srivastava P. Interaction of heat shock proteins with peptides and antigen presenting cells and CTL priming.J Immunogenetics, 2002, 25(39): 93-98.
    23. Vulink A, Radord KJ, Melief C, et al. Dendritic cells in cancer immunotherapy.J Adv Cancer Res, 2008, 99(7): 363-407.
    24. Shi H, Cao T, Connlly JE, et al. Hyperthermia enhance CTL cross-priming J. Immuno, 2006, 176(4): 2134-2141.
    1.潘池.肝癌患者T细胞亚群检测及临床意义[J].临床肿瘤学杂志, 2000, 5(4): 248-250.
    2.李菊香,苏运钦,朱梓年,等.肝癌患者手术前后T细胞亚群的变化特点及其意义[J].暨南大学学报(医学版), 2007, 28(6): 602-604.
    3. Kuglar A, Stuhler G, Walden P,et a1. Regression of human metastatic renal cell carcinoma after vaccination with tumor ce11-dendritic cell hybrids.J Nat Medicine, 2000, 6(3): 332- 336.
    4. Banchereau J, Palucka AK, Dhodapkar M,et a1. Immune and Clinical responses in patients with metastatic melanoma to CD34+ progenitor-derived dendritic cell vaccine.J Cancer Res, 2001, 61(17): 6451-6458.
    5. Thomas WD, Hersey P. TNF-related apoptosis-inducing ligand(TRAIL) induces apoptosis in Fas ligang-resistent melanoma cells and mediates CD4+ T cell killing of target cells. J Immunol. 1998; 161(5): 2195-2220.
    6. Morse MA,Colemna RE,Akbanai G,et al .1999. Migration of human dendritic cells after injection in patients with metastatic malignnaeies. Cancer Res.59(1):58-61.
    7. Zimmerman MA, Ghobrial RM, Tong MJ,et al. Recurrence of hepatocellular carcinoma following liver transplantation: a review of preoperative and postoperative prognostic indicators.J Arch Surg, 2008, 143(2):182-188; discussion 188.
    8. Hoffmann TK, Meidenbauer N, Dworacki G,et a1. Generation of tumor-specific T -lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells.J Cancer Res, 2000, 60(13): 3542-3549.
    9.高建,陈敏,彭明利,等.肝癌细胞裂解物致敏的树突状细胞瘤苗体外诱导特性抗肝癌免疫[J].中华肝脏病杂志, 2005, 13(3): 198-201.
    10. Akaska Y , Kikueh T, Homma S, et al.2001.Antitummor effect of immunization with fusion of dendritic and glioma cells in a mouse brain tumor model.J. Immunothe. 24:106-113.
    11.李明松,袁爱力,谭晓华,等.树突状细胞体外诱导抗肝癌免疫通过诱导肿瘤细胞凋亡抑制裸鼠移植瘤生长[J].中国肿瘤临床, 1999, 26 (3) : 222-224.
    12. Celuzzi CM, M ayordomo JI, Storkus WJ,et al. Peptide-pulsed dentritic cells induce antigen-specific, cytotoxic T lymphocyte mediated protective tumor immunity.Exp Med, 1996, 183: 283-287.
    13.高建,陈敏,任红.肝癌细胞裂解物致敏的树突状细胞瘤苗预防肝癌术后转移复发[J].中华肝脏病杂志, 2005, 13(6): 432-435.
    14. Leemhuis T, Wells S, Scheffold C, et al. A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease andnon-Hodgkin lymphoma. Biol Blood Marrow Transplant, 2005, 11 (3):81-82.
    15. Nasu S, Srivastava PK. Heat shock proteins: the fountainhead of innate and daptive immune response.J Cell Sress Chaperone, 2002, 5( 5): 443-451.
    16. Becker T, Hartl FU, Wieland F,et al. CD40+, an extracellular receptor for binding and uptake of HSP70-peptide complexes. J Cell Biol, 2002, 158(7): 1277-1285.
    17. Vulink A, Radord KJ, Melief C,et al. Dendritic cells in cancer immunotherapy.J Adv Cancer Res, 2008, 99(7): 363-407.
    18. Wheeler CJ, Black KL, Liu G,et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients.Cancer Res. 2008 Jul 15;68(7):5955-5964
    19. Asdnagaa M,Estrnher H,Bartq B et al.2003. RePort from the international union against cancer (UICC) tumor biology committee. Cancer. 26(9):2674-2683.
    20. Vulink A, Radord KJ, Melief C, et al. Dendritic cells in cancer immunotherapy.J Adv Cancer Res, 2008, 99(7): 363-407.
    21. Scott P. Differentiation, regulation, and death of T helper cell subsets during infection with Leishmania major.J Immunol Res, 1998, 17(1-2): 229-238.
    22. Peng GY, Pang Z. In vitro modulation of the invasive and metasta metastatic potentials of human hepatocellular carcinoma by interlukin-2.J Zhonghua Ganzangbing Za zhi, 2001, 9(5): 303-305.
    1. Jenml A,Murray T,Samuels A ,et a1.Cancer statistics.CA Cancer J Clin,2003;53:5-26.
    2. Cascinu S,Georgoulias V,Kerr D,et al.Colorectal cancer in yge adjuvant setting:perspectives on treatment and the rote of factors.Ann Oncol,2003;14(Suppl 2):ii25-29.
    3. Kirkwood J.Cancer immunotherapy: the interfron-alpha experience.J Semin Oncol, 2002, 29(3 Suppl 37): 18- 26.
    4. Mey U,Strhl J,Gorschluter M,et al.A dvances in the treatment of hairy-cell leukeam ia .J Lancet Oncol 2003.4(2):86-94.
    5. Heh lnann R Current CML therapy progress and dikm ma.J Leukem ia , 17(6):1010-1012.
    6. Avivi I,Robinson S,Goldstone A.et al. Clinical use of rituxin ab in haema to logical malignancies .J Br J Cancer, 2003,89(8).
    7. A tkins MB.interleukin-2:clinical app lication.J sem in oncol , 2002 , 29(3 supp17):12-17.
    8. .Eggemoont AM, ten Hagen TL.Tumor necrosis factor-based isolated limb perfusion for soft tissue sarcoma and melanoma:ten ears of successful antivascula therapy.J CurrOncol.Rep,2003,5(2):79-80.
    9. Andersen MH,Keikavoussi P,Brocker EB,et al Induction of systemic CTL responxes in menlanom a patients by dendritic cell vaccination:cessation of CTL responses associated with disease progression. Int J Cancer,2001,195(6):820-824.
    10. Binder RJ,Han DK,Srivastava PK,et al.CD91:a receptor for heat shock protein gp96.Nat Immumol,2000;1:151-155.
    11. Schmitz J,Reali E,Hodge JW,et al.Identification of an interferon gamnm inducible carcinoembryonic antigen (CEA)CD8(+)T-cell epitope,which mediates tumor killing in CEA transgenic mice.Cancer Res,2002;62:5058-5064.
    12. Bonnet MC,Tartaglia J,Verdier F,et al.Recombinant viruses as a tool for thrapeutic vaccination against human cancers.Immunol Lett,2000:74:11-25.
    13. Nair SK,Morse M.Boczkowski D,et al.Induction of tumor-specific cytotoxicin Tlymphocytes in cancer patients by autologous tumor RNA-transfected dendritic cells.Ann Surg,2002,235:540-549.
    14. Rosen L. Antiangiogenic strategies and agents in clicnical trials.J Oncologist,2000,5(suppl 1):20-27.
    15. Kim KJ,B,Winer J,et al.Inhibition of vascular encothelial growth factor-induce dangiogenesis suppresses tumor growth in vivo.J Nature,1993,362:841-844.
    16. Kabbinavar F,Hurwitz HI, Fehrenbacher L,et al.Phase IIrandomized trial comparing bevacizumab plus.uorouracil(FU)/leucovorin(LV) with FU/LV alone in patients with metastatic colorectal cancer.J CLin Oncol,2003,21:60-65.
    17. Hurwitz H,Fehrenbacher L, Cartwright T,el al.Bevacizumab(a monoclonal antibody to vascular endothelial growth factor) prolongs survival in first-line colorectal cancer(CRC),results of a phase II trial of bevacizumab in combination with bolus IFL(irinotecan,5-,uorouracil,leucovorin) as,rst-line therapy in subjects with metastatic CRC.J Proc Am Soc Clin Oncol, 2003,22,A3646.
    18. Rothenberg M L,Berlin J D,Cropp G F,et al.PhaseI/IIstudy of SU5416 in combination with irinotencan/5-FU/LV(IFL) in patients with metastatic colorectal cancer .J Proc Am Soc Clin Oncol,2001,20:75a.Abstract298.
    19. Rosen P,Amado R,Hecht J,et al.A phase I/II study of SU5416 in combination with 5-FU/leucovorin in patients with metastatic colorectal cancer.J Proc Am Soc Clin Oncol,2000.19:Abstract 5D.
    20. Raynond E,Faivre S,Vera K,et al.Final results of a phaseIand pharmacokinetic study of SU11248, a novel multi-target tyrosine kinase inhibitor, in patients with advanced cancers. Proc Am Soc Clin Oncol.J 2003,22:192.Abstract 769.
    21. Mendelsohn J. The epidermal growth factor receptor as a target for cancer therapy.J Endoct Relat Cancer,2001.8:3-9.
    22. Baselga J,Albanell J. Epithelial growth factor receptor interacting agents.J Henatol Oncol Clin North Am.2002,16:1041-1063.
    23. Van Leathen J-L,Raoul J-L,Mitry E,et al.Cetuximab(C225) in combination with bi-weekly irinotecan(CPT-11),infusional 5-fluorouracil(5-FU) and folinic acid(FA) in paients with metastatic colorectal cancer ecpressing the epidermal growth factor recptor. Preliminary efficacy and safety results.J Proc Am Soc Clin Oncol , 2003 ,22:264.Abstract 1058.
    24. Schoffski P,Lutz M,Folprecht G,et al.Cetuxinab plus irinotecan plus infusional 5FU-folinic acid is safe and active in metastatic colorectal cancer that expresses epidermal growth factor.J Proc Am Soc Clin Oncol,2002,21:159a.Abstract 633.
    25. Saltz L,Rubin J,HochsterN,et al,Cetuximab plus irinotecan is active in cpt-11-refractory colorectal cancer that expresses epidermal growth factor receptor.J Proc Am Soc Clin Oncol .2001,20:3a.Abstract 7.
    26. Yang XD,Jia XC,Corvalan JRF,et al.Delelopment of ABXEGF, a fully human anti-EGF receptor monoclonal antibody for cancer therapy.J Crit Rev Oncol/Hematol.2001,38:17-23.
    27. Meropol NJ,Berlin J, Hecht JR, et al. Multicenter study of ABX-EGF monotherapy in patients with metastatic colorectal cancer.J Proc Am Soc Clin Oncol.2003,22:256.Abstract1026.
    28. Hwang JJ, Sinicrope F, H, et al.A phase II trial of irinotecan and trastuzumab in patients overexpressing HER2-neu in metastatic colorectal cancer.J Proc Am Soc Clin Oncol ,2001,20:565.
    29. LoRusso PM. Phase I studies of ZD1839 in patients with common solid tumors.J Semin Oncol, 2003,30(suppl 1):21-29.
    30. Hammond LA,Figueroa J,Schwartzberg L,et al. Epidermal growth factor receptor tyrosine kinaseinhibitor , (EGFR-TKI) ZD1839(Iressa) , in cobination with 5-fluorouracil and leucovorin in advance colorectal cancer(ACRC).Eur J Cancer,2001,37(suppl 6):18a.
    1.杨工,郑树,金凡,等.结、直肠癌发病率趋势变化的病因探索.实用肿瘤杂志[J].1998; 13(3): 136-137.
    2. Figdor CG . Molecular characterization of dendritic cells operating at the interface of innate or acquired immunity .J Pathol Biol ( Paris) , 2003, 51( 2) : 61- 63.
    3. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol.2000; 18(7): 767-811.
    4. DePan C ,Riley JP. Hybrids of dendritic cells and tumor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor2associated antigens in the context of MHC class Iand class IImolecules M . J Immunol,2003 ,170 (10) :5317-5325.
    5. Morikawa Y, Tohya K, Ishida H,et al.1995. Dieffrent migration Pattens of antigen- Presentingcells correlate with Thl/ThZ-type responses in mice. Immunology. 85:575-580.
    6. Fratesi P,Reese DM,Strnagq L,et al.. Cancer immunotherapy by fusions of dendritic and tumour cells and rh2IL212.J Eur J Clin Invest ,2004 ,5 (6) :39-38.
    7. Thomas WD, Hersey P. TNF-related apoptosis-inducing ligand(TRAIL) induces apoptosis in Fas ligang-resistent melanoma cells and mediates CD4 T cell killing of target cells. J Immunol. 1998; 161(5): 2195-2220.
    8. Saito H, Matsumoto S, Tsujitani S, et al. Allogeneic gastric cancer cell dendritic cell hybrids induce tumor antigen (carcinoembryonic antigen) specific CD+8 T cells. J Clin Oncol, 2005, 23(16) :25-45.
    9. Geiger F, Achyutt E, Soire J. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2005; 64(2): 3236-3240.
    10. Fanger NA, Maliszewski CR, Schooley K, et al. Human dendritic cells mediate celluar apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Exp Med. 1999;190(8): 1155-1164.
    11. Tamir A, Basagila E, Kagahzian A, et al, Induction of tumor-specific T-cell response by vaccination with tumor lysate-loaded dendritic cells in colorectal cancer patients with carcinoembryonic-antigen positive tumors. J Cancer
    12. Huang HL ,Wu BY,You WD , et al . Influence of dendritic cell infiltration on prognosis and biologic characteristics of progressing gastric cancer.J Zhonghua Zhong Liu Za Zhi ,2003 ,25 (5) :4682-4710.
    13. 13 .Natsugoe S ,Tokuda K,Nakajo A , et al . Clinical impact of intratumoral natural killer cell and dendritic cell infiltration in gastric cancer.J Cancer Lett ,2000 ,159(1) :103-108
    14. 14徐敏,程书榜,王成友,等.胃癌微环境中树突状细胞浸润的临床意义[J] .中华胃肠外科杂志,2003 ,6(5) :336-338.
    15. Hersey P. TNF-related apoptosis-inducing ligand(TRAIL) induces apoptosis in Fas ligang-resistent melanoma cells and mediates CD4 T cell killing of target cells. J Immunol. 1998; 161(5): 2195-2220.
    16. Shimizu K,Thomas E,Giedlin M, et al.J.2001.Ehancement of tumor lysate-and peptide–pulsed dendritic cell-based vaccines by the addition of foreign helper protein.Cancer Res.61:2618-2624.
    17. Young J , Inbaa K.1996. Dendritic cells as adjuvnats for classic I major histocompatibility complex-resrticted antitumor immunity. J.ExP.Med.183:7-11.
    18. Gilboa E , Nair S , Lyerly H.1998. Iimmunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46:82-87.
    19. Tarte K, KleinB,1999. Dendritic cell-based vaccine:a promising approach for cancer immunotherapy. Leukemial 13 :653-663.
    20. Schnurr M, Galambos P, Scholz C, et al. Tumor cell lysate- pulsed human dendritic cells induce a T- cell response against pancreatic carcinoma cells: an in vitro model for the assessment of tumor vaccines.J Cancer Res, 2001, 61( 17) : 6 445- 6450.
    21. Dillon S,Griffin J,Hart D et al.long-lasting IFN-alPha response is induced in a single inoeulation of antigen- Pulsed dendritic cells.J Immunology,1998, 95(3):132-140.
    22. Nestle F,Alijagie S,Gilliet M et al. Vaccination of melanoma patients with Peptide-or tumor lysate-Pulsed dendritic cells. Nat.Med,1998, 41(3)28-32.
    23. Velders MP,Weijzen S, Eiben GL, et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine .J Immunol, 2001, 166( 9) : 5 366- 5 373.
    24. Salgaller M,Thurnher M,Bartshq B et al. RePort from the international union against cancer (UICC) tumor biology committee. J Cancer, 1999,86(5):2674-2683.
    25.唐华,曹雪涛,朱学军等.1999. L-基因修饰增强白血病抗原冲击的树突状细胞诱导的抗肿瘤免疫反应[J].中华血液学杂志.15(10):436-439.
    26.唐华,曹雪涛,于益芝等.1999.抗原基因修饰的树突状细胞诱导机体成为特异性免疫应答的实验研究[J].中国免疫学杂志. 15(10):436-439.
    27.孙黎飞,曹雪涛,张明徽等.1999.低剂量环磷酞胺增强MHCI类限制性抗原多肚冲击致敏的树突状细胞的抗肿瘤转移效果[J].中国肿瘤生物治疗杂志.6(1):45-49.
    28. Shurin GV, Shurin MR,Bykovskaia S, et al. Neuroblastoma-derived gnagliosides ihnibitd dendritic cell generation and function:CnaeerRes. 2001Jnal;61(l):363-369.
    29. Alters S,Gadea J,Sorieh M, et al . Dendritic cells plused with CEA peptide induced CEA-specific CTL with restrieted TCR repertoire. 1998. Journal of immunotherapy 21(1):17-26.
    30. Morse MA,Colemna RE,Akbanai G, et a ,1999. Migration of human dendritic cells after injection in patients with metastatic malignnaeies. Cancer Res.59(1):58-61.
    31. Alijagie S ,Nestle F, Gilliet M, et al.1999. Vaccination of melanoma patients with Peptide-or tumor lysate-Pulsed dendritic cells. Nat.Med. 4:328-329.
    32. Boezkowski D, Nair S, Nam J,et al. Lyerl H.2000. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transefeted with messenger RNA amplified from tumor cells. Cancer Res .60:1028-1034.
    33. Avigna D. 1999. Dendritic cells: evelopment,function and potential use for cancer immunotherapy. J BloodRev13(1):51-64.
    34. Akaska Y , Kikueh T, Homma S, et al.2001.Antitummor effect of immunization with fusion of dendritic and glioma cells in a mouse brain tumor model.J. Immunothe. 24:106-113.
    35. Seott-taylor T, Pettengel R,2000.Human tumor and dendriticcell hybrids generated by electroufsion: Potential for cancer vaccines. Bioeh. BioPhy.1500:265-279.
    36. Laberu MS, Roters B, Pers B, et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage.J Immunol, 1999, 162(3): 168-175.
    37. Kono K,Takahashi A ,Sugai H , et al . Dendritic cells pulsed with HER Pneu derived peptides can induce specific T cell responses in patients with gastric cancer.J Clin Cancer Res ,2002 ,8(11) :3394-3400.
    38.吴淼,余佩武,蔡志民,等.负载胃癌酸洗肽抗原树突状细胞诱导高效特异性抗胃癌细胞效应[J ] .第三军医大学学报,2002 ,24(10) :1236-1238.
    39. DallalR, LotzeM.2000.The Dendritic cell and human cancer vaccine.Curr. OPin. Immunol.12:583-588..
    40. Small EJ,Fratesi p, Peese DM,et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells .J Clin Oncol,2000,18(23):3894-3903.
    41. Kugler A,StuhlerG,Walden P, et al.Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids.J Nat Med,2000,6(3):332-336.
    42. Shu S, Cohen P.2001. Tummor- dendritic cell fusion teehnology and immunotherapy strategies.J. Immunothe.24:99-100.
    43. Zivtogel L, Angevin E. Dendritic cell-based immunotherapy of cancer.2000. Annu. Oncol. 11supple3(2):199-205.
    44. Trevor KT ,Cover C ,Ruiz YW, et al . Generation of dendritic cells tumorcell hybrids by electrofusion for clinical application .J Cancer Immunol Immunother ,2004 ,53 (8) :705-714.
    45. Mackay CR, Matsumoto S, Tsujitani S , et al.Ehemokines: immunolgy’s high impact factors. Immunology 20012:96-101.
    46. Homma S ,Kikuchi T ,Ishiji N , et al. Cancer immunotherapy by fusions of dendritic and tumour cells and rh2IL-12. Eur J Clin Invest, 2005, 35 (4) :79-82.
    47. Fong L, Hou Y, Rivas A, et al, Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. J Proc Natl Acad Sci USA. 2001; 98(15): 8809-8814.
    48. Ohshita A ,Yamaguchi Y,Minami K, et al . Generation of TRiDAK (tumorRNA introduced dendritic cells activated killer) cells.J Gan To Kagaku Ryoho ,2003 ,30 (11) :1809-1812.
    49. 49. Boezkowski D, Nair S, Nam J, et al.2000. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transefeted with messenger RNA amplified from tumor cells.J Cancer Res .60(56):1028-1034.
    50. Kokhaei P ,Rezvany MR ,Virving L , et al . Dendritic cells loaded with apoptotic tumour cells induce a stronger T cell response than dendritic cells tumour hybrids in BCLL .J Leukemia ,2003 ,17 (5) :894-899.
    51. Heiser A, Coleman D, Dannull J, et al.Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors . The Journal of Clinical Investigation,2002, 109(3):409-418.
    52. Liu BY,Chen XH ,Gu QL , et al . Antitumor effects of vaccine consisting of dendritic cells pulsed with tumor RNAfrom gastric cancer. WorldJ Gastroenterol ,2004 ,10 (5) :630-633.
    53. Fvigna D. 1999. dendritic cells: evelopment,function and potential use for cancer immunotherapy. BloodRev13:51-64.
    54.高建,陈敏,彭明利,等.肝癌细胞裂解物致敏的树突状细胞瘤苗体外诱导特性抗肝癌免疫[J].中华肝脏病杂志, 2005, 13(3): 198-201.
    55. Rosenberg S.1999.A new era for cancer immunotherapy based on the genes that encoded cancer antigens. Immutity 10:281-292.
    56. D.N.J.Hart; GR.Hill.1999. Dendritic cell immunotherapy for cancer application to low-grade lymphoma and multipl myeloma. Immunol.CellBiol. 77:451-459.
    57. Timmemrna J, Levy R.1999. Dendritic cell vaccines for cancer immunotherpay. Annu.Rev.Med.50:507-529.
    58. Asdnagaa M,Estrnher H,Bartq B et al.2003. RePort from the international union against cancer (UICC) tumor biology committee. Cancer. 26(9):2674-2683.
    59. Vulink A, Radord KJ, Melief C, et al. Dendritic cells in cancer immunotherapy.J Adv Cancer Res, 2008, 99(7): 363-407.
    60. Muprhy G, Tjoa BA, Ragde H, et al.1996. PhaseI clinical trail -T cell therapy for Prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from Prostate-specific membrnaenatigen. Prostate. 29:371-385.
    61. Tjoa BA, Eriekson SJ, Bowes VA,et al.P1997. Follow-up evaluation of porstate cancer patients infused with autologous dendritic cells pulsed with PSMA peptides. Prostate. 32:272-280.
    62. Tjoa BA,Simmons SJ,Bowes VA,et al1998. Evaluation of Phasel/II clinical trails in Prostate cancer with dendritic cells and PSMA peptides. Prostate. 36:39-44.
    63. Tjoa BA,Lodge AP,Salgaller ML,et al1999. Dendritic cells–based immunotherapy of prostate cancer .CA . CnaeerJ. Clin. 49:117-128.
    64. Tjoa BA,Simmons SJ,Elgmaal A,et al1999. Follow-up evaluation of phase II prostate cancer vaccine trail. Prostate. 40:125-129.
    65. Tjoa BA,Simmons SJ,Ragde H,et al.1999. PhaseII prostate cancer vaccine trail. Report of a study involving 37 patients with disease recurrence following primary treatment. Prostate. 39:54-59.
    66. Muprhy G,Tjoa BA, Jariseh J,et al.1999.Infusion of dentric cells pulsed with HLA-A2-specific prostate membrance antigen peptides. Prostate. 38:73-8.0
    67. Muprhy G,Tjoa BA,Sinunons SJ,et al.2000. Higher-dose dentric cells pulsed with PSMA peptides. Prostate. 43:59-62.
    68. Small EJ,Fratesi p, Peese DM,et al. Immunotherapy of hormone-refractory prostatecancer with antigen-loaded dendritic cells.J Clin Oncol,2000,18(23):3894-3903.
    69. Mackensen A ,Herbst B ,Che JL , et al . Phase I study in melanoma patients of a vaccine with peptide pulsed dendritic cells generated in vitro from CD34 ( + ) hematopoietic progenitor cells .J Int J Cancer ,2000 ,86(3) :358~392.
    70. Krause SW,Neu mann C ,Soruri A , et al . The treatment of patients with disseminated matignant melanoma by vaccination with autologous cell hybrids of tumor cells and dendritic cells .J Journal of Immunotherapy ,2002 ,25 (5) :421~428.
    71.张书峰,蔡婷,马长路,等.血源性树突状细胞融合疫苗抗恶性黑色素瘤的应用研究[J] .中国医刊,2004,39(9):35~37
    72. Reichardt VL , Lkada CY, Liso A , et al . Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplatation for multiple myeloma afeasibility study.J Blood , 1999 ,93(7) :241122419.
    73. Titzer S ,Christensen O ,Manzke O , et al . Vaccination of multiple myeloma patients with idiotype pulsed dendritic cells : immunological and clinical aspects.Br J Haematol ,2000 ,108(4) :8052816.
    74. Qian J, Wang S, Yang J, et al. Targeting heat shock proteins for immunotherapy in multiple myeloma: generation of myelomaspecific CTLs using dendritic cells pulsed with tumor-derived gp96.J Clin Cancer Res, 2005, 11( 24 Pt 1) : 8808- 8815.
    75. Elisabeth H S, Willy MH, Edith D M, et al. Identification of the angiogenic endothelial-cell growth factor-1 /thymidine phosphorylase as apotential target for immunotherapy of cancer.J Blood, 2006, 107( 12) : 4954- 4960.
    76. KanazawaM, Yoshihara K,Abe H, et al. Case report on intra tumor in jection therapy of dendritic cells in advanced gastric cancer.J Gan ToKagaku Ryoho, 2004, 31 (11) : 177321776.
    77. Takeda T, Makita K, Okita K, et al. Intratumoral injection of immature dendritic cells (DC) for cancer patients.J Gan To Kagaku Ryo ho, 2005, 32 (11) : 157421575.
    78. Morse MA, Deng Y, Coleman D, et al. A Phase I Study of Active Immunotherapy with Carcinoembryonic Antigen Peptide (CAP-1)-pulsed , Autologous HumanCultured Dendritic Cells in Patients with Metastatic Malignancies Expressing Carcinoembryonic Antigen Clin.J Cancer Res, 1999; 5(6): 1331-1338.
    79. Ladhams A,Schmid C,Sing G,et al. Treatment of non-resectable hepatocelluar carcinoma with autologous tumor-pulsed dendritic cells.J Gastroenterol Hepatol,2002,17:889-896.
    80. Iwashhiita Y,Tahara K,Goto S,et al. A phase I study of autologous dendritic cell-based immunotherapy for patients with unresectable primary liver cancer.Cancr Immunol Immunother,2003,52:155-161.
    81. Dillman R , Selvan S ,Lasmezas C ,et al. Update on cultured autologous tumor cells and dendritic cells as patient specific vaccines in recurrent or metastatic melanoma or renal cell cancer.J Clin Cancer Res ,2002 ,8 (11) :3369
    82. Holtl Zelle2Rieser C , Culpepper C ,et al. Presentation of renal tumor antigens by dendritic cells activates tumor infilt rating lymphocytes against autologous tumor.J Clin Cancer Res ,2002 ,8 (11) :3369
    83. Pandha ,Hardev S ,Menard S , et al. dendritic cell immu notherapy for urological cancers using cryopreserved allogenein tumor lysate2pulsed cell.J BJU International ,2004 ,94 (3) : 412.
    84. Onji M, Akbar F, Horiike N. Dendritic cell-based immunotherapy for hepatocellular carcinoma. J Gastroenterol. 2001;36(11): 794-797.
    85. Grazia C, Maria T, et al. Dendritic Cell-Mediated Cross-Presentation of Antigens Derived from Colon Carcinoma Cells Exposed to a Highly Cytotoxic Multidrug Regimen with Gemcitabine, Oxaliplatin, 5-Fluorouracil, and Leucovorin, Elicits a Powerful Human Antigen-Specific CTL Response with Antitumor Activity in Vitro. The Journal of Immunology. 2007; 165(9): 827-829
    86. Wheeler CJ, Black KL, Liu G, et al. Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. J Cancer Res. 2008 Jul 15;68(7):5955-5964
    87. Shi H, Cao T, Connlly JE, et al. Hyperthermia enhance CTL cross-priming J.Immuno, 2006, 176(4): 2134-2141.
    88. Morse MA, Deng Y, Coleman D, et al. A Phase I Study of Active Immunotherapy with Carcinoembryonic Antigen Peptide (CAP-1)-pulsed , Autologous Human Cultured Dendritic Cells in Patients with Metastatic Malignancies Expressing Carcinoembryonic Antigen Clin. Cancer Res. 2010; 5(6): 1387-1395.
    89. Nair SK, Hull S, Coleman D, et al. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. J Int Cancer.1999; 82(6): 121-124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700