用户名: 密码: 验证码:
奶牛能量代谢障碍性疾病微生态制剂的研制及其效果评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
奶牛能量代谢障碍性疾病如酮病、脂肪肝等是奶牛养殖中最常见和多发的疾病,而且该类疾病多发于高产奶牛。众多因素使得该类疾病的发病率长期居高不下,给奶牛业带来严重的经济损失。故奶牛酮病、脂肪肝等能量代谢障碍性疾病也一直被世界各国列为最重要的奶牛疾病而加以研究。奶牛多发能量代谢障碍性疾病的根本原因是围产期奶牛干物质摄入减少,瘤胃内丙酸的生成不足和需求增加所致。本研究根据反刍动物主要是靠瘤胃发酵产生的乙酸、丙酸、丁酸等挥发性脂肪酸供能和围产期奶牛生糖先质丙酸供不应求这一特点,利用传统的细菌分离、鉴定方法从健康奶牛瘤胃中分离出了三株丙酸生成优势菌,根据其形态特点、生化反应特性,并结合其16S rRNA基因PCR法鉴定,确定所分离到的菌株为丙酸生成优势菌反刍月形单胞菌(S6)、埃氏巨型球菌(M3)和小韦荣球菌(V2),在此基础上构建丙酸生成高效基因工程菌,并观测了该基因工程菌与饲用酵母菌组合对奶牛瘤胃丙酸生成和能量代谢的影响,主要结果如下:
     采取健康奶牛瘤胃液,依照厌氧菌分离步骤和鉴别程序,通过丙酸生成菌株的特异性培养基VS、CDC血琼脂平板和普通LB琼脂平板,成功筛选出1株革兰氏阴性无芽胞厌氧杆菌,2株革兰氏阴性厌氧球菌,分析了上述三株菌的生物化学反应特性。根据GenBank中小韦荣球菌(AF439643)、埃氏巨型球菌(AY196919)和反刍月形单胞菌(M62730)的序列设计引物,利用PCR反应成功的扩增出S6、M3和V2菌株的16S rRNA基因,并将其重组到pMD-18T载体上构建了其克隆质粒。对S6、M3和V2菌株的16S rRNA基因的克隆质粒进行序列分析,并经细菌16S rRNA基因PCR法鉴定,结合形态学和生化反应检测结果,证实所分离的S6、M3和V2菌株分别为反刍月形单胞菌、埃氏巨型球菌和小韦荣球菌。
     应用转座子Tn5诱变方法,采用含卡那霉素和氟乙酸的选择性培养基,通过16S rRNA基因及Tn5基因的PCR鉴定,成功构建了埃氏巨型球菌转座工程菌TnM3、小韦荣球菌转座工程菌TnV2和反刍月形单胞菌转座工程菌TnS6,并确定TnM3、TnV2和TnS6均为PTA基因缺失型氟乙酸抗性菌株。体外连续培养结果表明,丙酸生成优势菌株M3、V2和S6及其乙酸生成关键酶基因缺失工程菌TnM3、TnV2和TnS6均能利用乳酸而生成VFA,但工程菌乙酸的生成能力明显低于原始菌,尽管工程菌丙酸生成能力有所降低,但由于乙酸生成的显著减少,明显降低了C2/C3的比例。
     饲用酵母菌组合与乙酸生成关键酶基因缺失工程菌在体外复合培养时,以热带假丝酵母、产朊假丝酵母和酿酒酵母这三种酵母组合利用乳酸生成丙酸的能力最强。筛选出了能刺激工程菌生成丙酸的最优酵母组合,成功研制出奶牛能量代谢障碍性疾病复合瘤胃微生态制剂。
     复合瘤胃微生态制剂在体外模拟瘤胃内环境条件下能增加乳酸利用率,增加丙酸的产量,乙酸与丙酸的摩尔比(C2/C3)缩小,使其发酵类型倾向于丙酸型。将复合瘤胃微生态制剂接种于瘤胃,证实该制剂能显著降低瘤胃液中的乳酸浓度,同时能增加瘤胃液丙酸的浓度,显著降低乙酸和丙酸的摩尔比。初步证明所研制的复合瘤胃微生态制剂能显著增强反刍动物瘤胃中乳酸利用率,增加生糖先质丙酸的生成,使得瘤胃的发酵类型偏向于丙酸型。
     奶牛灌服复合瘤胃微生态制剂后,在0~21d内未发现任何不良反应。经血液生化指标分析及机体代谢功能检测证实亦未产生不良影响,说明该微生态制剂无毒、安全、可靠。围产期健康奶牛、酮病病牛灌服复合瘤胃微生态制剂后,血糖随时间推移呈上升趋势,而β-羟丁酸呈下降趋势,初步证实该微生态制剂对围产期奶牛酮病具有良好的预防作用和治疗效果。
Three strains of dominant propionic acid-producing bacteria were separated from ruminal fulids of healthy Holstein dairy cow identified by their biochemical characteristics and 16S rRNA PCR, and named Selenomonas ruminantium 6 (S6), Megasphaera elsdenii 3 (M3), Veillonella parvula 2 (V2).
     Efficient propionic acid-producing genetic engineering bacteria were developed by Tn5 transposon tagging with selective mediums containing kanamycin and fluoroacetic acid.PCR of 16S rRNA and Tn5 analyses revealed that the mutants belonged to PTA gene deletion engineering bacteria (named TnS6, TnM3 and TnV2, respectively) and the genetic engineering bacteria were successfully constructed. Culture in vitro showed that TnS6, TnM3 and TnV2, as well as S6, M3 and V2, were all capable of producing VFA using lactic acid as a precursor. In spite of producing propionic acid at a lower level compared to original bacteria, genetic engineering bacteria significantly decreased ratio of C2/C3, owing to remarkablely decline of acetic acid concentration.
     Co-cultured of genetic engineering bacteria with different strains of yeasts revealed that the ability of propionic acid-producing was best when bacterias were combined with Candida Rugosa, Candida Utilis and Saccharomyces Cerevisiae.
     Microecologics were developed by mixing genetic engineering bacteria with the three strains of yeasts. A series of studies were conducted to observe the effect of microecologics on dairy energy metabolism both in vitro and in vivo. The in vitro ruminal fermentation revealed that the microecologics promoted utilization of lactic acid and production of VFA. With delayed fermentation time, output of propionic acid raised continuously, and the ratio of C2/C3 decreased gradually. Inoculating with microecologics in dairy rumens showed that the concentration of lactic acid and the ratio of C2/C3 significantly decreased while that of propionic acid increased. Above results initially proved that the fermentation type of microecologics were inclined to production of propionic acid type.
     Peripartum healthy Holstein Cows (n=6) fed with microecologics developed no adverse reactions during 21 d. It was verified by blood biochemical analysis and metabolic function test, indicating that the microecologics were innocuous, safe and reliable. Healthy cows in perinatal stage and cows with ketosis fed with microecologics both showed a escalating trend of blood sugar over time and a down trend of BHBA concentration, preliminarily indicating that microecologics is effective for prevention and treatment of ketosis in dairy.
引文
[1]刘国文,王哲.围产期奶牛能量代谢障碍性疾病的研究进展[J].黑龙江畜牧兽医,2004,8:78-79.
    [2] Melendez P, Goff J P, Risco C A, et al.Incidence of subclinical ketosis in cows supplemented with a monensin controlled-release capsule in Holstein cattle, Florida, USA[J].Prev Vet Med, 2006, 73:33-42.
    [3]何生虎,晁向阳,王明成等.奶牛酮病的发病机理研究现状及进展[J].草食家畜(季刊),2004,3(9):15-17.
    [4] Yameogo N, Ouedraogo G A, Kanyandekwe C, et al.Relationship between ketosis and dairy cows' blood metabolites in intensive production farms of the periurban area of Dakar[J]. Trop Anim Health Prod,2008,40:483-490.
    [5]夏成.酮病脂肪肝糖异生和脂肪动员的神经内分泌调控机制[D].长春:吉林大学,2005.
    [6]牛淑玲.围产期奶牛干物质摄入减少及脂肪动员的神经内分泌调控机制[D].长春:吉林大学,2005.
    [7] Bernabucci U, Ronchi B, Basirico L, et al.Abundance of mRNA of Apolipoprotein B100, Apolipoprotein E,and Microsomal Triglyceride Transfer Protein in Liver from Periparturient Dairy Cows[J]. J Dairy Sci,2004, 87:2881-2888.
    [8]孙玉成,王哲,张嘉保.干乳期高能饲喂围产期健康奶牛肝载脂蛋白B100 mRNA表达的研究[J].吉林农业大学学报,2005,27(5):538-542.
    [9] Gruffat D, Durand D, Chilliard Y, et al. Hepatic gene expression of apolipoprotein B100 during early lactation in underfed, high producing dairy cows[J].J Dairy Sci.1997,80(4):657-666.
    [10]Hahn S E, Goldberg D M. Factors affecting the regulation of apo B secretion by liver cells[J].J Clin Lab Anal. 1995,9(6):431-449.
    [11]张志刚.奶牛亚临床酮病诊断试纸条研制及其初步应用[D].长春:吉林大学,2009.
    [12]Laven RA, Andrews AH. Control of fatty liver syndrome in a Jersey herd by achangeof diet and the use of recombinant bovine somatotrophin[J]. Vet Rec, 1998, 142(2):36-39.
    [13]周建平,张俊育,田文儒.脂肪肝影响围产期奶牛繁殖力的机理研究[J].畜牧兽医学报,1997,28(2):115-119.
    [14]Andrews AH, Laven R, Maisey I. Treatment and control of an outbreak of fat cow syndrome in a large dairy herd[J]. Vet Rec, 1991, 129(10):216-219.
    [15]Kazuhisa Tsukamoto, Jane M. Glick. Hepatic apolipoprotein E expression promotes very low density lipoprotein-apolipoprotein B production in vivo in mice[J]. J. Lipid Res, 2000,41:1673-1679.
    [16]Donkin SS, Armentano LE. Regulation of gluconeogenesis by insulin and glucagon in the neonatal bovine[J]. Am J Physiol Regul Integr Comp Physiol, 1994, 266: 1229-1237.
    [17]Block SS.etal. Effect of energy balance on the concentration of plasma leptin in early lactating dairy cows[J]. J Anim.Sci, 2001,78(suppl.1):19.
    [18]Fuller R. A review: Probiotics in man and animals[J]. J Appl Bacteriol, 1989, 66: 365-378.
    [19]胡东兴.微生态制剂及其作用机理[J].中国饲料,2001,12(3):14-16.
    [20]王旭明.益生菌作用机理的研究进展[J].吉林农业科学,2002,27(1):50-53.
    [21]孔海英,孟宪梅.动物微生态制剂的研究进展及发展应用前景[J].吉林粮食高等专科学校学报,2006,21(1):4-7.
    [22]王红宁等.第一届芽胞杆菌遗传学和芽胞菌生物技术讨论会论文集[C].中国:[出版者不祥],1992.
    [23]刘明方等.双歧杆菌的生物拮抗及药敏试验[J].中国微生态学杂志,1991,3(1):41-44.
    [24]王立生,潘令嘉,李明松等.双歧杆菌的全肽聚糖对小鼠腹腔巨噬细胞游离Ca离子水平的影响[J].中华微生态学和免疫学杂志,2000,20(3):247.
    [25]Medici M,Vinderola C G,Perdigon G.Gut mucosal immtmomodulation by probiotic fresh cheese[J].International Dairy Jounral, 2004, 14(7): 611-618.
    [26]吴国豪.肠道屏障功能[J].肠外与肠内营养,2004, 11(1):44-47.
    [27]Perdigon G, Alvarez S, Rachid M. Immune system stimulation by probiotics[J].Dairy Sci,1995,78:1597-1606.
    [28]Vinderola G,Matrac.Milk fermented by actobacillush elveacus and its non-bacteiral fractionc onferen hanced protection against salmonella enteritidis serovar typhimurium infection in mice[J]. Immunobiology, 2007,212(2): 107-118.
    [29]郑跃杰,潘令嘉.双歧杆菌对EPEC和ETEC粘附的竞争抑制作用[J].中国微生态学杂志,1999,11(6):329-331.
    [30]Schiffrin EJ, Rochat F. Immunomodulation of human bloodcells following the ingestion of lactic acid bacteria[J]. Dairy Sci, 1995, 78:491-497.
    [31]Scharekl, Guthj, Reiterk, et al. In influence of a porbiotic enterococcus faecium strain on development of the immune system of sows and piglets[J].Veterinary Immunology and Immunopathology, 2005,105:151-161.
    [32]朱于敏,潘道东,邹思湘等.灌喂不同储存期酸奶对主动免疫小鼠免疫功能的影响[J].食品科学,2005,26(4):229-232.
    [33]王允超.在降低代谢能日粮中添加微生态制剂对肉鸡生产性能的影响[J].饲料工业,2008,29(4):45-47.
    [34]周静文.微生态制剂对奶牛泌乳后期生产性能的影响[J].广东饲料,2008,17(4):28-29.
    [35]王旭明.微生态制剂EM对生长育肥猪生产性能的影响及其作用机理的初步研究[D].北京:中国农业大学,1999.
    [36]杨林,霍贵成,杨丽杰等.微生态制剂对仔猪肠道非特异性免疫机能的影响[J].黑龙江畜牧兽医,2003(7):13-14.
    [37]蔡一鸣,文正常,任荣清等.菌痢康活菌剂预防和治疗仔猪黄痢和白痢的试验[J].中国兽医杂志,1995,21(11):36-37.
    [38]李春丽,崔淑贞,惠参军等.微生态制剂对哺乳仔猪生长及免疫机能的影响[J].中国畜牧兽医,2005,32(5):14-15.
    [39]赵京杨,张金洲.加酶益生素对哺乳及断奶仔猪生产性能和腹泻频率的影响[J].华中农业大学学报,2001,20 (2):148-150.
    [40]张琦琼.两种新型饲料添加剂对肉猪生产性能的影响[D].长沙:湖南农业大学农业推广硕士学位论文.2003.
    [41]Endo T, Nakano M. Influence of a probiotic on productivity,meat components, lipid metabolism, caecal flora and metabolites and raising environment inbroiler production[J].Animal Science Journal, 1999, 70(4): 207-218.
    [42]Salminen S. Clinical applications of probiotic bacteria[J]. International dairy Journal, 1998, 8(5-6):563-572.
    [43]Anderson J W,Gilliland S E. Effect of fermented milk (yogurt) containing Lactobacillus acidophilus on serum cholesterol in hypercholesterolemic humans[J]. J A College Nutr,1999,18:43-50.
    [44]刘永杰,赵艳兵,崔玢陶等.饲喂乳杆菌雏鸡对鸡白痢菌感染的影响[J].中国预防兽医学报,1999,21(1):46-48.
    [45]帅丽芳,段铭,高宏伟等.微生态制剂对反刍动物消化系统的调控作用[J].中国饲料,2002,(9):16-17.
    [46]聂志武.饲用益生菌[J].中国饲料,1998,(5):9-10.
    [47]王红星.微生态制剂治疗乳房炎效果的观察[J].石河子科技,2006,2:54.
    [48]蒋小艺等.乳酸菌制剂对奶牛泌乳量及乳成分的影响[J].中国乳品工业,2008,(4):41-43.
    [49]黄庆飞,戴永恒等.EM菌技术在奶牛饲养中的应用效果研究[J].广西畜牧兽医,2004,20:118-119.
    [50]王振华,潘康成等.枯草芽孢杆菌制剂在奶牛生产上的应用研究[J].饲料广角,2005,9:31-32.
    [51]禹学礼,王建平,等.EM发酵精料饲喂奶牛试验[J].黄牛杂志,2001,27(2):21-23.
    [52]张建文等.奶牛生产中应用有效微生物群技术的实验研究[J].甘肃农业大学学报,1998,33(1):29-31.
    [53]Martin, C, Brossard, L, Doreau, M. Mechanisms of appearance of ruminal acidosis and consequences on physiopathology and performances[J]. INRA Prod.Anim.,2006,19(2): 93-108.
    [54]Russell,J.B.,Hino,T. Regulation of lactate production in Streptococcus bovis:a spiraling effect that contributes to rumen acidosis[J].J Dairy Sci,1985,68, 1712-1721.
    [55]聂志武.饲用益生菌[J].中国饲料,1998,(5):9-10.
    [56]那日苏,桂荣等.牛用益生素的研究与应用[J].饲料研究,2002,(12):10-13.
    [57]Stella, AV, Paratte, R, Valnegri, L, et al . Effect of administration of live Saccharomyces cerevisiae on milk production, milk composition, bloodmetabolites,and faecal flora in early lactating dairy goats[J].Small Rumin. Res.,2006,7:7-13.
    [58]陈洪亮,陈洪庆,刘海涛.饲用高活性性酵母及其提取物对奶牛产奶的影响[J].饲料研究,2007,(11):60-61.
    [59]Collado, M.C., Sanz, Y. Quantification of mucosa-adhered microbiota of lambs and calves by the use of culture methods and fluorescent in situ hybridization coupled with flow cytometry techniques[J].Vet Microbiol, 2007,121:299-306.
    [60]Chaucheyras-Durand, F., Fonty, G. Establishment of cellulolytic bacteria and development of fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077[J]. Reprod Nutr Dev. 2001, 41: 57-68.
    [61]Lesmeister, K.E., Heinrichs, A.J., Gabler, M.T. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves[J].J Dairy Sci, 2004. 87:1832-1839.
    [62]Galvao, K.N., Santos, J.E., Coscioni, A., Villasenor, M., Sischo, W.M., Berge, A.C. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli[J].Reprod Nutr Dev.2005,45:427-440.
    [63]Chaucheyras-Durand, F., Fonty, G., Effects and modes of action of live yeasts in the rumen[J]. Biologia (Bratislava), 2006, 61(6): 741-750.
    [64]Williams, P.E., Tait, C.A., Innes, G.M., Newbold, C.J. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers[J].J Anim Sci,1991,69:3016-3026.
    [65]Lila, Z.A.,Mohammed, N., Yasui, T., Kurokawa, Y., Kanda, S., Itabashi, H. Effects of a twin strain of Saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro[J].J Anim Sci,2004,82: 1847-1854.
    [66]Lynch, H.A., Martin, S.A., 2002. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation[J].J Dairy Sci,85:2603-2608.
    [67]Chaucheyras, F., Fonty, G., Bertin, G., Salmon, J.M., Gouet, P. Effects of a strain of Saccharomyces cerevisiae (Levucell SC), a microbial additive for ruminants, on lactate metabolism in vitro[J].Can J Microbiol,1996,42:927-933.
    [68]Brossard, L., Martin, C., Chaucheyras-Durand, F., Michalet-Doreau, B. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep[J].Reprod Nutr Dev,2004,44:195-206.
    [69]Brossard, L., Chaucheyras-Durand, F., the late Michalet-Doreau, B., Martin, C. Dose effect of live yeasts on rumen microbial communities and fermentations during butyric latent acidosis in sheep: newtype of interaction[J].Anim Sci , 2006,82:1-8.
    [70]Newbold, C.J., Wallace, R.J., Chen, X.B., McIntosh, F.M.Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep[J].J Anim Sci,1995,73:1811-1818.
    [71]Bach, A., Iglesias, C., Devant, M.. Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation[J]. Anim Feed Sci Technol,2007,136:156-163.
    [72]Chaucheyras, F., Fonty, G., Bertin, G., Gouet, P.. Effects of live Saccharomyces cerevisiae cells on zoospore germination, growth, and cellulolytic activity of the rumen anaerobic fungus, Neocallimastix frontalis MCH3[J].Curr Microbiol, 1995,31:201-205.
    [73]Girard, I.D., Dawson, K.A. Effect of a yeast culture on growth characteristics of representative ruminal bacteria[J].J Anim Sci,1995,73:264.
    [74]Callaway, T.S., Martin, S.A., 1997. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose[J].J. Dairy Sci. 80:2035-2044.
    [75]Mosoni, P., Chaucheyras-Durand, F., Béra-Maillet, C., Forano, E., 2007. Quantification by real-time PCR of cellulolytic bacteria n the rumen of sheep after supplementation of a forage diet with readily fermentable carbohydrates. Effect of a yeast additive[J].J. Appl. Microbiol. 103:2676-2685.
    [76]Plata, P.F., Mendoza, M.G.D., Barcena-Gama, J.R., Gonzalez, M.S., 1994. Effect of a yeast culture (Saccharomyces cerevisiae) on neutral detergent fiberdigestion in steers fed oat straw based diets[J].Anim. Feed Sci. Technol.49: 203-210.
    [77]Newbold, C.J.Microbial feed additives for ruminants. In:Wallace, R.J., Chesson, A. (Eds.), Biotechnology in Animal Feeds and Animal Feeding[M]. VCH, Weinheim, Germany,1995:259-278.
    [78]Chaucheyras-Durand, F., Fonty, G.Influence of a probiotic yeast (Saccharomyces cerevisiaeCNCMI-1077) on microbial colonization and fermentation in the rumen of newborn lambs[J].Microb Ecol Health Dis,2002,14:30-36.
    [79]Jouany, J.P., Mathieu, F., Senaud, J., Bohatier, J., Bertin, G., Mercier, M.The effect of Saccharomyces cerevisiae and Aspergillus oryzae on the digestion of the cell wall fraction of a mixed diet in defaunated and refaunated sheep rumen[J].Reprod Nutr Dev,1998,38:401-416.
    [80]Kumar, U., Sareen, V.K., Singh, S.Effect of Saccharomyces cerevisiae yeast culture supplement on ruminal metabolism in buffalo calves given a high concentrate diet[J].Anim Prod,1994,59:209-215.
    [81]Chaucheyras-Durand, F., Masseglia, S., Fonty, G.Effect of the microbial feed additive Saccharomyces cerevisiae CNCM I-1077 on protein and peptide degrading activities of rumen bacteria grown in vitro[J].Curr Microbiol, 2005,50:96-101.
    [82]Sniffen, C.J., Chaucheyras-Durand, F.,De Ondarza, M.B., Donaldson, G. Predicting the impact of a live yeast strain on rumen kinetics and ration formulation.In: Proceedings of the Southwest Nutrition and Management Conference, Tempe, AZ, USA[M].2004:53-59.
    [83]Vermorel, M. Emissions annuelles dem′ethane d’origine digestive par les bovins en France. Variations selonle type d’animal et le niveau de production[J]. INRA Prod. Anim. , 1995. 8,265-272.
    [84]Moss, A.R., Jouany, J.P., Newbold, C.J.Methane production by ruminants: its contribution to global warming[J].Ann Zootech,2000,49:231-253.
    [85]Martin, C., Morgavi, D., Doreau, et al., Comment r′eduire la production de m′ethane chez les ruminants[J]. Fourrages, 2006, 187: 283-300.
    [86]McGinn, S.M., Beauchemin, K.A., Coates, T., Colombatto, D.Methaneemissions from beef cattle: effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid[J].J Anim Sci,2004,82, 3346-3356.
    [87]Newbold, C.J., Rode, L.M. Dietary additives to control methanogenesis in the rumen[J]. Int Congr Ser, 2006,1293:138-147.
    [88]Kung Jr. L., Kreck, E.M.et al.Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows[J].J Dairy Sci,1997,80:2045-2051.
    [89]Durand-Chaucheyras, F., Fonty, G.etal.Fate of Levucell SC I-1077 yeast additive during digestive transit in lambs[J].Reprod Nutr Dev,1998,38: 275–280.
    [90]Wallace, R.J., Onodera, R., Cotta, M.A., Metabolism of nitrogen-containing compounds. In: Hobson,P.N., Stewart, C.S. (Eds.),The Rumen Microbial Ecosystem[M].second ed. Chapman & Hall, London, UK, 1997,283-328.
    [91]Wallace, R.J.,McKain, N.et al.Peptidases of the rumen bacterium, Prevotella ruminicola[J].Anaerobe,1997,3:35-42.
    [92]Krause, D.O., Russell, J.B. An rRNA approach for assessing the role of obligate amino acid-fermenting bacteria in ruminal amino acid deamination[J].Appl Environ Microbiol,1996,62:815-821.
    [93]Wohlt, J.E., Corcione, T.T., Zajac, P.K. Effect of yeast on feed intake and performance of cows fed diets based on corn silage during early lactation[J]. J Dairy Sci,1998,81:1345-1352.
    [94]Newbold, C.J., Olvera-Ramirez, A., The use of yeast-based probiotics to meet new challenges in ruminant production[J].J Anim Sci,2006,84 (Suppl. 1): 425.
    [95]Castagliuolo, I.et al.Saccharomyces boulardii protease inhibits the effects of Clostridium difficile toxins A and B in human colonic mucosa[J].Infect Immun,1999,67:302-307.
    [96]Schatzmayr, G. et al. Microbiologicals for deactivating mycotoxins[J]. Mol Nutr Food Res, 2006,50:543-551.
    [97]Kusumaningtyas, E., Widiastuti, R., Maryam, R.Reduction of aflatoxin B1 in chicken feed by using Saccharomyces cerevisiae, Rhizopus oligosporus and their combination[J]. Mycopathologia, 2006, 162: 307-311.
    [98]Yiannikouris, A., Andre, G.et al.Comprehensive conformational study of keyinteractions involved in zearalenone complexation with beta-dglucans[J]. Biomacromolecules, 2004,5:2176-2185.
    [99]Yiannikouris, A., Franc?ois, J.etal. Adsorption of Zearalenone by beta-d-glucans in the Saccharomyces cerevisiae cell wall[J].J Food Prot,2004, 67:1195-2000.
    [100]Tajima, K. etal.Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens[J].FEMS Microbiol Lett,2001,200:67–72.
    [101]An, D., Dong, X., Dong, Z. Prokaryote diversity in the rumen of yak (Bosgrunniens) and Jinnan cattle (Bostaurus) estimated by 16S rDNA homology analyses[J].Anaerobe,2005,11:207-215.
    [102]Galbraith, E.A.etal.Suppressive subtractive hybridization as a tool for identifying genetic diversity in an environmental metagenome: the rumen as a model[J]. Environ Microbiol, 2004, 6: 928-937.
    [103]Hungate SJ,Grummer RR,Cadorniga-Valino C. Effect of prepartum dry matter intake on liver triglyceride concentration and early lactation[J]. J Dairy Sci. 1992;75:1914~1922
    [104]Ricke SC, Martin SA, Nisbet DJ. Ecology, metabolism, and genetics of ruminal selenomonads[J]. Crit Rev Microbiol. 1996;22(1):27~56.
    [105]McSweeney CS, Palmer B, Bunch R,et al.Isolation and characterization of proteolytic ruminal bacteria from sheep and goats fed the tannin-containing shrub legume Calliandra calothyrsus[J]. Appl Environ Microbiol. 1999; 65(7): 3075~3083.
    [106]Gregg K, Hamdorf B, Henderson K, et al. Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning[J].Appl Environ Microbiol,1998;64(5):3496~3498.
    [107]Allison M J, A C Hammond and R J Jones. Detection of rumen bacteria that degrade toxic dihydroxypridine compounds produced from mimosine[J]. Appl Exp Microbiol,1990;56(2):590~594.
    [108]黄庆生,王加启. 16SrRNA/rDNA序列分析技术在瘤胃细菌微生态系统研究中的应用[J].中国畜牧兽医,2003;30(1):7~11.
    [109]黄永生.酵母培养物对瘤胃发酵影响及16S rRNA定量分析技术的应用研究[M].北京:中国农业科学院,2002.
    [110]Forster, RJ, Teather, RM, Gong, J.et al. 16S rDNA analysis of Butyrivibrio fibrisolvens: phylogenetic position and relation to butyrate producing anaerobic bacteria from the rumen of white-tailed deer. [J]. Lett. Appl. Microbiol.1996, 23: 218-222.
    [111]Krause D O, Dalrymple B P, Smith W J, et al. 16s rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep [J].Microbiology (1999), 145, 1797-1807.
    [112]Doyle LM, McInerney JO, Mooney J,et al. Sequence of the gene encoding the 16S rRNA of the beer spoilage organism Megasphaera cerevisiae[J]. J Ind Microbiol. 1995,15(2):67-70.
    [113]Tajima, K., S. Arai, K. Ogata,et al. Rumen bacterial community transition during adaptation to high-grain diet [J]. Anaerobe 2001,6:273-284.
    [114]Andersch W, Bahl H, Gottschalk G. 1983. Level of enzymes involved in acetate, butyrate, acetone and butanol formation by Clostridium acetobutylicum. Eur J Appl Microbiol Biotechnol 18:327-332.
    [115]Allen SHG, Kellermeyer RW, Stjernholm RL, Wood HG. 1964. Purification and properties of enzymes involved in the propionic acid fermentation. J Bacteriol 87:171-187.
    [116]Gierl A,Saedller H.Plant-transposable elements and gene tagging. Plant Mol Biol,1992,19:39
    [117]韦建福,张世光,马永翠.利用Tn5转座子诱变冰核细菌获得无冰核活性菌株.云南农业大学学报,2002,17(1):17~20
    [118]储卫华,陆承平.筛选用转座子Tn916诱变具有免疫原性的嗜水气单胞菌蛋白酶缺失株.水产学报,2001,6,(25):244~248.
    [119]Latimer MT, Ferry JG. Cloning, sequence analysis, and hyperexpression of the genes encoding phosphotransacetylase and acetate kinase from Methanosarcina thermophila [J]. J Bacteriol, 1993, 175(21): 6822-6829.
    [120]Oba M, Allen MS. Dose-response effects of intrauminal infusion of propionate on feeding behavior of lactating cows in early or midlactation[J]. J Dairy Sci.2003;86(9):2922~2931
    [121]Van Knegsel A T,van den Brand H,Dijkstra J,et al. Effect of dietary energy source on energy balance, production, metabolic disorders and reproduction in lactating dairy cattle[J]. Reprod Nutr Dev, 2005, 45:665-688.
    [122]Williams PE, Tait CA, Innes GM, et al. Effects of the inclusion of yeast culture (Saccharomyces cerevisiae plus growth medium) in the diet of dairy cows on milk yield and forage degradation and fermentation patterns in the rumen of steers[J].J Anim Sci,1991; 69(7): 3016~3026.
    [123]D. J. Nisbet and S. A. Martin,Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium[J]. J Anim Sci 1991. 69:4628-4633.
    [124]Nisbet, D. J. and S. A. Martin. 1990. Effect of dicarboxylic acids and Aspergillus oryzue fermentation extract on lactate uptake by the ruminal bacterium Selenomonns ruminantiwn. Appl. Environ. Micmbiol. 56:3515.
    [125]Oba M,Allen MS.Rxtent of hypophagia caused by propionate infusion is related to plasma glucose concentration in lactation dairy cows[J].J Nutr.2003;133(4):1105~1112.
    [126]Bradford MM.A rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding[J].Anal Biochem,1976,72:248.
    [127]宋晓伟,康健等.改良的考马斯亮兰G-250染色法简便快速测定微量蛋白浓度[J].洛阳医专学报,1997,(3):150-2.
    [128]李长皓.日粮中添加维吉尼亚霉素和莫能霉素对肉牛消化代谢的影响[D].新疆农业大学,硕士研究生论文,2007.
    [129]Bergman EN.Energy contributions of volatile fatty acids from the gastrointestinal tract in various species[J]. Physiol Rev. 1990,70(2): 567~590.
    [130] Reddy NM,Reddy GVN.Effect of fodder based complete diets on the rumen fermentation pattern in crossbred bulls[J].Indian J.Anim.Sci,1993,10(1):7.
    [131]参木有,卢德勋.米秸处理方法与替换干草对绵羊瘤胃发醉与采食量的影响[J].畜牧兽医学报.2004,35(1):10-4.
    [132]Mould FL, Rskov ER. Manipulation on rumen fluid pH and its influence oncelluloysis in sacco, dry matter degradation and the rumen microflora of sheep offered either hay of concentrate[J].Anim Feed Sci. Technol. 1983, 10:1-14.
    [133]姜卫红,韩正康.在非蛋白氮和甲醛处理的日粮条件下几种与瘤胃代有关的酶活力的研究[J].南京农业大学学报.1986,2:76-85.
    [134]Bergman EN,McDonald IW. Digestion and Metabolism in the Ruminant [C] Univ.of New England Publishing Unit, Armidale, Australia, 1975, 292.
    [135]王家启.反刍家畜瘤胃内碳水化合物和氮代谢研究进展[J].国外畜牧科技,1992,19(5):34-37.
    [136]Orskov ER, Grubb DA. Efficiency of utilization of volatile fatty acids for maintenance and energy retention by sheep[J]. Br. J. Nutri.1979, 41(3): 541-551.
    [137]Salter DN, Sminth RH. Digestibilities of nitrogen compounds in rumen bacteria and in other components of digesta in the small intestine of the young steer[J]. British Journal of Nutrition, 1977, 38: 207-216.
    [138]RD Wiedmeier, MJ Arambel, JL Walters. Effect of Yeast Culture and Aspergillus oryzae Fermentation Extract on Ruminal Characteristics and Nutrient Digestibility[J].Journal of Dairy Science, 1987,70(10): 2063-2068.
    [139]Titgeeyer EC,Merchen NR.The effect of abomasal methionine supplementation on nitrogen retention of growing steers postruminally infused with casein or nonsulfur-containing amino acids[J].J.Anim.Sci.,1990,68(3):750-757.
    [140]Miller-Webster T,Hoover WH etal.Influence of yeast culture on ruminal microbial metabolism in continuous culture[J].J Anim.Sci,2002,85(8): 2009- 2014.
    [141]Hristov AN, Ropp JK etal. Effect of barley and its amylopectin content on ruminal fermentation and bacterial utilization of ammonia2N in vitro[J]. A nimal Feed Science and Technology, 2002, (99): 252-36.
    [142]Oeztuerk H,Schroeder B etal.Influence of Living and Autoclaved Yeasts of Saccharomyces boulardii on In Vitro Ruminal Microbial Metabolism[J].J Dairy Sci. 2005, 88: 2594-6000.
    [143]Mwenya B, Santoso B, etal. Effects of Yeast Culture and Galacto- Oligosaccharideson Ruminal Fermentation in Holstein Cows[J]. J.Dairy Sci.2005, 88:1404-12.
    [144]陈建森,郑华焱,石安然等.1508例脂肪肝患者血清生化指标变化与年龄和体重指数的关联分析[J].福建医药杂志,2006,28.
    [145]孙大裕.脂肪肝动物模型的研究进展.中华消化杂志[J].2002,22(5):305-306.
    [146]Zieba D A, AmstaldenM. Williams. Regulatory roles of lePtin reProduetion and metabolisnl: A eomParative review [J]. Domestie animal endoerinology. 2005,29: 166-185.
    [147]苑文珠,刘建新,吴跃明.日粮中直接添加微生物制剂(DFM)对反刍动物的影响,饲料研究,2001,2:1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700