用户名: 密码: 验证码:
线粒体自噬在肌萎缩侧索硬化症中的相关研究以及大蒜素的神经保护作用的机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:肌萎缩侧索硬化[Amyotrophic lateral sclerosis,(ALS)],是一个致死性的神经变性疾病,临床表现为肌萎缩,肌强直,无力等。通常在诊断后的3-5年就可以死亡。最近,在ALS和伴有泛素阳性包涵体的额颞叶痴呆病人[frontotemporal lobar dementia with ubiquitin-positive inclusions,(FTLD-U)]的脑中发现了泛素化的包涵体,其中TDP-43是主要的组成成分。所以,TDP-43在神经变性疾病中受到越来越多的人的关注。TDP-43,它是普遍存在的核蛋白,由414个氨基酸组成。它是由1号染色体上的TARDBP基因编码的。它的作用包括了特异性前RNA的剪切和转录,信使RNA的稳定性以及小RNA的生物发生等。至今,已在散发和遗传性的ALS病人的TDP-43基因中发现40多种的显性突变,就为TDP-43功能异常和变性疾病中提供了直接的证据。TDP-43的发现为我们研究ALS和FTLD-U的发病机制开拓了新的视野。在ALS的发病机制中,线粒体是多个发病机制的汇合点。大量的研究表明在突变的SOD1相关的ALS的病人,细胞以及动物模型中,线粒体损伤参与了发病机制过程。其中突变和野生型的SOD1在线粒体上聚集是一个非常关键的环节。相对应的是在转染TDP-43的细胞中,同样存在线粒体膜电位的降低,ROS的生成增多以及呼吸链的受损等线粒体损伤的证据。线粒体选择性的自噬在线粒体的质量控制机制中发挥着重要的作用,它参与了帕金森病、阿尔茨海默病的发病机制。但是在ALS的模型中,研究的却非常少。
     大蒜素,它是大蒜油中有机硫化合物的主要成分,由于其强大的抗癌效应受到越来越多的关注。在动物模型中,它不但可以通过多种机制保护化学物质诱导的癌症,抗癌机制包括调控致癌物的代谢,抑制肿瘤细胞的增殖来阻止肿瘤细胞的增长,诱导凋亡,组氨酸的修饰,抑制血管的再生。大蒜素其他的健康益处包括抗血栓效应,改善免疫功能,降低血糖,防止辐射和微生物的侵入。另外,其神经保护作用在ALS的脊髓培养模型和SOD1的转基因鼠中均得到验证,但是在ALS的细胞模型中的疗效却没有证实。
     第一部分过表达TDP-43及其片段对线粒体的功能和形态的影响
     目的:本研究的目的是探讨TDP-43及其片段对线粒体的功能和形态的影响。
     方法:在NSC34细胞中瞬时表达含有空质粒对照、野生型、Q331K、M337V、TDP-25和TDP-35的质粒。在细胞转染48h后,收集细胞并用western印迹验证细胞的表达效率;用免疫荧光观察外源性蛋白的分布特点;用流式细胞计数观察TDP-43及其片段对线粒体膜电位和活性氧簇的影响;用免疫荧光观察外源性蛋白对线粒体形态的影响。
     结果:(1)在NSC34细胞中可以顺利表达外源性的TDP-43蛋白。并且表达全长的TDP-43蛋白水平和内源性TDP-43蛋白水平差不多,表达片段的TDP-43水平大约是内源性TDP-43蛋白水平的一半。
     (2)在对照细胞中,内源性的TDP-43主要在胞核中。在转染的细胞中,全长的TDP-43蛋白主要分布在胞核中,一部分在胞浆中存在。而片段化的TDP-43更容易形成在胞核和胞浆致密的包涵体。
     (3)通过流式细胞术检测结果表明,表达全长及片段的TDP-43细胞和空质粒对照的细胞相比,线粒体的膜电位降低了,活性氧簇的水平明显上升。
     (4)通过激光共聚焦显微镜观察,转染全长及片段的TDP-43的细胞中,线粒体的分布不均匀和聚集更多见。
     结论:表达全长及片段TDP-43的NSC34细胞和对照细胞相比,明显降低了线粒体膜电位的水平,提高了活性氧簇的水平,并且干扰了线粒体的正常分布。
     第二部分过表达TDP-43及其片段对线粒体自噬的影响
     目的:本研究的目的是探讨TDP-43及其片段对线粒体自噬的影响。
     方法:在NSC34细胞中瞬时表达含有空质粒对照、野生型、Q331K、M337V、TDP-25和TDP-35的质粒。在细胞转染48h后,用匀浆器离心方法提取胞浆和线粒体组分,然后用透射电镜和Western印迹检测提取线粒体的纯度和形态;并用Western印迹技术检测各组分外源性和内源性TDP-43的表达,用免疫荧光观察外源性TDP-43和线粒体的分布关系,用western印迹技术检测线粒体和胞浆中LC3B、P62的蛋白水平。
     结果:(1)用透射电镜技术检测提取的线粒体形态保存尚好,纯度约在90%以上。用western印迹检测线粒体部分的标记物VDAC1和胞浆部分的标记物actin,彼此并不掺杂,说明提取线粒体的纯度高。
     (2)用western印迹检测转染细胞中胞浆和线粒体部分的外源性TDP-43,在线粒体上可有少量的外源性TDP-43的存在,而且野生型和突变型的水平差不多。用免疫荧光检测结果表明,外源性TDP-43可以和线粒体的标记物共定位。
     (3)用western印迹分别检测转染细胞中胞浆和线粒体部分的外源性TDP-43、内源性TDP-43、LC3B、P62的蛋白表达,转染全长TDP-43细胞比空质粒对照细胞中,线粒体部分的内源性TDP-43的表达明显升高,LC3B蛋白水平明显升高,P62的蛋白水平显著降低。在转染片段的TDP-43的细胞中,线粒体外膜蛋白VDAC1的水平降低,而线粒体部分的LC3B蛋白水平明显升高,P62的蛋白水平显著降低。
     结论:匀浆离心法提取的线粒体形态完整,纯度高;外源性TDP-43在线粒体部分少量存在;转染外源性TDP-43的细胞,LC3B蛋白水平明显升高,P62的蛋白水平显著降低,激活了线粒体自噬。
     第三部分大蒜素在肌萎缩侧索硬化模型中神经保护作用机制的探讨
     目的:本研究的目的是探讨大蒜素在肌萎缩侧索硬化模型中的神经保护作用和机制。
     方法:用CCK-8法检测不同浓度和时间的大蒜素处理的NSC34细胞后,对细胞活力影响;采用合适的浓度及时间的大蒜素干预NSC34细胞后,用western印迹技术检测LC3B蛋白水平;在转染携带GFP-LC3质粒的细胞中,在不同浓度的大蒜素处理后,用免疫荧光技术观察GFP-LC3点状聚集的情况;在转染TDP-43的细胞中,选择合适浓度的大蒜素干预后,用western印迹技术检测外源性TDP-43变化;分别选用自噬通路阻断剂(Bafilomycin A1)和蛋白酶体通路阻断剂(MG132)处理细胞,观察大蒜素是通过什么途径影响蛋白水平;在转染TDP-43的细胞中,选择合适浓度的大蒜素干预后,用Western印迹技术检测胞核部分Nrf2的表达情况与细胞中抗氧化酶的表达水平。
     结果:(1)分别用不同浓度(0-100μM)的大蒜素处理NSC34细胞24h后,在0-10μΜ的大蒜素对于细胞活力没有明显区别,在20-100μM之间的大蒜素依据药物浓度逐渐增大,细胞毒性逐渐增加。在10μM的大蒜素处理下,处理48h后,细胞活力明显下降。
     (2)分别用不同浓度(0-10μM)的大蒜素处理NSC34细胞24h后,用western印迹检测结果表明,LC3-II的水平是逐渐升高;分别用10μM的大蒜素处理NSC34细胞不同时间(0-36h)后, Western印迹检测结果表明,处理24h后,LC3-II的水平是最高的;用免疫荧光技术观察GFP-LC3点状聚集,结果表明在处理24h后,携带点状聚集的细胞数目是依浓度增加而逐渐最多的。
     (3)在NSC34细胞中瞬时表达含有空质粒对照、野生型、Q331K、M337V、TDP-25和TDP35的质粒,给予10μM的大蒜素处理24h后,Western印迹检测结果表明,外源性TDP-43水平都有显著的下降;给予自噬通路阻断剂(Bafilomycin A1)和蛋白酶体通路阻断剂(MG132)阻断处理后,western印迹检测结果表明,大蒜素在Bafilomycin A1存在的情况下,不能降解TDP-25蛋白水平,而在MG132存在的情况下,仍然可以降解。结果表明大蒜素是通过自噬途径来促进蛋白的降解。
     (4)在NSC34细胞中瞬时表达含有空质粒对照、野生型、Q331K、M337V、TDP-25和TDP-35的质粒,给予10μM的大蒜素处理24h后,Western印迹检测结果表明,可以上调胞核中Nrf2蛋白的表达,并且上调了抗氧化酶HO-1和NQO-1的蛋白水平。
     结论:在TDP-43相关的ALS细胞模型中,低剂量的大蒜素可以上调自噬水平,通过自噬途径促进外源性TDP-43的降解,并激活了Nrf2/ARE通路,上调了二相酶HO-1和NQO-1的蛋白表达,从而发挥它的神经保护作用。
Background: Amyotrophic lateral sclerosis (ALS), a fatalneurodegenerative disease, is characterized by muscle atrophy, spasticity andweakness, and leads to death within three to five years of diagnosis. Recently,TAR DNA binding protein of43kDa (TDP-43) was identified as the majorprotein constituent of ubiquitinated inclusions in brains of ALS andfrontotemporal lobar degeneration. TDP-43is encoded by the gene TARDBPon human chromosome1. It may be involved in specific pre-mRNA splicingand transcription, mRNA stability and the biosynthesis of microRNAs. Up tonow, over40dominant mutations in the TDP-43gene have been linked tosporadic and familial ALS, which provided strong evidence for a direct linkbetween TDP-43dysfunction and neurodegeneration. TDP-43C-terminalfragments are recovered in the sarkosyl-insoluble fraction of affected brainregions of ALS patients, it has been hypothesized that they serve to seedTDP-43aggregation and play an important role in disease pathogenesis. It iswidely accepted that mitochondria is a converging point of multiplepathological pathways in ALS. A large number of researches indicated thatmitochondrial dysfunction participated in the degeneration of ALS patients,animal models for mutant SOD1-linked ALS, in which the accumulation ofmutants or wild type (WT) SOD1in mitochondria represents a critical point.Correspondingly, TDP-43-expressing models also showed mitochondrialdysfunction, indicated by accumulation of reactive oxygen species (ROS), lossof mitochondrial membrane potential (Ψm), and impairment of therespiratory chain. Mitophagy plays an important role in the quality control ofmitochondria, which has been implicated in Parkinson’s disease andAlzheimer’s disease, but very little is known about their role in ALS.
     Diallyl trisulfide (DATS), one of the major organosulfur compounds in garlic oil,has received considerable attention because of its anticancer effect.It can not only ofer protection against chemically induced cancer in animalmodels by modulation of carcinogen metabolism, but also suppress growth ofcancer cells in vitro and in vivo by inhibition of cancer cell proliferation andcell cycle arrest, induction of apoptosis, histone modification, and suppressionof angiogenesis. The other known health benefits of DATS includeantithrombotic effects, improvement of the immune function, lowering ofblood glucose level, radioprotection, and protection against microbialinfections. In addition, its neuroprotective effects were demonstrated bystudies from our laboratory using organotypic spinal cord culture andtransgenic mice model of ALS. However, that was not confirmed in cellularmodel.
     Part Ⅰ: The effects of full-length TDP-43and its C-terminal fragmentson mitochondrial function and morphology
     Objective: To investigate whether full-length TDP-43and its C-terminalfragments impair mitochondrial function and morphology.
     Methods: NSC34cells were transiently transfected with different humanTDP-43plasmids, including WT, Q331K, M337V TDP-43and twoC-terminal fragments termed as TDP-25and TDP-35, and the cells wereharvested after48h of transfection. We first determined the expression levelsby western blots. We next observed the subcellular localization of TDP-43byconfocal microscopy, and further investigated the effects of human TDP-43onmitochondrial function, indicators of mitochondrial activity such asmitochondrial membrane potential and levels of cellular ROS were determined.Finally we examined morphological changes of mitochondria in transfectedcells by confocal microscopy.
     Results:(1) Human TDP-43plasmids were sucessfully expressed inNSC34cells. Western blot data showed the expression levels of full-lengthTDP-43were very similar to endogenous TDP-43, but the expression levels ofTDP-25and TDP-35were approximately50%of that endogenous TDP-43.
     (2) In untransfected cells, TDP-43was localized to the nucleus. In cells transfected with full-length TDP-43, WT and mutant TDP-43predominantlyexpressed in the nucleus, but TDP-43signals were also detected in thecytoplasm. Compared with full-length TDP-43, C-terminal fragments weremore likely to form compact cytoplasmic and nuclear inclusions.
     (3) Quantification by flow cytometry showed that both WT and mutantTDP-43could lead to decrease in mitochondrial membrane potential.Compared with control cells, full-length TDP-43and its C-terminal fragmentssignificantly increased ROS production.
     (4) We also investigated morphological changes of mitochondria byconfocal microscopy, and clustered and uneven distributed mitochondria weremore common in full-length and truncated TDP-43transfection cells.
     Conclusion: Compared with control cells, full-length TDP-43and itsC-terminal fragments significantly decreased mitochondrial membranepotential levels, increased ROS production, and disturbed mitochondrianormal distribution.
     Part Ⅱ: The effects of full-length TDP-43and its C-terminal fragmentson mitophagy in NSC34cells
     Objective: To investigate whether full-length TDP-43and its C-terminalfragments activate mitophagy.
     Methods: NSC34cells were transiently transfected with different humanTDP-43plasmids, including WT, Q331K, M337V TDP-43and twoC-terminal fragments termed as TDP-25and TDP-35, and the cells wereharvested after48h of transfection. We first confirmed the purity ofmitochondrial isolation, obtained from the homogenization method, bytransmission electron microscope. Then we examined the protein level ofhuman and endogenous TDP-43in the mitochondria and cytoplasm bywestern blot, observed distributive characters of TDP-43and mitochondria byconfocal microscopy, and determined LC3B and P62expression levels inmitochondrial and cytosol fractions.
     Results:(1) We first confirmed the purity of mitochondrial isolation,obtained from the homogenization-centrifugation method, by transmission electron microscope; the micrograph showed that mitochondria isolated bythis technique preserved morphological integrity very well,and the purity ofmitochondria maintained in90%above. Western blot data showed that actin(a cytosol maker) was undetectable in mitochondrial fraction, and VDAC1(amitochondrial maker) was also undetectable in cytosol fraction.
     (2) We examined TDP-43in the mitochondrial fractions by western blotsand confocal microscopy. Our data showed that WT and mutant TDP-43could be present and localized in the mitochondria, and the expression level ofWT TDP-43in mitochondrial fraction was very similar to mutant TDP-43.
     (3) We further evaluated mitophagy in purified mitochondria bymeasuring the levels of LC3-II and p62. expression of WT and mutantTDP-43led to sequestration of endogenous nuclear TDP-43after48htransfection. Furthermore, in cells transfected with WT or mutant TDP-43, thelevel of LC3-II markedly increased and p62decreased in the mitochondrialfractions. In addition, VDAC1, decreased in cells expressed TDP-25andTDP-35, compared with control. Moreover, in the mitochondrial fractions,TDP-25and TDP-35clearly up-regulated the levels of LC3-II but reduced theexpression of p62.
     Conclusion: Mitochondria isolated by homogenization-centrifugationmethod preserved morphological integrity very well and high purity, and aportion of exogenous TDP-43were localized in the mitochondria. WT, mutantTDP-43and its C-terminal fragments all induced LC3-II but reduced p62inthe mitochondrial fractions, indicating that mitophagy was activated at thesubcellular level.
     Part Ⅲ: The protective effect of Diallyl trisulfide on cellular model ofamyotrophic lateral sclerosis
     Objective: To investigate the protective effect and mechanism Diallyltrisulfide on cellular model of amyotrophic lateral sclerosis
     Methods: NSC34cells were exposed to different concentrations andtimes of DATS, and cell viability was measured by the CCK-8assay. NSC34cells were treated with appropriate DATS for indicated time, and we examined LC3B level by western blot. In addition, cells expressing pEGFP-LC3weretreated with DATS for indicated concentration and time, and the accumulationof pEGFP-LC3in response to treatment were analyzed by fluorescencemicroscopy. We also investiged the effect of DATS on human TDP-43intransfected cells by western blots,and determined which means DATS causedthe clearance of TDP-43using the autophagy inhibitor Baf A1and theproteasome inhibitor MG132. We finally examined Nrf2in the nucleus andantioxidase levels after the treatment of DATS in transfected cells.
     Results:(1) There was no marked difference in the degree of toxicityfrom0to10μM for24h. In contrast, cell viability measured by the CCK-8assay was significantly decreased from20to100μM in NSC34cells in adose-dependent manner. Next the cells were treated with10μM DATS atincreasing times and cell viability was analyzed. The CCK-8leveldramatically decreased at48h after the addition of DATS.
     (2) NSC34cells were exposed to DATS from0to10μM for24h, andwestern blotting analysis revealed a steadily increasing quantity of theLC3-II form. In addition, time-course analysis showed that24h of exposure toDATS stimulated the greatest amount LC3-II protein. Furthermore, we alsotreated the pEGFP-LC3transfected cells with DATS and found that there wereincreased numbers of punctate pEGFP-LC3dots in the treated cells indose-dependent manner.
     (3) NSC34cells were transiently transfected with different humanTDP-43plasmids, including WT, Q331K, M337V TDP-43and twoC-terminal fragments termed as TDP-25and TDP-35. Treatment with10μMDATS for24h resulted in decrease in human TDP-43protein levels, both inWT and mutants transfected cells by western blots. Furthermore, we treatedTDP-25transfected cells with the autophagy inhibitor Baf A1and theproteasome inhibitor MG132. These inhibitor data revealed that TDP-25levels were not decreased by24h in cells treated with DATS and Baf A1compared to DATS alone. In virtually, they were decreased after exposure ofDATS and MG132, indicating that DATS promotes clearance of misfolded proteins by induction of autophagy.
     (4) NSC34cells were transiently transfected with different humanTDP-43plasmids, including WT, Q331K, M337V TDP-43and twoC-terminal fragments termed as TDP-25and TDP-35. After treatment with10μM DATS for24h, western blot data showed the treatment of DATSsignificantly induced nuclear translocation of Nrf2, increased antioxidaseHO-1and NQO1erxpression.
     Conclusion: In TDP-43-associated ALS cellular models, low-doseDATS could up-regulate autophagy flux, cause the clearance of exogenousTDP-43by autophagy, activate Nrf2/ARE pathway, enhance the expression ofHO-1and NQO-1, and confer its robust neuroprotection.
引文
1D.R. Rosen, T. Siddique, D. Patterson, D.A. Figlewicz, P. Sapp, A.Hentati, D.Donaldson, J. Goto, J.P. O’Regan, H.X. Deng, Z. Rahmani, A.Krizus, D. Mckennayasek, A. Cayabyab, S.M. Gaston, R. Berger, R.E.Tanz, J.J. Halperin, B. Herzfeldt, R.V.D. Bergh, W.Y. Hung, T. Bird, G.Deng, D.W. Mulder, C. Smyth, N.G. Laing, E.Soriano, M.A.Pericak–Vance, J. Haines, G.A. Rouleau, J.S. Gusella, H.R. Horvitz,R.H.Brown Jr., Mutations in Cu/Zn superoxide dismutase gene are associatedwith familial amyotrophic lateral sclerosis, Nature,362(1993)59–62
    2Bendotti, C. and Carri, M.T. Lessons from models of SOD1-linkedfamilial ALS. Trends Mol. Med.,2004,10,393–400
    3Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis:insights from genetics. Nat Rev Neurosci,2006;7:710–723
    4Valentine J. S., Hart P. J. and Gralla E. B. Copper-zinc superoxidedismutase and ALS. Adv. Exp. Med. Biol.1999,448:193–203
    5L.I. Bruijn, T.M. Miller, D.W. Cleveland, Unraveling the mechanismsinvolved inmotor neuron degeneration in ALS, Annu. Rev. Neurosci.2004,27:723–749
    6Zoccolella S, Santamato A, Lamberti P. Current and emerging treatmentsfor amyotrophic lateralsclerosis. Neuropsychiatr Dis Treat.2009,5:577–595
    7Wicklund M.P. Amyotrophic lateral sclerosis: possible role ofenvironmental influences. Neurol. Clin.,2005,23:461–484
    8Simpson C.L. and Al-Chalabi A. Amyotrophic lateral sclerosis as acomplex genetic disease. Biochim. Biophys. Acta,2006,1762:973–985
    9Beckman J.S., Estevez A.G., Crow J.P., Barbeito L. Superoxidedismutase and the death of motoneurons in ALS. Trends Neurosci.,2001,24: S15–S20
    10Wood J.D., Beaujeux T.P., Shaw P.J. Protein aggregation in motorneurone disorders. Neuropathol. Appl. Neurobiol.,2003,29:529–545
    11Van Den Bosch L., Van Damme P., Bogaert E., Robberecht W. The roleof excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis.Biochim. Biophys. Acta,2006,1762:1068–1082
    12Przedborski S. Programmed cell death in amyotrophic lateral sclerosis: amechanism of pathogenic and therapeutic importance. Neurologist,2004,10:1–7
    13Xu J.X. Radical metabolism is partner to energy metabolism inmitochondria. Ann. N.Y. Acad. Sci.,2004,1011:57–60
    14Sheng Chen, Xiaojie Zhang, Lin Song, Weidong Le. Autophagydysregulation in amyotrophic lateral sclerosis. Brain Pathology.2012,22:110–116
    15Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y.,Alexander,D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H.X., Chen,W., Zhai, P.,Sufit, R.L.&Siddique, T. Motor neuron degeneration in micethat express a human Cu,Zn superoxide dismutase mutation. Science,1994,64:1772–1775
    16T. Arai, M. Hasegawa, H. Akiyama, K. Ikeda, T. Nonaka, H. Mori, D.Mann,K. Tsuchiya, M. Yoshida, Y. Hashizume, T. Oda, TDP-43is acomponent of ubiquitin-positive tau-negative inclusions in frontotemporallobar degeneration and amyotrophic lateral sclerosis, Biochemical andBiophysical Research Communications.2006,351:602–611
    17M. Neumann, D.M. Sampathu, L.K. Kwong, A.C. Truax, M.C. Micsenyi,T.T. Chou, J. Bruce, T. Schuck, M. Grossman, C.M. Clark, L.F.McCluskey, B.L. Miller, E. Masliah, I.R. Mackenzie, H. Feldman, W.Feiden, H.A. Kretzschmar, J.Q. Trojanowski, V.M. Lee, UbiquitinatedTDP-43in frontotemporal lobar degeneration and amyotrophic lateralsclerosis, Science.2006,314:130–133
    18Banks GT, Kuta A, Isaacs AM, Fisher EM. TDP-43is a culprit in humanneurodegeneration, and not just an innocent bystander. Mamm Genome.2008,19:299–305
    19Kwong LK, Uryu K, Trojanowski JQ, Lee VMY. TDP-43Proteinopathies:Neurodegenerative Protein Misfolding Diseases without Amyloidosis.Neurosignals.2008,16:41–51
    20Neumann M. Molecular Neuropathology of TDP-43Proteinopathies. Int JMol Sci,2009,10:232–246
    21Kraemer BC, Schuck T, Wheeler JM, Robinson LC, Trojanowski JQ, LeeVM, Schellenberg GD. Loss of murine TDP-43disrupts motor functionand plays an essential role in embryogenesis. Acta Neuropathol2010;119:409–419
    22Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ,Kwong LK, Forman MS, Ravits J, Stewart H, Eisen A, McClusky L,Kretzschmar HA, Monoranu CM, Highley JR, Kirby J, Siddique T, ShawPJ, Lee VM, Trojanowski JQ. Pathological TDP-43distinguishes sporadicamyotrophic lateral sclerosis from amyotrophic lateral sclerosis withSOD1mutations. Ann. Neurol.2007,61:427–434
    23Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj,B.,Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E. et al. TDP-43mutations in familial and sporadic amyotrophic lateral sclerosis. Science.2008,319:1668–1672
    24Neumann, M., Kwong, L.K., Lee, E.B., Kremmer, E., Flatley, A., Xu,Y.,Forman, M.S., Troost, D., Kretzschmar, H.A., Trojanowski, J.Q. andLee, V.M. Phosphorylation of S409/410of TDP-43is a consistent featurein all sporadic and familial forms of TDP-43proteinopathies. ActaNeuropathol.2009,117:137–149
    25Nonaka, T., Kametani, F., Arai, T., Akiyama, H. and Hasegawa, M.Truncation and pathogenic mutations facilitate the formation ofintracellular aggregates of TDP-43. Hum. Mol. Genet.2009,18:3353–3364
    26Buratti, E. and Baralle, F.E. The multiple roles of TDP-43in pre-mRNAprocessing and gene expression regulation. RNA Biol.2010,7:1–10
    27Barmada, S.J., Skibinski, G., Korb, E., Rao, E.J., Wu, J.Y. and Finkbeiner,S. Cytoplasmic mislocalization of TDP-43is toxic to neuronsandenhanced by a mutation associated with familial amyotrophiclateralsclerosis. J. Neurosci.2010,30:639–649
    28Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, GispertS, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A,Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, GilksWP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW,Hereditary early-onset Parkinson's disease caused by mutations inPINK1. Science,2004,304:1158–1160
    29Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, MinoshimaS, Yokochi M, Mizuno Y, Shimizu N, Mutations in the parkin gene causeautosomal recessive juvenile parkinsonism. Nature,1998,392:605–608
    30Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruited selectivelyto impaired mitochondria and promotes their autophagy. J Cell Biol,2008,183:795–803
    31Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J, CooksonMR, Youle RJ, PINK1is selectively stabilized on impaired mitochondriato activate Parkin. PLoS Biol,2010,8:1000298
    32W. Duan, X. Li, J. Shi, Y. Guo, Z. Li, C. Li, Mutant tar DNA-bindingprotein-43induces oxidative injury in motor neuron-like cell, Neuroscience2010,169:1621–1629
    33R.J. Braun, C. Sommer, D. Carmona-Gutierrez, C.M. Khoury, J. Ring, S.Büttner, F. Madeo, Neurotoxic43-kDa TAR DNA-binding protein(TDP-43) triggers mitochondrion-dependent programmed cell death inyeast, Journal of Biological Chemistry.2011,2861:9958–19972
    34Bensimon G, Lacomblez L, Meininger V.A controlled trial of riluzoleinamyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl JMed.1994,330:585–591
    35Ali Aamer Habib&Hiroshi Mitsumoto. Emerging drugs for amyotrophiclateral sclerosis. Expert Opin. Emerging Drugs.2011,16(3)
    1Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, ChouTT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, MillerBL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA,Trojanowski JQ, Lee VM. Ubiquitinated TDP-43in frontotemporal lobardegeneration and amyotrophic lateral sclerosis. Science,2006,314:130-133
    2Wang, H.Y., Wang, I.F., Bose, J. and Shen, C.K. Structural diversity andfunctional implications of the eukaryotic TDP gene family. Genomics,2004,83:130-139
    3Buratti, E. and Baralle, F.E. Characterization and functional implicationsof the RNA binding properties of nuclear factor TDP-43, a novel splicingregulator of CFTR exon9. J. Biol. Chem,2001,276:36337-36343
    4Strong, M.J., Volkening, K., Hammond, R., Yang, W., Strong, W.,Leystra-Lantz, C. and Shoesmith, C. TDP43is a human low molecularweight neurofilament (hNFL) mRNA-binding protein. Mol. Cell. Neurosci,2007,35:320-327
    5Buratti, E. and Baralle, F.E. Multiple roles of TDP-43in gene expression,splicing regulation, and human disease. Front. Biosci,2008,13:867-878
    6Buratti, E. and Baralle, F.E. The multiple roles of TDP-43in pre-mRNAprocessing and gene expression regulation. RNA Biol,2010,7:1-10
    7Dickson DW, Josephs KA, Amador-Ortiz C. TDP-43in differentialdiagnosis of motor neuron disorders. Acta Neuropathol,2007,114:71-79
    8Geser F, et al. Evidence of multisystem disorder in whole-brain map ofpathological TDP-43in amyotrophic lateral sclerosis. Arch Neurol,2008,65:636-641
    9Mackenzie IR, Bigio EH, Ince PG, Geser F, Neumann M, Cairns NJ,Kwong LK, Forman MS, Ravits J, Stewart H, Eisen A, McClusky L,Kretzschmar HA, Monoranu CM, Highley JR, Kirby J, Siddique T, ShawPJ, Lee VM, Trojanowski JQ. Pathological TDP-43distinguishes sporadicamyotrophic lateral sclerosis from amyotrophic lateral sclerosis withSOD1mutations. Ann. Neurol,2007,61:427-434
    10Orrell RW, Schapira AH: Mitochondria and amyotrophic lateral sclerosis.Int Rev Neurobiol,2002,53:411-426
    11Huang EJ, Zhang J, Geser F, Trojanowski JQ, Strober JB, Dickson DW,Brown RH Jr, Shapiro BE, Lomen-Hoerth C. ExtensiveFUS-Immunoreactive Pathology in Juvenile Amyotrophic LateralSclerosis with Basophilic Inclusions. Brain Pathol2010
    12Zhou J, Yi J, Fu R, Liu E, Siddique T, Ríos E, Deng HX. Hyperactiveintracellular calcium signaling associated with localized mitochondrialdefects in skeletal muscle of an animal model of amyotrophic lateralsclerosis. J Biol Chem,2010,285:705-712
    13Perlson E, Maday S, Fu MM, Moughamian AJ, Holzbaur EL. Retrogradeaxonal transport: pathways to cell death? Trends Neurosci,2010,33:335-344
    14Crugnola V, Lamperti C, Lucchini V, Ronchi D, Peverelli L, Prelle A,Sciacco M, Bordoni A, Fassone E, Fortunato F, Corti S, Silani V, BresolinN, Di Mauro S, Comi GP, Moggio M. Mitochondrial respiratory chaindysfunction in muscle from patients with amyotrophic lateral sclerosis.Arch Neurol,2010,67:849-854
    15R.J. Braun, C. Sommer, D. Carmona-Gutierrez, C.M. Khoury, J. Ring, S.Büttner, F. Madeo, Neurotoxic43-kDa TAR DNA-binding protein(TDP-43) triggers mitochondrion-dependent programmed cell death inyeast, Journal of Biological Chemistry,2011,286:19958-19972
    16W. Duan, X. Li, J. Shi, Y. Guo, Z. Li, C. Li, Mutant tar DNA-bindingprotein-43induces oxidative injury in motor neuron-like cell, Neuroscience,2010,169:1621-1629
    17J. Sreedharan, I.P. Blair, V.B. Tripathi, X. Hu, C. Vance, B. Rogelj, S.Ackerley, J.C. Durnall, K.L. Williams, E. Buratti, F. Baralle, J. deBelleroche, J. Douglas Mitchell, P. Nigel Leigh, A. Al-Chalabi, C.C.Miller, G. Nicholson, C.E. Shaw, TDP-43mutations in familial andsporadic amyotrophic lateral sclerosis, Science,2008,319:1668-1672
    18X. Wang, H. Fan, Z. Ying, B. Li, H. Wang, G. Wang, Degradation ofTDP-43and its pathogenic form by autophagy and theubiquitin-proteasome system, Neuroscience Letters,2010,469:112-116
    19Y.J. Zhang, Y.F. Xu, C. Cook, T.F. Gendron, P. Roettges, C.D.Link, W.L. Lin, J. Tong, M. Castanedes-Casey, P. Ash, J. Gass, V.Rangachari, E. Buratti, F. Baralle, T.E. Golde, D.W. Dickson, L.Petrucelli, Aberrant cleavage of TDP-43enhances aggregationand cellular toxicity, Proceedings of the National Academy ofSciences of the United States of America,2009,106:7607-7612
    20Y. Zhu, M. Li, X. Wang, H. Jin, S. Liu, J. Xu, Q. Chen, Caspasecleavage of cytochrome c1disrupts mitochondrial function and enhancescytochrome c release, Cell Research,2012,22:127-141
    21Brian S. Johnson, J. Michael McCaffery, Susan Lindquist, and Aaron D.Gitler. A yeast TDP-43proteinopathy model: Exploring the moleculardeterminants of TDP-43aggregation and cellular toxicity. Proceedings ofthe National Academy of Sciences of the United States of America,2008,105:6439-6444
    22Jenna M. Gregory, Teresa P. Barros, Sarah Meehan, Christopher M.Dobson, Leila M. Luheshi. The Aggregation and Neurotoxicity of TDP-43and Its ALS-Associated25kDa Fragment Are Differentially Affected byMolecular Chaperones in Drosophila. PLoS ONE,2012,7:e31899
    23Takashi Nonaka, Tetsuaki Arai, Emanuele Buratti, Francisco E. Baralle,Haruhiko Akiyama, Masato Hasegawa. Phosphorylated and ubiquitinatedTDP-43pathological inclusions in ALS and FTLD-U are recapitulated inSH-SY5Y cells. FEBS Letters,2009,583:394-400
    24Y.F. Xu, T.F. Gendron, Y.J. Zhang, W.L. Lin, S. D’Alton, H. Sheng, M.C.Casey, J. Tong, J. Knight, X. Yu, R. Rademakers, K. Boylan, M. Hutton, E.McGowan, D.W. Dickson, J. Lewis, L. Petrucelli, Wild-type humanTDP-43expression causes TDP-43phosphorylation, mitochondrialaggregation, motor deficits, and early mortality in transgenic mice. Journalof Neuroscience,2010,30:10851-10859
    25Y.F. Xu, Y.J. Zhang, W.L. Lin, X. Cao, C. Stetler, D.W. Dickson, J. Lewis,L. Petrucelli, Expression of mutant TDP-43induces neuronal dysfunctionin transgenic mice. Molecular Neurodegeneration,2011,6:73
    1Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J. Autophagyfights disease through cellular self-digestion. Nature,2008,451:1069-1075
    2Nakatogawa, H., Suzuki, K., Kamada, Y., and Ohsumi, Y. Dynamics anddiversity in autophagy mechanisms: lessons from yeast. Nat. Rev. Mol.Cell Biol,2009,10:458-467
    3Kirkin, V., McEwan, D. G., Novak, I., and Dikic, I. A role for ubiquitin inselective autophagy. Mol. Cell,2009,34:259-269
    4刘丹慧,吕建新.线粒体自噬的研究进展。细胞生物学杂志,2008,30:467-471
    5Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K,Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A,Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P, GilksWP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW.Hereditary early-onset Parkinson's disease caused by mutations in PINK1.Science,2004,304:1158-1160
    6Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, MinoshimaS, Yokochi M, Mizuno Y, Shimizu N. Mutations in the parkin gene causeautosomal recessive juvenile parkinsonism. Nature,1998,392:605-608
    7Shimura H, Hattori N, Kubo Si, Mizuno Y, Asakawa S, Minoshima S,Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T. Familial Parkinsondisease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet,2000,25,302-305
    8Helton, T.D., Ehlers, M.D., Ubiquitin and protein degradation in synapsefunction. In: Hell, J.W., Ehlers, M.D.(Eds.), Structural and FunctionalOrganization of the Synapse. Springer, New York,2008, pp.553-597
    9Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, HayBA, Guo M. Drosophila pink1is required for mitochondrial function andinteracts genetically with parkin. Nature,2006,441:1162-1166
    10Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M,Kim JM, Chung J. Mitochondrial dysfunction in Drosophila PINK1mutants is complemented by parkin. Nature,2006,441:1157-1161
    11Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, Klose J,Shen J.Mitochondrial dysfunction and oxidative damage inparkin-deficient mice. J Biol Chem,2004,279:18614-18622
    12Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA,Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M,Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A,Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA,Brice A, Garcia de Yebenes J. Parkin gene inactivation alters behaviourand dopamine neurotransmission in the mouse. Hum Mol Genet,2003,12:2277-2291
    13Gautier CA, Kitada T, Shen J, Loss of PINK1causes mitochondrialfunctional defects and increased sensitivity to oxidative stress. Proc NatlAcad Sci U S A,2008,105:11364-11369
    14N. Mizushima, T. Yoshimori, How to interpret LC3immunoblotting,Autophagy,2007,3:542-545
    15G. Bj rk y, T. Lamark, A. Brech, H. Outzen, M. Perander, A. Overvatn, H.Stenmark, T. Johansen, p62/SQSTM1forms protein aggregates degradedby autophagy and has a protective effect on huntingtin induced cell death,Journal of Cell Biology,2005,171:603-614
    16D.R. Rosen, T. Siddique, D. Patterson, D.A. Figlewicz, P. Sapp, A.Hentati, D. Donaldson, J. Goto, J.P. O’Regan, H.X. Deng, Z. Rahmani, A.Krizus, D. Mckenna-yasek, A. Cayabyab, S.M. Gaston, R. Berger, R.E.Tanz, J.J. Halperin, B. Herzfeldt, R.V.D. Bergh, W.Y. Hung, T. Bird, G.Deng, D.W. Mulder, C. Smyth, N.G. Laing, E.Soriano, M.A.Pericak–Vance, J. Haines, G.A. Rouleau, J.S. Gusella, H.R. Horvitz, R.H.Brown Jr., Mutations in Cu/Zn superoxide dismutase gene are associatedwith familial amyotrophic lateral sclerosis, Nature,1993,362:59-62
    17Okado-Matsumoto A, Fridovich I, Subcellular distribution of superoxidedismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem2001,276:38388-38393
    18Mattiazzi M, D’Aurelio M, Gajewski CD, Martushova K, Kiaei M, BealMF, Manfredi G. Mutated human SOD1causes dysfunction of oxidativephosphorylation in mitochondria of transgenic mice. J Biol Chem,2002,277:29626-29633
    19Bergemalm D, Jonsson PA, Graffmo KS, Andersen PM, Brannstrom T,Rehnmark A, Marklund SL. Overloading of stable and exclusion ofunstable human superoxide dismutase-1variants in mitochondria ofmurine amyotrophic lateral sclerosis models. J Neurosci,2006,26:4147-4154
    20Deng HX, Shi Y, Furukawa Y, Zhai H, Fu R, Liu E, Gorrie GH, KhanMS, Hung WY, Bigio EH, Lukas T, Dal Canto MC, O’Halloran TV,Siddique T. Conversion to the amyotrophic lateral sclerosis phenotype isassociated with intermolecular linked insoluble aggregates of SOD1inmitochondria. Proc Natl Acad Sci U S A,2006,103:7142-7147
    21Vande Velde C, Miller TM, Cashman NR, Cleveland DW. Selectiveassociation of misfolded ALS-linked mutant SOD1with the cytoplasmicface of mitochondria. Proc Natl Acad Sci U S A,2008,105:4022-4027
    22Magrane J, Manfredi G. Mitochondrial function, morphology, and axonaltransport in amyotrophic lateral sclerosis. Antioxid Redox Signal,2009,11:1615-1626
    23Okamoto K, Hirai S, Shoji M, Senoh Y, Yamazaki T. Axonal swellings inthe corticospinal tracts in amyotrophic lateral sclerosis. Acta Neuropathol,1990,80:222-226
    24Deas E, Wood NW, Plun-Favreau H. Mitophagy and Parkinson's disease:the PINK1-parkin link. Biochim Biophys Acta,2011,1813:623-633
    25Cozzolino M, Ferri A, Carri MT. Amyotrophic lateral sclerosis: fromcurrent developments in the laboratory to clinical implications. AntioxidRedox Signal,2008b,10:405-443
    26Grosskreutz J, Van Den Bosch L, Keller BU. Calcium dysregulation inamyotrophic lateral sclerosis. Cell Calcium,2010,47:165-174
    27Shi P, Gal J, Kwinter DM, Liu X, Zhu H. Mitochondrial dysfunction inamyotrophic lateral sclerosis.Biochim Biophys Acta,2010a,1802:45-51
    28S. Sasaki, T. Takeda, N. Shibata, M. Kobayashi, Alterations in subcellularlocalization of TDP-43immunoreactivity in the anterior horns in sporadicamyotrophic lateral sclerosis, Neuroscience Letters,2010,478:72–76
    29X. Shan, P.M. Chiang, D.L. Price, P.C. Wong, Altered distributions ofGemini of coiled bodies and mitochondria in motor neurons of TDP-43transgenic mice, Proceedings of the National Academy of Sciences of theUnited States of America,2010,107:16325–16330
    30B.S. Johnson, J.M. McCaffery, S. Lindquist, A.D. Gitler, Ayeast TDP-43proteinopathy model: Exploring the molecular determinantsof TDP-43aggregation and cellular toxicity, Proceedings of the NationalAcademy of Sciences of the United States of America,2008,105:6439–6444
    31T. Nonaka, F. Kametani, T. Arai, H. Akiyama, M. Hasegawa, Truncationand pathogenic mutations facilitate the formation of intracellularaggregates of TDP-43, Human Molecular Genetics,2009,18:3353–3364
    32M.J. Winton, L.M. Igaz, M.M. Wong, L.K. Kwong, J.Q. Trojanowski,V.M. Lee, Disturbance of nuclear and cytoplasmic TAR DNA-bindingprotein (TDP-43) induces disease-like redistribution, sequestration, andaggregate formation, Journal of Biological Chemistry,2008,283:13302–13309
    33Y.J. Zhang, Y.F. Xu, C. Cook, T.F. Gendron, P. Roettges, C.D. Link,W.L. Lin, J. Tong, M. Castanedes-Casey, P. Ash, J. Gass, V. Rangachari,E. Buratti, F. Baralle, T.E. Golde, D.W. Dickson, L. Petrucelli, Aberrantcleavage of TDP-43enhances aggregation and cellular toxicity,Proceedings of the National Academy of Sciences of the United States ofAmerica,2009,106:7607–7612
    34K. Wang, D.J. Klionsky, Mitochondria removal by autophagy,Autophagy,2011,7:297–300
    35Y.J. Zhang, T.F. Gendron, Y.F. Xu, L.W. Ko, S.H. Yen, L. Petrucelli,Phosphorylation regulates proteasomal-mediated degradation andsolubility of TAR DNA binding protein-43C-terminal fragments,Molecular Neurodegeneration,2010,5:33
    1C. Carlesi, L. Pasquali, S. Piazza, A. Lo Gerfo, E. Caldarazzo Ienco, R.Alessi, F. Fornai, G. Siciliano.Strategies for clinical approach toneurodegeneration in amyotrophic lateral sclerosis. Archives Italiennes deBiologie,2011,149:151–167
    2DiBernardo AB, Cudkowicz ME. Translating preclinical insights intoeffective human trials in ALS. Biochim Biophys Acta,2006,1762:1139–1149
    3Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, BostromA, Theodoss J, Al-Nakhala BM, Vieira FG, Ramasubbu J, Heywood JA.Design, power, and interpretation of studies in the standard murine modelof ALS.Amyotroph Lateral Scler2008,9:1–12
    4T. Arai, M. Hasegawa, H. Akiyama, K. Ikeda, T. Nonaka, H. Mori, D.Mann, K. Tsuchiya, M. Yoshida, Y. Hashizume, T. Oda, TDP-43is acomponent of ubiquitin-positive tau-negative inclusions in frontotemporallobar degeneration and amyotrophic lateral sclerosis, Biochemical andBiophysical Research Communications,2006,351:602–611
    5M. Neumann, D.M. Sampathu, L.K. Kwong, A.C. Truax, M.C. Micsenyi,T.T. Chou, J. Bruce, T. Schuck, M. Grossman, C.M. Clark, L.F.McCluskey, B.L. Miller, E.Masliah, I.R. Mackenzie, H. Feldman, W.Feiden, H.A. Kretzschmar, J.Q. Trojanowski, V.M. Lee, UbiquitinatedTDP-43in frontotemporal lobar degeneration and amyotrophic lateralsclerosis, Science,2006,314:130–133
    6Tan C.F., Eguchi H., Tagawa A., Onodera O., Iwasaki T., Tsujino A.,Nishizawa M., Kakita A., Takahashi H. TDP-43immunoreactivity inneuronal inclusions in familial amyotrophic lateral sclerosis with orwithout SOD1gene mutations. Acta Neuropathol.,2007,113:535–542
    7X. Wang, H. Fan, Z. Ying, B. Li, H. Wang, G. Wang, Degradation ofTDP-43and its pathogenic form by autophagy and theubiquitin-proteasome system, Neuroscience Letters,2010,469:112–116
    8Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC.Trehalose, a novel mTOR-independent autophagy enhancer, acceleratesthe clearance of mutant huntingtin and alpha-synuclein. J Biol Chem,2007,282:5641–5652
    9Riedel M, Goldbaum O, Schwarz L, Schmitt S, Richter-Landsberg C.17-AAG induces cytoplasmic alpha-synuclein aggregate clearance byinduction of autophagy. PLoS ONE,2010,5:e8753
    10Jia-Hong Lu, Jie-Qiong Tan, Siva Sundara Kumar Durairajan,Liang-Feng Liu, Zhuo-Hua Zhang, Long Ma, Han-Ming Shen, H.Y.Edwin Chan, and Min Li. Isorhynchophylline, a natural alkaloid,promotes the degradation of a-synuclein in neuronal cells via inducingautophagy. Autophagy,2012,8:98–108
    11Floyd, R.A. Antioxidants, oxidative stress and degenerative neurologicaldisorders. Proc. Soc. Exp. Biol. Med.,1999,333:236–245
    12Contestabile, A. Oxidative stress in neurodegeneration: mechanismsand therapeutic perspectives. Curr. Topics Med. Chem.,2001,1:553-568
    13Graf M, Ecker D, Horowski R, Kramer B, Riederer P, Gerlach M, HagerC, Ludolph AC, Becker G, Osterhage J, Jost WH, Schrank B, Stein C,Kostopulos P, Lubik S, Wekwerth K, Dengler R, Troeger M, Wuerz A,Hoge A, Schrader C, Schimke N, Krampfl K, Petri S, Zierz S, Eger K,Neudecker S, Traufeller K, Sievert M, Neund rfer B, Hecht M; Germanvitamin E/ALS Study Group. High dose vitamin E therapy inamyotrophic lateral sclerosis as add-on therapy to riluzole: results of aplacebo-controlled double-blind study. J. Neur. Transm.,2005,112:649–660
    14Patel, M.; Day, B.J. Metalloporphyrin class of therapeutic catalyticantioxidants. Trends Pharmacol. Sci.,1999,20:359–364
    15Byeong-Chel Lee, Bae-Hang Park, Seog-Young Kim, and Yong J. Lee.Role of Bim in diallyl trisulfide-induced cytotoxicity in human cancercells. J Cell Biochem,2011,112:118±127
    16Ma gorzata Iciek, Inga Kwiecień, Gra yna Chwatko, MariaSoko owska-Je ewicz, Danuta Kowalczyk-Pachel1and HannaRokita.The effects of garlic-derived sulfur compounds on cellproliferation, caspase3activity, thiol levels and anaerobic sulfurmetabolism in human hepatoblastoma HepG2cells. Cell Biochem Funct,2012,30:198–204
    17Jedrzej Antosiewicz, Anna Herman-Antosiewicz, Stanley W.Marynowski, and Shivendra V. Singh. c-Jun NH2-Terminal KinaseSignaling Axis Regulates Diallyl Trisulfide–Induced Generation ofReactive Oxygen Species and Cell Cycle Arrest in Human ProstateCancer Cells. Cancer Res,2006,66:5379–5386
    18Anna A. Powolny and Shivendra V. Singh.Multitargeted prevention andtherapy of cancer by diallyl trisulfide and related Alliumvegetable-derived organosulfur compounds. Cancer Lett.2008,269:305±314
    19M. Miroddi, F. Calapai and G. Calapai. Potential Beneficial Effects ofGarlic in Oncohematology. Mini-Reviews in Medicinal Chemistry,2011,11:461–472
    20Toyohiko Ariga and Taiichiro Seki. Antithrombotic and anticancer effectsof garlic-derived sulfur compounds: A review. BioFactors,2006,26:93–103
    21Yanlin Zhang, Li Guan, Xifu Wang, Tao Wen, Junjie Xing,&JinyuanZhao.Protection of chlorophyllin against oxidative damage by inducingHO-1and NQO1expression mediated by PI3K/Akt and Nrf2. FreeRadical Research,2008,42:362–371
    22Yong Pil Hwang, Hye Gwang Jeong. The coffee diterpene kahweolinduces heme oxygenase-1via the PI3K and p38/Nrf2pathway to protecthuman dopaminergic neurons from6-hydroxydopamine-derivedoxidative stress. FEBS Letters,2008,582:2655–2662
    23Meng-Meng Sun, Hui Bu, Bin Li, Ji-Xu Yu, Yan-Su Guo and Chun-YanLi. Neuroprotective potential of phase II enzyme inducer diallyl trisulfide.Neurological Research,2009,31:23–27
    24Yansu Guo, Kunxi Zhang, Qian Wang, Zhongyao Li, Yunxia Yin,Qingmei Xu,Weisong Duan, Chunyan Li. Neuroprotective effects ofdiallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophiclateral sclerosis. Brain Research,2011,1374:110–115
    25Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, AskewDS, et al. Guidelines for the use and interpretation of assays formonitoring autophagy in higher eukaryotes. Autophagy,2008,4:151–175
    26Pasquali L, Longone P, Isidoro C, Ruggieri S, Paparelli A, Fornai F.Autophagy, lithium, and amyotrophic lateral sclerosis. Muscle Nerve,2009,40:173–194
    27Kabuta T, Suzuki Y, Wada K. Degradation of amyotrophic lateralsclerosis-linked mutant Cu,Zn-superoxide dismutase proteins bymacroautophagy and the proteasome. J Biol Chem,2006,281:30524–30533
    28Fornai F, Longone P, Cafaro L, Kastsiuchenka O, Ferrucci M, Manca ML,Lazzeri G, Spalloni A, Bellio N, Lenzi P, Modugno N, Siciliano G,Isidoro C, Murri L, Ruggieri S, Paparelli A. Lithium delays progressionof amyotrophic lateral sclerosis. Proc Natl Acad Sci USA,2008,105:2052–2057
    29Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, MaD, Yuan J. Small molecule regulators of autophagy identified by animage-based high-throughput screen. Proc Natl Acad Sci USA,2007,104:19023–19028
    30Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, JahreissL, Fleming A, Pask D, Goldsmith P, O'Kane CJ, Floto RA, RubinszteinDC. Novel targets for Huntington’s disease in an mTOR-independentautophagy pathway. Nat Chem Biol,2008,4:295–305
    31Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD.TDP-43is intrinsically aggregation-prone and ALS-linked mutationsaccelerate aggregation and increase toxicity. J Biol Chem,2009,22:22
    32R.J. Braun, C. Sommer, D. Carmona-Gutierrez, C.M. Khoury, J. Ring, S.Büttner, F. Madeo, Neurotoxic43-kDa TAR DNA-binding protein(TDP-43) triggers mitochondrion-dependent programmed cell death inyeast, Journal of Biological Chemistry,2011,286:19958–19972
    33Kun Hong, Yi Li, Weisong Duan, Yansu Guo, Hong Jiang, Wenju Li,Chunyan Li. Full-length TDP-43and its C-terminal fragments activatemitophagy in NSC34cell line. Neuroscience Letters,2012,530:144–149
    34Talalay, P. Chemoprotection against cancer by induction of phase2enzymes. Biofactors,2000,12:5–11
    35Kong, A.N., Owuor, E., Yu, R., Hebbar, V., Chen, C., Hu, R., Mandlekar,S. Induction of xenobiotic enzymes by the MAP kinase pathway and theantioxidant or electrophile response element (ARE/EpRE). Drug Metab.Rev,2001,33:255–271
    36Ishii T, Itoh K, Takahashi S, Sato H, Yanagawa T, Katoh Y, Bannai S,Yamamoto M. Transcription factor Nrf2coordinately regulates a group ofoxidative stress-inducible genes in macrophages. J Biol Chem,2000,275:16023–16029
    37Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA,Murphy TH. Coordinate regulation of glutathione biosynthesis andrelease by Nrf2-expressing glia potently protects neurons from oxidativestress. J Neurosci,2003,23:3394–406
    1Mizushima, N., Levine, B., Cuervo, A. M., and Klionsky, D. J.Autophagy fights disease through cellular self-digestion. Nature,2008,451:1069-1075
    2Kraft, C., Deplazes, A., Sohrmann, M., and Peter, M. Matureribosomes are selectively degraded upon starvation by an autophagypathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol,2008,10:602–610
    3Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M.,Tanaka, K., Cuervo, A.M., and Czaja, M.J. Autophagy regulateslipid metabolism. Nature,2009,458:1131–1135
    4Farre, J.C., Krick, R., Subramani, S., and Thumm, M. Turnover oforganelles by autophagy in yeast. Curr Opin Cell Biol,2009,21:522–530
    5Tolkovsky, A. Mitophagy. Biochim Biophys Acta,2009,1793:1508–1515
    6Reef, S., Zalckvar, E., Shifman, O., Bialik, S., Sabanay, H., Oren, M.,and Kimchi, A. A short mitochondrial form of p19ARF inducesautophagy and caspase-independent cell death. Mol. Cell,2006,22:463–475
    7Kraft, C., Deplazes, A., Sohrmann, M., and Peter, M. Matureribosomes are selectively degraded upon starvation by an autophagypathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat. Cell Biol,2008,10:602–610
    8Singh, R., Kaushik, S., Wang, Y., Xiang, Y., Novak, I., Komatsu, M.,Tanaka, K., Cuervo, A.M., and Czaja, M.J. Autophagy regulateslipid metabolism. Nature,2009,458:1131–1135
    9Min Li, Wan Sun, Ya-ping Yang, Bo Xu, Wen-yuan Yi, Yan-xia Ma,Zhong-jun Li, Jing-rong Cui. In vitro anticancer property of a novelthalidomide analogue through inhibition of NF-κB activation in HL-60cells. Acta Pharmacologica Sinica,2009,30:134–140
    10Clark SL Jr. Cellular differentiation in the kidneys of newborn micestudies with the electron microscope. J Biophys Biochem Cytol,1957,3:349–362
    11刘丹慧,吕建新.线粒体自噬的研究进展。细胞生物学杂志,2008,30:467–471
    12Aerbajinai, W., Giattina, M., Lee, Y. T., Raffeld, M.&Miller, J. L. Theproapoptotic factor Nix is coexpressed with Bcl-xL during terminalerythroid differentiation. Blood,2003,102:712–717
    13Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT,Chen M, Wang J, Essential role for Nix in autophagic maturation oferythroid cells. Nature,2008,454:232–235
    14Narendra D, Tanaka A, Suen DF, Youle RJ. Parkin is recruitedselectively to impaired mitochondria and promotes their autophagy. JCell Biol,2008,183:795–803
    15Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA, Shen J,Cookson MR, Youle RJ, PINK1is selectively stabilized on impairedmitochondria to activate Parkin. PLoS Biol,2010,8:1000298
    16Geisler S, Holmstr m KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ,Springer W, PINK1/Parkin-mediated mitophagy is dependent onVDAC1and p62/SQSTM1. Nat Cell Biol,2010,12:119–131
    17Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP. Disease-causingmutations in parkin impair mitochondrial ubiquitination, aggregationand HDAC6-dependent mitophagy. J Cell Biol,2010,189:671–679
    18Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH,Taanman JW. Mitofusin1and mitofusin2are ubiquitinated in aPINK1/parkin-dependent manner upon induction of mitophagy. HumMol Genet,2010,19:4861–4870
    19Ziviani E, Tao RN, Whitworth AJ. Drosophila parkin requires PINK1for mitochondrial translocation and ubiquitinates mitofusin. Proc NatlAcad Sci USA,2010,107:5018–5023
    20Ki ová, I., Deffieu, M., Manon, S., and Camougrand, N. Uth1p isinvolved in the autophagic degradation of mitochondria. J Biol Chem,2004,279:39068–39074
    21Tal, R., Winter, G., Ecker, N., Klionsky, D.J., and Abeliovich, H.Aup1p, a yeast mitochondrial protein phosphatase homolog, is requiredfor efficient stationary phase mitophagy and cell survival. J Biol Chem,2007,282:5617–5624
    22Xie, Z., and Klionsky, D.J. Autophagosome formation: core machineryand adaptations. Nat Cell Bio,2007, l9:1102–1109
    23Zhang, Y., Qi, H., Taylor, R., Xu, W., Liu, L.F., and Jin, S. The roleof autophagy in mitochondria maintenance: characterization ofmitochondrial functions in autophagy-deficient S. cerevisiae strains.Autophagy,2007,3:337–346
    24Nice, D.C., Sato, T.K., Stromhaug, P.E., Emr, S.D., and Klionsky, D.J.Cooperative binding of the cytoplasm to vacuole targeting pathwayproteins, Cvt13and Cvt20, to phosphatidylinositol3-phosphate at thepre-autophagosomal structure is required for selective autophagy. J BiolChem,2002,277:30198–30207
    25Zhang, J., Randall, M.S., Loyd, M.R., Dorsey, F.C., Kundu, M.,Cleveland, J.L., and Ney, P.A. Mitochondrial clearance is regulated byAtg7-dependent and-independent mechanisms during reticulocytematuration. Blood,2009,114:157–164
    26Nishida Y, Arakawa S, Fujitani K, Yamaguchi H, Mizuta T, KanasekiT, Komatsu M, Otsu K, Tsujimoto Y, Shimizu S, Discovery ofAtg5/Atg7-independent alternative macroautophagy. Nature,2009,461:654–658
    27Kanki T, Wang K, Cao Y, Baba M, Klionsky DJ. Atg32is amitochondrial protein that confers selectivity during mitophagy. DevCell,2009,17:98–109
    28Kanki T, Klionsky DJ. Mitophagy in yeast occurs through a selectivemechanism. J Biol Chem,2008,283:32386–32393
    29Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteinswith polyglutamine and polyalanine expansions are degraded byautophagy. Hum Mol Genet,2002,11:1107–1117
    30Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC.Alpha-Synuclein is degraded by both autophagy and the proteasome. JBiol Chem,2003,278:25009–25013
    31Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH,Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K,Uchiyama Y, N slund J, Mathews PM, Cataldo AM, Nixon RA,Macroautophagy--a novel Beta-amyloid peptide-generating pathwayactivated in Alzheimer's disease. J Cell Biol,2005,171:87–98
    32Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T,Koike M, Uchiyama Y, Kominami E, Tanaka K, Loss of autophagyin the central nervous system causes neurodegeneration in mice.Nature,2006,441:880–884
    33Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y,Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H,Mizushima N, Suppression of basal autophagy in neural cells causesneurodegenerative disease in mice. Nature,2006,441:885–889
    34Van Den Eeden SK, Tanner CM, Bernstein AL, Fross RD, Leimpeter A,Bloch DA, Nelson LM.Indicence of Parkinson's disease: variations byage, gender and race ethnicity. Am J Epidemol,2003,157:1015–1022
    35Jankovic J. Parkinson's disease: clinical features and diagnosis. J NeurolNeurosurg Psychiatry.2008,79:368–376
    36Lowe, J.; Lennox, G.; Leigh, PN. Disorders of movement and systemdegeneration. In: Graham, DI.; Lantos, PL., editors. GreenfieldsNeuropathology. London: Arnold;1997, p.281–366
    37Beal, M.F., Mitochondria and neurodegeneration. Novartis Found.Symp.2007,287:183-192, discussion192–196
    38Lin, M.T., Beal, M.F., Mitochondrial dysfunction and oxidative stressin neurodegenerative diseases. Nature,2006,443:787–795
    39Blandini, F., Nappi, G., Greenamyre, J.T., Quantitative study ofmitochondrial complex I in platelets of parkinsonian patients. Mov.Disord,1998,13:11–15
    40Martin, I., Dawson, V.L., Dawson, T.M., Recent advances in thegenetics of Parkinson's disease. Annu. Rev. Genomics Hum. Genet.2011,12:301–325
    41Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A,Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES,Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, JohnsonWG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL,Mutation in the alpha-synuclein gene identified in families withParkinson's disease. Science,1997,276:2045–2047
    42Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, LansburyPT Jr. Acceleration of oligomerization, not fibrilization, is a sharedproperty of both alpha-synuclein mutations linked to early-onsetParkinson's disease: implications for pathogenesis and therapy. ProcNatl Acad Sci USA,2000,97:571–576
    43Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee WMY.Neuronal α-synucleinopathy with severe movement disorder in miceexpressing A53T human α-synuclein. Neuron,2002,34:521–533
    44Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K,Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A,Nussbaum R, González-Maldonado R, Deller T, Salvi S, Cortelli P,Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G,Wood NW, Hereditary early-onset Parkinson's disease caused bymutations in PINK1. Science,2004,304:1158–1160
    45Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y,Minoshima S, Yokochi M, Mizuno Y, Shimizu N, Mutations in theparkin gene cause autosomal recessive juvenile parkinsonism. Nature,1998,392:605–608
    46Shimura H, Hattori N, Kubo Si, Mizuno Y, Asakawa S, Minoshima S,Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T, Familial Parkinsondisease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet,2000,25:302–305
    47Helton, T.D., Ehlers, M.D., Ubiquitin and protein degradation insynapse function. In: Hell, J.W., Ehlers, M.D.(Eds.), Structural andFunctional Organization of the Synapse. Springer, New York,2008,pp.553–597
    48Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, HayBA, Guo M,2006. Drosophila pink1is required for mitochondrialfunction and interacts genetically with parkin. Nature,2006,441:1162–1166
    49Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J, Shong M,Kim JM, Chung J, Mitochondrial dysfunction in Drosophila PINK1mutants is complemented by parkin. Nature,2006,441:1157–1161
    50Palacino JJ, Sagi D, Goldberg MS, Krauss S, Motz C, Wacker M, KloseJ, Shen J, Mitochondrial dysfunction and oxidative damage inparkin-deficient mice. J Biol Chem,2004,279:18614–18622
    51Lu XH, Fleming SM, Meurers B et al., Bacterial artificial chromosometransgenic mice expressing a truncated mutant parkin exhibitage-dependent hypokinetic motor deficits, dopaminergic neurondegeneration, and accumulation of proteinase K-resistantalpha-synuclein. J Neurosci,2009,29:1962–1976
    52Itier JM, Ibanez P, Mena MA, Abbas N, Cohen-Salmon C, Bohme GA,Laville M, Pratt J, Corti O, Pradier L, Ret G, Joubert C, Periquet M,Araujo F, Negroni J, Casarejos MJ, Canals S, Solano R, Serrano A,Gallego E, Sanchez M, Denefle P, Benavides J, Tremp G, Rooney TA,Brice A, Garcia de Yebenes J, Parkin gene inactivation alters behaviourand dopamine neurotransmission in the mouse. Hum Mol Genet,2003,12:2277-2291
    53Gautier CA, Kitada T, Shen J, Loss of PINK1causes mitochondrialfunctional defects and increased sensitivity to oxidative stress. ProcNatl Acad Sci U S A,2008,105:11364–11369
    54Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, ChownMJ, Hebert LE, Hennekens CH, Taylor JO. Prevalence of Alzheimer'sdisease in a community population of older persons. Higher thanpreviously reported. JAMA,1989,262:2551–2556
    55McKhann G, Drachman D, Folstein M, Katzman R, Price D, StadlanEM. Clinical diagnosis of Alzheimer's disease: report of theNINCDS-ADRDA work group under the auspices of the Department ofHealth and Human Services task force on Alzheimer's disease.Neurology,1984,34:939–944
    56Naruse S, Igarashi S, Kobayashi H, Aoki K, Inuzuka T, Kaneko K,Shimizu T, Iihara K, Kojima T, Miyatake T, Tsuji S. Mis-sensemutation Val->Ile in exon17of amyloid precursor protein gene inJapanese familial Alzheimer's disease. Lancet,1991,337:978–979
    57Campion D, Flaman JM, Brice A, Hannequin D, Dubois B, Martin C,Moreau V, Charbonnier F, Didierjean O, Tardieu S, Penet C, Puel M,Pasquier F, Ledoze F, Bellis G, Calenda A, Heilig R, Martinez M,Mallet J, Bellis M, Clergetdarpoux F, Agid Y, Frebourg T. Mutations ofthe presenilin1gene in families with early-onset Alzheimer's disease.Hum Mol Genet,1995,4:2373–2377
    58Katzman R. Education and the prevalence of dementia and Alzheimer'sdisease. Neurology,1993,43:13–20
    59Roses AD. Apolipoprotein E alleles as risk factors in Alzheimer'sdisease. Annu Rev Med,1996,47:387–400
    60Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress inneurodegenerative diseases. Nature,2006,443:787–795
    61Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, JonesPK, Ghanbari H, Wataya T, Shimohama S, Chiba S, Atwood CS,Petersen RB, Smith MA. Oxidative damage is the earliest event inAlzheimer disease. J Neuropathol Exp Neurol,2001,60:759–767
    62Reddy PH, Beal MF. Are mitochondria critical in the pathogenesis ofAlzheimer’s disease? Brain Res Brain Res Rev,2005,49:618–632
    63Rodriguez-Hernandez A, Cordero MD, Salviati L, Artuch R, Pineda M,Briones P, Gomez Izquierdo L, Cotan D, Navas P, Sanchez-Alcazar JA.Coenzyme Q deficiency triggers mitochondria degradation bymitophagy. Autophagy,2009,5:19–32
    64Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB,Gonzalez FJ, Semenza GL. Mitochondrial autophagy is anHIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem,2008,283:10892–10903
    65Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W. Rapamycin protectsagainst rotenone-induced apoptosis through autophagy induction.Neuroscience,2009,164:541–551
    66Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M,Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G.Increased autophagic degradation of mitochondria in Alzheimer disease.Autophagy,2007,3:614–615
    67Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M,Nunomura A, Szweda LI, Aliev G, Smith MA, Zhu X, Perry G.Autophagocytosis of mitochondria is prominent in Alzheimer disease. JNeuropathol Exp Neurol,2007,66:525–532
    68Sasaki S, Iwata M. Ultrastructural changes of synapses of Betz cell inpatients with amyotrophic lateral sclerosis. Neurosci Lett,1999,268:29–32
    69Menzies FM, Ince PG, Shaw PJ. Mitochondrial involvement inamyotrophic lateral sclerosis. Neurochem Intl,2002,40:543–551
    70Estévez AG, Crow JP, Sampson JB, Reiter C, Zhuang Y, RichardsonGJ, Tarpey L, Barbeito MM, Beckman JS. Induction of nitricoxide-dependent apoptosis in motor neurons by zinc-deficientsuperoxide dismutase. Science,1999, a286:2498–2500
    71Flanagan SW, Anderson RD, Ross MA, Oberley LW. Overexpressionof manganese superoxide dismutase attenuates neuronal death in humancells expressing mutant (G37R) Cu/Zn-superoxide dismutase. JNeurochem,2002,81:170–177
    72Bilsland LG, Nirmalananthan N, Yip J, Greensmith L, Duhcen MR.Expression of mutant SOD1G93A in astrocytes induces functionaldeficits in motoneuron mitochondria. J Neurochem,2008,107:1271–1283
    73Martin LJ, Liu Z, Chen K, Price AC, Pan Y, Swaby JA, Golden WC.Motor neuron degeneration in amyotrophic lateral sclerosis mutantsuperoxide dismutase-1transgenic mice: mechanisms ofmitochondriopathy and cell death. J Comp Neurol,2007,500:20–46
    74Bendotti C, Calvaresi N, Chiveri L, Prelle A, Moggio M, Braga M,Silani V, De Biasi S. Early vacuolization and mitochondrial damage inmotor neurons of FALS mice are not associated with apoptosis or withchanges in cytochrome oxidase histochemical reactivity. J Neurol Sci,2001,191:25–33
    75T. Arai, M. Hasegawa, H. Akiyama, K. Ikeda, T. Nonaka, H. Mori, D.Mann, K. Tsuchiya, M. Yoshida, Y. Hashizume, T. Oda, TDP-43is acomponent of ubiquitin-positive tau-negative inclusions infrontotemporal lobar degeneration and amyotrophic lateral sclerosis,Biochemical and Biophysical Research Communications,2006,351:602–611
    76M. Neumann, D.M. Sampathu, L.K. Kwong, A.C. Truax, M.C.Micsenyi, T.T. Chou, J. Bruce, T. Schuck, M. Grossman, C.M. Clark,L.F. McCluskey, B.L. Miller, E. Masliah, I.R. Mackenzie, H. Feldman,W. Feiden, H.A. Kretzschmar, J.Q. Trojanowski, V.M. Lee,Ubiquitinated TDP-43in frontotemporal lobar degeneration andamyotrophic lateral sclerosis, Science,2006,314:130–133
    77R.J. Braun, C. Sommer, D. Carmona-Gutierrez, C.M. Khoury, J. Ring,S. Büttner, F. Madeo, Neurotoxic43-kDa TAR DNA-binding protein(TDP-43) triggers mitochondrion-dependent programmed cell death inyeast, Journal of Biological Chemistry,2011,286:19958–19972
    78W. Duan, X. Li, J. Shi, Y. Guo, Z. Li, C. Li, Mutant tar DNA-bindingprotein-43induces oxidative injury in motor neuron-like cell,Neuroscience,2010,169:1621–1629
    79Hong K, Li Y, Duan W, Guo Y, Jiang H, Li W, Li C. Full-lengthTDP-43and its C-terminal fragments activate mitophagy in NSC34cellline, Neurosci Lett,2012,530:144–149
    80Fornai F, Longone P, Ferrucci M, Lenzi P, Isidoro C, Ruggieri S,Paparelli A. Autophagy and amyotrophic lateral sclerosis. Autophagy,2008,4:527–530
    81Lemasters, J.J., Selective mitochondrial autophagy, or mitophagy, as atargeted defense against oxidative stress, mitochondrial dysfunction,and aging. Rejuvenation Res,2005,8:3–5
    82Kennedy BK, Austriaco NR Jr, Zhang J, Guarente L. Mutation in thesilencing gene SIR4can delay aging in S. cerevisiae. Cell,1995,80:485–496
    83Kissová I, Deffieu M, Manon S, Camougrand N. Uth1p is involved inthe autophagic degradation of mitochondria. J. Biol. Chem,2004,279:39068–39074
    84Bandara PD, Flattery-O'Brien JA, Grant CM, Dawes IW. Involvementof the Saccharomyces cerevisiae UTH1gene in the oxidative-stressresponse. Curr. Genet,1998,34:259–268
    85Meléndez A, Tallóczy Z, Seaman M, Eskelinen EL, Hall DH, Levine B,Autophagy genes are essential for dauer development and life-spanextension in C. elegans. Science,2003,301:1387–1391
    86Beregi E, Regius O, Hüttl T, G bl Z, Age-related changes in theskeletal muscle cells. Z. Gerontol.1988,21:83–86
    87Navarro, A., Boveris, A., Rat brain and liver mitochondria developoxidative stress and lose enzymatic activities on aging. Am. J. Physiol.Regul. Integr. Comp. Physiol,2004,287:R1244–R1249
    88Yen, W.L., Klionsky, D.J., How to live long and prosper: autophagy,mitochondria, and aging. Physiology (Bethesda),2008,23:248–262

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700