用户名: 密码: 验证码:
水下复杂声源辐射声功率的混响法测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下运动目标的声学特性是水声学的重要研究内容,且水下运动目标大多都结构复杂,包括各种类型的声源,如机械、水动力及螺旋桨声源等。水下复杂声源的声学特性包括声功率、指向性及频谱特性等。在海洋环境下,由于不太容易修正海底及海面反射的影响,因此准确测量水下复杂声源的辐射声功率及频谱特性是很困难的,更无法实现噪声源分离。混响法是建筑声学中常用的测量声源辐射声功率的方法,国际上已建立了相应标准;混响法在水下应用较少,主要是因为一般水池壁面的反射系数低,较难形成理想混响场。本文主要研究非理想混响场条件下(非消声水池中)水下复杂声源辐射声功率的混响法测量技术,通过理论分析,实验验证等证明在非理想混响场条件下采用混响法也可以较准确地测量水下复杂声源的辐射声功率。
     本文首先分析非刚性壁面矩形非消声水池中的声场特性,采用格林函数法推导出指向性声源在非消声水池离声源较远区域(混响控制区)空间平均均方声压与声源辐射声功率的关系,同时对声源的叠加性进行了验证,建立了水下复杂声源的混响法理论公式;针对低频声源测量的边界影响问题,扩展了Waterhouse校正并提出不同边界的统计平均校正,解决了混响场中水下低频声源的测量问题。其次,研究了空间平均测量技术,研究了是否空间平均、空间平均不同方式及声源是否平均对声源辐射声功率测量结果的影响。再次,在非消声水池中对水下复杂声源进行实验研究,测量了球型等标准声源的辐射声功率;测量了两相干球(同相位及反相位)与活塞型声源等指向性声源的辐射声功率。实验研究了不同尺度非消声水池的尺度效应特性。最后,对水下声源辐射声功率测量的不确定度进行了分析。测量及研究结果表明:空间平均范围越大效果越好,若同时对源进行空间平均效果更好;采用混响法测量的标准球型声源的辐射声功率与自由场测量结果之间相差不超过1dB;玻璃水箱(软边界)中声源低频段基于统计平均校正而得到的辐射声功率与自由场测量结果相差不超过1dB;两相干球型声源(同相位及反相位)的辐射声功率测量结果与理论值相差不超过1dB,活塞型声源的辐射声功率测量结果与自由场测量结果基本一致;两个小球同时工作的辐射声功率正好是每个小球单独工作的辐射声功率之和;非消声水池越大,测量的空间平均声压级、信噪比及Schroeder截止频率越低;水下声源辐射声功率测量的A类不确定度不超过1.5dB。
     为测量流激水下翼型结构的流噪声,提出了一种混响箱测量方法。在重力式水洞中搭建了一套实验测量系统,利用混响箱法测量了水下翼型结构模型的辐射声功率。在此基础上研究了流速对其辐射声功率的影响。结果表明:在水洞环境下,采用混响箱测量方法可避免水听器受声场畸变影响;当流速小于5m/s时,辐射声功率随流速的6次方增长,符合偶极子的辐射规律;当流速大于5m/s时,辐射声功率随流速的10±1次方规律增长,不再按偶极子的规律辐射。混响箱壁面对声波的吸收较小,混响箱内的混响声场特性明显优于非消声水池(水泥或磁砖壁面)。为改进混响场的混响声场特性,建议参照混响箱结构设计水下混响室。
The acoustic characteristics of underwater moving targets is the important researchaspect of underwater acoustics and most of the underwater moving targets including differentkinds of sound sources, such as mechanical, hydrodynamic and propeller sources havecomplicated structure. The acoustic characteristic of underwater complicated sound sourcesincludes sound power level, directivity and frequency spectrum characteristics. It is not easyto correct the reflection of ocean bottom and ocean surface in case of the corresponding oceanenvironmental condition, so it is difficult to get the radiated sound power and the frequencyspectrum of the underwater complicated sound sources, and the noise sources can not beenseparated also. Reverberation method is a general method used in Architectural acoustics formeasuring the radiated sound power of sound sources and has been standardizedinternationally. It is seldom used in the radiated sound power measurement of underwatersound sources due to the low reflection coefficient of the pool wall and non-ideal reverberantfield. The main research of the paper focuses on the reverberation measuring techniques usedfor measuring the radiated sound power of underwater complicated sound sources in thenon-ideal reverberant field (non-anechoic pool). It will be proved that the radiated soundpower of underwater complicated sound sources can be measured accurately in the non-idealreverberant field by theoretical analysis and experimental verification.
     The sound field characteristic in the rectangular non-anechoic pool whose wall is notrigid is first analyzed in this paper. The relation between the spatial averaging squared soundpressure where the hydrophone is located far from the directional source and the radiatedsound power of the source is derived by taking the Green function method and thesuperposition law of sound sources is verified. The theoretical formula of reverberationmethod for underwater complicated sound sources is established. To the wall effect for themeasurement of low frequency sound sources, the Waterhouse revision is expanded and thestatistical average correction is proposed to correct the wall effect. It is great significant forthe measurement of underwater low frequency sound sources. Secondly, the spatial averagingmeasurement technique is studied. It is investigated whether the spatial average, spatialaveraging in different ways, whether the average of the sound source have effect on theradiated sound power measurement of sources. Thirdly, the underwater complicated soundsources are measured and investigated in the non-anechoic pool. The radiated sound power ofa spherical standard sound source is measured. The radiated sound power of directional sound sources, such as the coherent sound sources and the piston sound source is measured. Thecharacteristics of the scale effect for different size pools are experimentally studied. Finally,the uncertainty for the radiated sound power of the underwater sound sources is analyzed.Measurement and research results show that the bigger the spatial average range, the bettereffect and much better effect if the source is also spatially averaged. The difference betweenthe radiated sound power of a standard spherical sound source measured by reverberationmethod and that measured in free field is not more than1dB. The difference between theradiated power of low frequency sound sources in the glass tank revised by statistical averageand that gotten in freedom field is not more than1dB. The difference between themeasurement results of the radiated sound power for the coherent spherical sound sources andthe theoretical results is not more than1dB. The radiated sound power of the piston soundsource measure in the non-anechoic pool is almost equal to that measured in free fields. Theradiated sound power of two spherical sound sources working at same time is just equals tothe sum of each one working independently. The greater the non-anechoic pool, the lower thespatial average sound pressure levels, the lower the signal-to-noise and the Schroeder cutofffrequency. The class A measurement uncertainty of radiated sound power for underwatersound sources is less than1.5dB.
     A reverberation chamber method is proposed to measure the flow-induced noise of theunderwater hydrofoil structure. A experimental system was built in the gravity water tunnel,the radiated sound power of the underwater hydrofoil model was measured using this method.It is investigated also that flow speed has impact on the radiated sound power. The resultsshow that this method can avoid the hydrophone by the impact of sound field distortion in thewater tunnel. the radiated sound power will increase withU6∞dependence (U∞is the flowspeed) and show the dependence of radiated sound power on speed for dipole whenU∞isless than5m/s; the radiated sound power will increase withU10±1∞dependence and notindicate the dependence for dipole whenU∞is more than5m/s. The absorption of the watertank’s wall to the sound wave is small, so the characteristics of diffuse sound field in the tankis much better than that in the pool whose wall is made of cement or tile. In order to improvethe characteristics of diffuse sound field, it is suggested to design the underwaterreverberation chamber according to the water tank.
引文
[1]伏同先,张国良.我国潜艇辐射噪音测量中若干问题的探讨.船舶力学.2007,11(1):152-158页
    [2]章林柯,何琳,朱石坚.潜艇主要噪声源识别及贡献比计算方法综述.第十届船舶水下噪声学术讨论会论文集.烟台,2005:48-53页
    [3]钟祥璋.建筑吸声材料与隔声材料.北京:化工出版社,2005:23-27页
    [4] GBJ47-83.混响室法吸声系数测量规范.北京:中国建筑工业出版社,1998:1-10页
    [5] P. M. Morse and K. Uno Ingard. Theoretical Acoustics. New York:McGraw-Hill Inc.1967:554-599P
    [6] LIU Yong-wei and LI Qi. Research on the coefficient of sound absorption in turbidwater. The Journal of Marine Science and Application.2008,7(2):135-138P
    [7]国外声学成果.混响室中扩散体的总面积和测得的吸声系数.声学学报.1985,10:61-64页
    [8]贺加添.混响室法测量材料吸声系数的有效性.烟台大学学报(自然科学与工程版).1995:65-72页
    [9]周启君,刘克,冯涛.管道中测量材料的声学性能.声学技术增刊.2006,25:71-72页
    [10]易文胜.大面积吸声构件吸声系数的低频测量.声学与电子工程.2006,81:12-14页
    [11]姬培锋,杨军,李晓东.基于指向性声源的吸声系数测量.声学技术增刊.2006,25:71-72页
    [12]张武威,汤伟红.混响室法测定吸声系数计算误差分析.声频工程.2007,31:14-19页
    [13]叶江涛,刘岩,张晓排.混响室中不同试件面积对吸声系数的影响研究.噪声与振动控制.2009:134-136页
    [14]朱从云,黄其柏.基于特性阻抗的测量吸声系数的一种新方法.机械设计与制造.2008:154-158页
    [15]芮元勋,蒋国荣.声场计算机模拟中吸声系数的修正.声频工程.2008,32:9-11页
    [16] David B.Nutter, Timothy W.Leishman. Measurement of sound power and absorption inreverberation chambers using energy density. J.Acoust. Soc.Am,2007,121(5):2700—2707P
    [17] H. Kuttruff, Room Acoustics (Applied Science, New York,1991),3rd ed.
    [18] A. D. Pierce, Acoustics (Acoustical Society of America, New York,1989).
    [19] L. Cremer and H. A. Muller, Principles and Applications of Room Acoustics (AppliedScience, New York,1978).
    [20] L. E. Kinsler et al., Fundamentals of Acoustics (Wiley, New York,1982),3rd ed.
    [21] W. C. Sabine, Collected Papers on Acoustics (Harvard press,1922),44.
    [22] C. F. Eyring, Reverberation Time Measurements in Coupled Rooms,J. Acoust. Soc.Am.3(2),181–206,1931.
    [23] W. C. Sabine, Collected Papers on Acoustics (Dover, New York,1964), pp.245-246.
    [24] D. Lubman, Spatial Averaging in Sound Power Measurements.J.Sound Vib,1971,16(1):43-58.
    [25] C. E. Ebbing, Experimental Evaluation of Moving Sound Diffusers for ReverberationRooms.J.Sound Vib,1971,16(1):99-108.
    [26] R. H. Bolt, Frequency Distribution of Frequency in a Three-dimensionalContinuum.J.Acoust. Soc.Am,1938,10(3):228-234.
    [27] R. H. Bolt and R. W. Roop, Frequency Response Fluctuations in Rooms.J.Acoust.Soc.Am,1950,22(2):280-289.
    [28] L. W. Sepmeyer, Computed Frequency and Angular Distribution of the Normal Modesof Vibration in Rectangular Rooms.J.Acoust. Soc.Am,1965,37(3):413-423.
    [29] M. R. Schreoder, Frequency-Correlation Functions of Frequency Responses inRooms.J.Acoust. Soc.Am,1962,34(12):1819-1823.
    [30] C. G. Mailing, Computer Studiew of Mode-Spacing Statistics in ReverberationRooms.J.Sound Vib,1971,16(1):79-87.
    [31] R. K. Cook et al, Measurement of correlation Coefficients in Reverberant SoundFields.J.Acoust. Soc.Am,1955,27(6):1072-1077.
    [32] C. G. Balachandran, Random sound field in reverberant chambers, J.Acoust. Soc.Am,1959,31:1319-1321.
    [33] M. R. Schroeder, Measurement of sound diffusion in reverberation chambers, J.Acoust.Soc.Am,1959,31:1407-1414.
    [34] D. Lubman, Traversing microphone spectroscopy as a means for assessing diffusion,J.Acoust. Soc.Am,1974,56:1302-1304.
    [35] M. Koyasu and M. Yamashita, Evaluation of the degree of diffuseness in reverberationchambers by spatial correlation technique, Acoust. J. Jpn,1971,26:132-143.
    [36] M. Tohyama, A. Suzuki, and S. Yoshikawa, Correlation coefficients in a rectangularreverberation room, Acustica39,51–53~1977.
    [37] M. Tohyama, A. Suzuki, and S. Yoshikawa, Correlation coefficients in a rectangularreverberation room experimental results, Acustica42,184–186~1979.
    [38] C. T. Morrow, Point-to-point correlation of sound pressure in reverberation chamber,J. Sound Vib.16,29–42~1971.
    [39] W. K. Blake and R. V. Waterhouse, The use of cross-spectral density measurements inpartially reverberant sound fields, J. Sound Vib.54,589–599~1977.
    [40] C. F. Chien and W. W. Soroka, Spatial cross-correlation of acoustic pressures in steadyand decaying reverberant sound fields, J. Sound Vib.48,235–242~1976.
    [41] W. T. Chu, Spatial cross-correlation of reverberant sound fields, J. Sound Vib.62,309–311~1979.
    [42] W. T. Chu, Comments on the coherent and incoherent nature of a reverberant soundfield, J. Acoust. Soc. Am.69,1710–1715~1981.
    [43] R. V. Waterhouse, Statistical properties of reverberant sound fields, J. Acoust. Soc.Am.43,1436–1443~1968.
    [44] W. T. Chu, Eigenmode analysis of the interference patterns in reverberant sound fields,J. Acoust. Soc. Am.68,184–190~1980.
    [45] Y. Kubota and E. H. Dowell, Asymptotic modal analysis for sound fields of areverberant chamber, J. Acoust. Soc. Am.92,1106–1112~1992.
    [46] K. Bodlund, A new quantity for comparative measurements concerning the diffusionof stationary sound fields.J.Sound Vib,1976,44:191–207.
    [47] F. Jacobsen, The diffuse sound field. The Acoustics Laboratory, Technical Universityof Denmark, Technical Report27,1979(unpublished).
    [48] H. Nelisse and J. Nicolas, Characterization of a diffuse field in a reverberant room, J.Acoust. Soc. Am.101(6),3517-3524~1997.
    [49] R. V. Waterhouse, Interference Patterns in Reverberant Sound Fields.J.Acoust.Soc.Am,1955,27(2):247-258.
    [50] R. V. Waterhouse, Statistical Properties of Reverberant Sound Fields.J.Acoust.Soc.Am,1968,43(6):1436-1444.
    [51] H. G. Andres, The Spatial Variations of Noise Levels in Rooms and Applications forSound Power Measurements.Acustica,1965,16:279-294.
    [52] H. G. Diestel, Interference Patterns in Reverberant Sound Fields.J.Acoust. Soc.Am,1963,35(12):2019-2022.
    [53] W. T. Chu, Comments on the Coherent and Incoherent Nature of a Reverberant SoundField.J.Acoust. Soc.Am,1981,49(6):1710-1715.
    [54] D. Lubman, R. V. Waterhouse and C. S. Chien, Effectiveness of Continuous SpaceAveraging in a diffuse Sound Fields.J.Acoust. Soc.Am,1973,53(2):650-659.
    [55] Chi-Shing Chien, Spherical Averaging in a diffuse Sound Fields.J.Acoust. Soc.Am,1975,57(4):972-975.
    [56] R. V. Waterhouse and D. Lubman, Discrete versus Continuous Space Averaging in aReverberant Sound Field.J.Acoust. Soc.Am,1970,48(2):1-5.
    [57] D. Lubman, Spatial Averaging in a Diffuse Sound Fields.J.Acoust. Soc.Am,1969,46(3):532-534(L).
    [58] M. R. Schreoder, Spatial Averaging in a Diffuse Sound Fields and the EquivalentNumber of Independent Measurements.J.Acoust. Soc.Am,1969,46(3):534(L).
    [59] W. T. Chu, Note on the independent sampling of mean-square pressure in reverberantsound fields.J.Acoust. Soc.Am,1982,72(1):196-199.
    [60] Carl Hopkins, On the efficacy of spatial sampling using manual scanning paths todetermine the spatial average sound pressure level in rooms.J.Acoust. Soc.Am,2011,129(5):3027-3034.
    [61] R. V. Waterhouse, Noise Measurement in Reverberant Rooms.J.Acoust. Soc.Am,1973,54(4):931-934.
    [62] P.M. Morse,K.Uno Ingard.Theoretical Acoustics.New York:McGraw-HillInc.1967:554-599.
    [63] C. G. Mailing, Calculation of Acoustic Power Radiated by a Monepole in aReverberant Chamer.J.Acoust. Soc.Am,1967,42(4):859-865.
    [64] A. Schaffner, Accurate estimation of the mean sound pressure level in enclosures, J.Acoust. Soc. Am.106(2),823–827,1999.
    [65] J. Tichy and P. Baade, Effect of rotating diffusers and sampling techniques onsound-pressure averaging in reverberation rooms, J. Acoust. Soc. Am.56,137–143,1974.
    [66] W. F. Smith and J. R. Bailey, Investigation of the Statistics of Sound Power Injectionfrom Low-frequency Finite-size Sources in a Reverberant Room, J. Acoust. Soc. Am.54(4),950–955,1973.
    [67] J. L. Davy, I. P. Dunn and P. Dubout, The Variance of Decay Rates in ReverberationRooms, Acustica43,12–25,1979.
    [68] C. Eyring, Reverberation time in dead rooms, J. Acoust. Soc. Am.1,217–214,1930.
    [69] M. R. Hodgson, On measures to increase room sound-field diffuseness and theapplicability of the diffuse-field theory, J.Acoust. Soc.Am,1994,95:3651-3653.
    [70] K. H. Kutruff, Sound decay in reverberation chambers with diffusing elements, J.Acoust. Soc. Am.69,1716–1723,1981.
    [71] D. Nutter,T. Leishman, S. Sommerfeldt,and J. Blotter, Measurement of sound powerand absorption in reverberation chambers using energy density, J. Acoust. Soc. Am.121(5),2700–2710,2007.
    [72] R. K. Cook and P. A. Schade, New method for measurement of the total energydensity of sound waves, Proceedings of Inter-Noise74, Washington DC,1974, pp.101–106.
    [73] L. W. Sepmeyer and B. E. Walker, Progress report on measurement of acoustic energydensity in enclosed spaces, J. Acoust. Soc. Am.55, S12(A),1974.
    [74] R. V. Waterhouse and R. K. Cook, Diffuse sound fields: Eigenmode and free-wavemodels, J. Acoust. Soc. Am.59,576–581,1976.
    [75] F. Jacobsen, The diffuse sound field: Statistical considerations concerning thereverberant field in the steady state, The Acoustics Laboratory, Technical Universityof Denmark, Report No.27,1979.
    [76] J. A. Moryl, A study of acoustic energy density in a reverberation room, M.S. thesis,The University of Texas at Austin, Austin, TX,1987.
    [77] J. A. Moryl and E. L. Hixson, A total acoustic energy density sensor with applicationsto energy density measurement in a reverberation room, Proceedings of Inter-Noise87,Beijing, China,1987, Vol. II, pp.1195–1198.
    [78] H. Kuttruff, Room Acoustics,4th ed. Spon Press,London,2000.
    [79]马大猷.论室内声场.声学学报,2003;28(2):97-101.
    [80]马大猷.室内声场公式.声学学报,1989;14(5):383-385.
    [81]马大猷.室内稳态声场.声学学报,1994;19(1):13-21.
    [82]马大猷.复议室内稳态声场.声学学报,2002;27(5):385-388.
    [83]钟祥璋,陈炎.提高混响室声功率测定精度的研究.同济大学学报,1989;17(3):415-420.
    [84]于渤.噪声源声功率级测量的进展.计量学报,1985;6(3):234-240.
    [85] R. K. Cook, R. V. Waterhouse, Measurements of correlation coefficients inreverberant sound fields, J.Acoust. Soc.Am,1955,27:1072-1077.
    [86] G.C. Mailing,JR.Calculation of Acoustic Power Radiated by a Monopole in aReverberation Chamber[J].The Journal of the Acoustical Society of America,1967,42(4):859-865.
    [87] Maidanik,G.Response of ribbed panels to reverberant acoustic fields.J.Acoust.Soc.Am,1962,34(6):809-826.
    [88] Ludwig,G.R.An experimental investigation of the sound generated by thin steelpanels excited by turbulent flow(boundary layer noise).UTTA,Report87,Univ. ofToronto.
    [89] T.J.Schultz, Outlook for in-situ measurement of noise from machine,J.Acoust.Soc.Am,54,4(1973),982-984
    [90] G.M.Diehl, Sound power measurement on large machinery installed indoor:Two-surface Method,J.Acoust. Soc.Am,61,2(1977),449-455
    [91] O.L.Angevine and R.F.O’Donnel, Method for determining sound power levelsof large machinery,J.Acoust. Soc.Am,55,S14(A)(1974)
    [92] G. Hübner, Analysis of errors in measuring machine noise under free fieldconditions,J.Acoust. Soc.Am,54,4(1973),965-975
    [93] G. Hübner, Qualification procedure for free field condition of sound powerdetermination of sound source and method for the determination of appropriateenvironmental correction,J.Acoust. Soc.Am,61,2(1977),456-464
    [94] C.I.Holmer, Investigation of procedures for estimation of sound power in the freefield above a reflecting plane,J.Acoust. Soc.Am,61,2(1977),465-475
    [95] O.L.Angevine,Improving the acoustic environment for in situ noise measurements,J.Acoust. Soc.Am,61,2(1977),484-486
    [96] J.B.Morland, Measurement of sound absorption in rooms,J.Acoust. Soc.Am,61,2(1977),476-483
    [97]何祚镛,赵玉芳.声学理论基础[M].北京:国防工业出版社.1981:70-720.
    [98]杜功焕,朱哲民,龚秀芬.声学基础[M].南京:南京大学出版社.2001:226-230.
    [99] W. K. Blake and L. J. Mage, Chamber for reverberant acoustic power measurements inair and in water, J.Acoust. Soc.Am,57(2),380-384,1975
    [100]俞孟萨,吕世金,吴永兴.半混响法环境下水下结构辐射声功率测量.应用声学,2001;20(6):23-27.
    [101]王春旭,邹建,张涛,侯国祥.水下湍射流流噪声试验研究.船舶力学,2010;14(1-2):172-180.
    [102]俞孟萨,胡拥军,陈克勤.突体剖面线型的流噪声机理分析和试验研究.应用声学,1998;17(5):44-48.
    [103]朱习剑,何祚镛.水洞中突出矩形腔的流激驻波振荡研究.哈尔滨船舶工程学院学报,1993;14(4):41-52.
    [104]李琪.水筒噪声测量方法研究.哈尔滨:哈尔滨船舶工程学院,1990
    [105]李琪,杨士莪.水筒噪声测量方法的改进.中国造船,1992,第3期,70-79.
    [106]尚大晶,李琪,商德江,侯本龙.水下声源辐射声功率测量实验研究.哈尔滨工程大学学报,2010;31(7):938-944.
    [107] D. Y. Maa., Sound Power Emission in Reverberation Chambers, J. Acoust. Soc. Am.83(4),1414-1419,1988.
    [108]马大猷,声功率测定中的低频率差异问题,声学学报.14(3),167-177,1989.
    [109] W. W. Lang and K. S. Nordby,Reverberation Chamber Power Level Measurementson Sound Sources,Proc. Intern. Congr. Acoust,4th, Copenhagen,(1962).
    [110] S. Uosukainen, On The Use of The Waterhouse Correction, J. Sound Vib.186(2),223–230,1995.
    [111]刘永伟,商德江,李琪,陈梦英.含悬浮泥沙颗粒水介质的声吸收实验研究[J].兵工学报,2010,31(3):309-315.
    [112]李敏毅,孙海涛,吴杰歆,杨德俊.混响时间及测量方法简介.中国测试技术.2005,31(1):18-20页
    [113]成忠军,周笃强,牛聪敏.脉冲响应法测量混响时间技术的研究.应用声学.2000,19(1):1-15页
    [114]张武威.关于室内混响时间的计算问题.声频工程.2005,03:17-27页
    [115]杨小军,沈勇,乐意.混响室中混响时间测量偏差.声学技术.2009,28(6) Pt.2:94-97页
    [116] TEST RESULTS FOR HYDROSOUNDER MODEL UW350,Data physics.
    [117]金泰义.精度理论与应用[M].合肥:中国科学技术大学出版社.2005:6-37页.
    [118]许颖.标准声源混响室精密测量法的研究[D].武汉:华中科技大学,2005:32-53.
    [119]俞孟萨,吴有生,庞业珍.国外舰船水动力噪声研究进展概述.船舶力学,2007;11(1):152-158.
    [120] Blake W K. Mechanics of Flow-Induced Sound and Vibration. London:AcademicPress,1986
    [121]周心一,吴有生.流体动力性噪声的相似关系研究.声学学报,2002;27(4):373-376.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700