用户名: 密码: 验证码:
新型钴基Co-Al-W合金设计、制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统沉淀强化机制认为,钴基高温合金中γ′强化相易呈脆性形态沉淀析出,γ′相与合金基体错配度较大,造成钴基合金不良的高温性能。Co-Al-W合金是由γ′-Co_3(Al,W)相沉淀强化的新型钴基高温合金,由于合金具有在某一高温范围内强度随温度升高而增加的“反常”变化现象。对Co-Al-W合金进行成分设计和制备,研究合金耐NaCl溶液电化学腐蚀、耐75%Na2SO_4+25%NaCl熔盐热腐蚀和空气中抗800、900℃高温氧化行为,合金在不锈钢基体上堆焊性能成为学者关注的问题。
     本论文在对燃烧合成和真空感应熔炼制备钴基Stellite 6合金微观组织、碳化物类型及分布等预实验及对Co-Al-W合金固溶温度、强化相类型、微观组织结构、硬度等国内外已有研究工作的基础上,通过合金成分设计,对燃烧合成和真空感应熔炼制备Co-Al-W合金固溶温度、强化相类型、微观组织结构、硬度等进行研究,进而对合金电化学腐蚀、热腐蚀和高温氧化性能及Co-Al-W合金在不锈钢基体上堆焊性能研究,为合金设计和应用提供理论依据和科学指导。研究发现:
     (1)燃烧合成和真空感应熔炼制备Co-Al-W合金微观组织由γ-Co基体及其上γ′-Co_3(Al,W)强化相和少量碳化物组成。钨含量增加,合金固溶温度升高,在γ-Co基体上γ′相数量和体积分数增加。合金元素Ta、Nb、Mo、Ti与γ-Co基体形成A3B型相Co_3(Ta,Nb,Mo,Ti)可提高合金中γ′-Co_3(Al,W)相和γ-Co基体的结晶度,对Co-Al-W合金中γ′相起到不同程度的稳定作用,合金的固溶温度和硬度适度提高。
     (2) Co-Al-W合金在NaCl溶液中电化学腐蚀时,由于Cl-穿透钝化膜导致“闭塞腐蚀电池”效应,在晶界处发生点蚀。加入合金元素Mo、Nb、Ti和Ta可以提高Co-Al-W合金耐NaCl溶液的电化学腐蚀能力。
     (3) Co-Al-W合金在800℃75%Na2SO4+25%NaCl熔盐中腐蚀后腐蚀膜分三层,即呈蓬松状由钴氧化物Co_3O_4组成的最外层,由Co、Al、W和合金元素复杂氧化物组成的中间过渡层和由Al、Co氧化物组成较致密的最内层。合金元素在氧化性气氛中形成的腐蚀氧化膜对基体起良好保护作用。
     (4) Co-Al-W合金在800℃和900℃空气中静态氧化后氧化膜大致分为三层,即以钴氧化物Co3O4形式存在且厚度基本均匀的氧化膜最外层;基体和表面层间不连续的中间过渡层主要由W、Al和合金元素氧化物组成;氧化膜内层主要是Co、Al氧化物。Co-Al-W合金中Ta、Nb、Mo、Ti元素的加入可提高合金在高温空气中静态氧化的氧化激活能,减少合金氧化增重,提高合金抗高温氧化能力。
     (5)在304不锈钢基体表面用TIG电弧对Co-8.8Al-9.8W(at.%)合金混合粉末进行堆焊,能获得表面成形及与母材结合良好的堆焊层。堆焊电流和堆焊速度都会对堆焊层熔宽、熔深和稀释率产生影响。堆焊层合金微观组织由γ-Co基体及其上碳化物和复杂Co、Al元素金属间化合物组成。堆焊层硬度较高,平均硬度约为HRC53.1,显微硬度最高Hv50可达1050。
     (6)燃烧合成和真空感应熔炼方法制备Stellite 6合金微观组织均由γ-Co基体及其上对基体起强化作用的碳化物组成。由于燃烧合成制备合金时热量聚集和散失不均匀,合金并不是过饱和固溶体,碳化物处于亚稳态且不能均匀析出。燃烧合成制备Stellite 6合金耐中性NaCl溶液腐蚀能力较强。综合以上研究结果,通过合金成分设计、合金化可显著提高Co-Al-W合金固溶温度和硬度,改善合金耐NaCl溶液腐蚀能力,提高合金耐75%Na2SO4+25%NaCl熔盐热腐蚀和合金在800、900℃空气中的抗氧化能力,进而根据需要对合金进行有目的的设计,为合金广泛应用提供科学和理论基础。
Co-Al-W superalloy is strengthened by a ternary compoundγ′-Co_3(Al,W) phase with the precipitation strengthening onγ-Co matrix novel Co-base superalloys. Conventional Co-base superalloys lack effective precipitation strengthening by intermetallic compounds, and depend on alloying elements and precipitation of low volume fraction of carbides for their strength. The microstructures,carbides typology and distribution have effect on characteristics and properties of Stellite 6 alloy by combustion synthesis (CS) and vacuum induction melting(VIM), and on top of this we study on microstructures and properties of tungsten content and alloying elements have effect onγ′strengthening phase of novel Co-Al-W superalloy by combustion synthesis (CS) and vacuum induction melting(VIM).In addition, tungsten content and alloying elements, namely Tantalum、Niobium、Titanium、Molybdenum, have effect on electrochemistry characteristic, hot corrosion and high temperature oxidation behavior of Co-Al-W superalloy by vacuum induction melting in this paper. Finally, Tungsten Inert Gas (TIG) welding was used to deposit Co-8.8Al-9.8W (at.%) superalloy on 304 austenite stainless steel plate and cladding layer shape, dilution, Vickers hardness, microstructure and distribution of alloying elements were investigated. At the same time, the microstructure and corrosion behavior of cobalt-base Stellite 6 alloy by combustion synthesis and vacuum induction melting.The following results can be obtained:
     (1) The effect of alloying elements,such as Tantalum, Niobium, Titanium, Molybdenum onγ′precipitation strengthen phase of Co-Al-W superalloys by combustion synthesis and vacuum induction melting. The microstructures of Co-Al-W superalloy are composed of richγ-Co matrix,γ′-Co_3(Al,W) phase and few carbides. Tungsten stabilizeγ′phase with precipitation strengthening, the melting temperatures of novel Co-Al-W superalloy gradually increasd with tungsten content increasing. Positive effects of alloying elements Tantalum, Niobium, Titanium and Molybdenum are made of A3B-Co_3(Ta,Nb,Mo,Ti) strengthen phase withγ-Co matrix stabilizeγ′-Co_3(Al,W) phase, promoted the crystallization ofγ′-Co_3(Al,W) phase andγ-Co matrix, increased solvus temperature of Co-Al-W superalloy.
     (2) Corrosion behaviors of Co-Al-W superalloy additional alloying elements are investigated in different pH value NaCl solutions at room temperature by electrochemical techniques. Different Tungsten contents and alloying Co-Al-W superalloys completely suffered from serious pitting corrosion and pits located at grain boundaries. The pitting corrosion resulted from the electro-migration of Cl- into the pits from the buck solution by Occluded Corrosion Cell(OCC). The pitting corrosion resistance of Co-Al-W superalloy gradually increased with addition to alloying elements, such as Tantalum, Niobium, Titanium, Molybdenum.
     (3) The kinetic of hot corrosion at 800℃in 75%Na_2SO_4+25%NaCl molten salt of Co-Al-W superalloy with tungsten content and alloying elements, namely, Molybdenum, Niobium,Tantalum and Titanium. The results show the hot corrosion oxide scale of Co-Al-W superalloy are made up of three layers, that is the external layer consists of Co oxide Co_3O_4, the intermediate mixed oxides layer is composed of complex oxide and nonuniform-barren oxide layer of Co, Al, W and alloying elements.The internal attacked layer with different compounds of Co, Al and O. When added to alloying elements, Molybdenum, Niobium, Tantalum and Titanium the hot corrosion resistance of Co-Al-W superalloys provides added protection against corrosion and the film oxidation compactness is gradually increased in NaCl solutions.
     (4) The kinetic data of weight gain and the cyclic oxidation behavior of Co-Al-W superalloy were measured and investigated at 800 and 900℃in air.The rate constants at different temperatures were determined by the relevant linear treatment. According to Arrhenius relation of rate constants of oxidation, the activation energy of oxidation was derived for Co-Al-W superalloy and the specified expression for the rate constant was further obtained in the case of oxidation at different temperatures. The results show that the oxide scale at different temperature exhibited a multi-layered structure including an outer layer of Co_3O_4 oxide, a layer is composed of complex oxide and non-uniform Co-barren oxide layer, an intermediate mixed oxides layer and an internal attacked layer with complicated oxides of Co and Al. The oxidation film of Co-Al-W superalloy surface appears agglomeration, oxide film crack propagation and oxide layer deterioration phenomena at different temperatures. Adding to alloying elements Molybdenum, Niobium, Tantalum and Titanium of Co-Al-W superalloy can reduce weight gain and increase activation energy of oxidation. Positive effects of alloying Co-Al-W superalloy provide added protection against hot corrosion at different temperatures.
     (5) Tungsten Inert Gas (TIG) welding was used to for deposit Co-8.8Al-9.8W(at.%) superalloy on 304 austenite stainless steel plate and cladding layer shape, dilution, Vickers hardness, microstructure and distribution of alloying elements were investigated. It was found that TIG cladding layer has the characteristics of large dilution rate, fine microstructure, narrow heat-affected zone (HAZ), narrow alloying elements segregation, high Vickers hardness, high contents and low contents of Fe in the cladding layers.TIG cladding layer dilution of Co-8.8Al-9.8W(at.%) superalloy on 304 stainless steel is about 12% when current and Voltage are 100A and 12V,respectively. High Vickers microhardness can be available in cladding layer, which arrives at 1050 (Hv50). The average Rockwell hardness value of cladding layer arrives at HRC53.1.
     (6) This investigation is undertaken to microstructures and corrosion behavior of Stellite 6 alloy by combustion synthesis and vacuum induction melting. The microstructures of Stellite 6 alloy by combustion synthesis (CSed Stellite 6) and vacuum induction melting (VIMed Stellite 6) are composed ofγ-Co matrix and primarily carbides at grain boundaries. Carbides existγ-Co matrix in the form of carbide mixture for the primary carbide and secondary eutectoid carbide of CSed Stellite 6, yet the carbides of VIMed Stellite 6 are single form at grain boundary for secondary eutectoid carbide. Comparing corrosion resistance of CSed Stellite 6 with VIMed Stellite 6 in NaCl neutral solutions, the former corrosion resistance is superior to the later.
引文
[1] Silentino.高温合金.http://baike.baidu.com/view/131818.htm,2009-12- 25
    [2]郭建亭.高温合金材料学应用基础理论(上册)[M].科学出版社,2008
    [3]黄乾尧,李汉康.高温合金[M].冶金工业出版社,2000
    [4] laujianjun.钴基合金.http://baike.baidu.com/view/2469267.htm,2009-12 -26
    [5] W.BETTERIDGE,B.Sc.,Ph.D.,D.Sc.,F.Inst.P.,F.I.M.,C.Eng.COBALT AND ITS ALLOYS[M].ELLIS HORWOOD LIMITED Publishers Chichester.Hslsted Press:a division of JOHN WILEY&SONS,New York,Brisbane,Chichester,Toronto,1982,63-79
    [6]Tin S, Pollock T M, Murphy W. Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: carbon additions and freckle formation [J]. Metallurgical and Materials Transactions A, 2001,32(7):1743-1753
    [7] H Takesue,K Oh-ishi,Z Horit,et al. Effect of fine precipitation of coherent disordered phase on creep strength of L12-ordered Co3Ti[J]. Materials Science and Engineering A,1997,239-240:
    [8] Zi-Kui Liu, Y. Austin Chang.Thermodynamic assessment of the Co-Ta system[J]. Calphad, 1999,23(3-4):339-356
    [9]张元彬,任登义.合金元素对堆焊焊缝硬度的影响[J].热加工工艺,2003,4:15-16
    [10]陶锡麒,曹庆,夏春怀等.工艺参数对钴基合金激光熔覆层显微组织及开裂性的影响[J].应用激光,1999,19(5):206-208
    [11] LIN W C, CHEN C.Characteristics of thin surface layers of cobalt-based alloys deposited by laser cladding[J]. Surface and Coatings Technology, 2006,200(14-15):4557-4563
    [12] A S CM. D’Oliveira, R Vilar Feder.High temperature behaviour of plasma transferred arc and laser Co-based alloy coatings[J]. Applied Surface Science, 2002,201(1-4):154-160
    [13] H.Hügel. New solid-state lasers and their application potentials[J]. Optics and Lasers in Engineering,2000,34(4-6):213-229
    [14] QI Yunlian, DENG Ju, HONG Quan,et al. Electron beam welding, laser beam welding and gas tungsten arc welding of titanium sheet[J]. Materials Science and Engineering A,2000, 280(1):177-181
    [15] G N Haidemenopoulos.Coupled thermodynamic/kinetic analysis of diffusional transformations during laser hardening and laser welding[J]. Journal of Alloys and Compounds,2001,320(2):302-307
    [16] Achim Mahrle,Jürgen Schmidt. The influence of fluid flow phenomena on the laser beam welding process[J].International Journal of Heat and Fluid Flow, 2002,23(3):288-297
    [17] L Quintino,A Costa,R Miranda. Welding with high power fiber lasers–A preliminary study[J].Materials & Design,2007,28(4):1231-1237
    [18] A W Y Tan, F E H Tay, Zhang J. Characterization of localized laser assisted eutectic bonds[J]. Sensors and Actuators A:Physical,2006,125(2):573-585
    [19] LI Mingxi,HE Yizhu,YUAN Xiaomin. Effect of nano-Y2O3 on microstructure of laser cladding cobalt-based alloy coatings[J].Applied Surface Science,2006,252(8):2882-2887
    [20]黄瑞芬,罗建民,王春琴.激光熔覆技术的应用及其发展[J].兵器材料科学与工程,2005,28(4):57-59
    [21] Rafa? Jendrzejewski,Carmen Navas,Ana Conde,et al.Properties of laser-cladded stellite coatings prepared on preheated chromium steel[J].Materials & Design,2008,29(1):187-192
    [22]单际国,董祖珏,徐滨士.我国堆焊技术的发展及其在基础工业中的应用现状[J].中国表面工程,2004,4:19-22
    [23] LI Mingxi,HE Yizhu,SUN Guoxiong. Microstructure and wear resistance of laser clad cobalt-based alloy multi-layer coatings[J].Applied Surface Science, 2004,230(1-4):201-206
    [24] S Michon, P Berthod, L Aranda,et al. Application of thermodynamic calculations to study high temperature behavior of TaC-strengthened Co-base superalloys[J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2003, 27(3):289-294
    [25] JIANG W H, GUAN H R, HU Z Q. Effects of heat treatment on microstructures and mechanical properties of a directionally solidified cobalt-base superalloy[J]. Materials Science and Engineering A,1999, 271(1-2):101-108
    [26] QIAO Zhuhui, MA Xianfeng, ZHAO Wei. A novel (W-Al)-C-Co composite cemented carbide prepared by mechanical alloying and hot-pressing sintering[J].International Journal of Refractory Metals and Hard Materials, 2008,26(3):251-255
    [27] U Malayoglu, A Neville. Comparing the performance of HIPed and Cast Stellite 6 alloy in liquid-solid slurries[J].Wear,2003, 255(1-6):181-194
    [28] U Malayoglu, A Neville, G Beamson. Characterisation of the passive film on HIPed Stellite 6 alloy using X-ray photoelectron spectroscopy[J]. Materials Science and Engineering A, 2005, 393(1-2): 91-101
    [29] V Kuzucu, MCeylan, H Celik, et al. Microstructure and phase analyses of Stellite 6 plus 6 wt.% Mo alloy[J]. Journal of Materials Processing Technology, 1997, 69(1-3):257-263
    [30] Halis ?elik, Mehmet Kaplan. Effects of silicon on the wear behavior of cobalt-based alloys at elevated temperature[J]. Wear,2004,257(5-6): 606-611
    [31] Tanja Matkovic, Prosper Matkovic, Jadranka Malina. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys[J]. Journal of Alloys and Compounds,2004,366(1-2):293-297
    [32] Jong-Choul Shin, Jung-Man Doh, Jin-Kook Yoon, et al. Effect of molybdenum on the microstructure and wear resistance of cobalt-base Stellite hardfacing alloys[J]. Surface and Coatings Technology,2003, 166(2-3):117-126
    [33] Ugur Malayoglu, Anne Neville. Mo and W as alloying elements in Co-based alloys-their effects on erosion–corrosion resistance[J]. Wear, 2005,259(1-6):219-229
    [34] U Malayoglu,A Neville,H Lovelock. Assessing the kinetics and mechanisms of corrosion of cast and HIPed Stellite 6 in aqueous saline environments[J].Corrosion Science,2005,47(8):1911-1931
    [35]刘培生,孙晓峰,管恒荣.DZ40M钴基合金的高温内氧化现象[J].材料科学与工艺,1998,6(1):25-27
    [36]刘培生,陈国锋,梁开明.DZ40M钴基合金的高温氧化[J].中国腐蚀与防护学报,1999,19(6):339-344
    [37] ZHANG Y D, YANG Z G, ZHANG C. Oxidation Behavior of Tribaloy T-800 Alloy at 800 and 1000℃[J].Oxidation of Metals,2008,70: 229-239
    [38] Jyh-Wei Lee, Yu-Chu Kuo. Cyclic oxidation behavior of a cobalt aluminide coating on Co-base superalloy AMS 5608[J]. Surface and Coatings Technology, 2005, 200(5-6):1225-1230
    [39] LIU P S, LIANG K M, ZHOU H Y,et al. Oxidation Behavior and Breakdown of an Aluminide Coating on DZ40M Alloy at High Temperatures[J]. Oxidation of Metals, 2001, 55(5/6):543-550
    [40]LIU Peisheng, LIANG Kaiming. High-Temperature Oxidation Behavior of the Co-base Superalloy DZ40M in Air[J]. Oxidation of Metals, 2000, 53(4):351-360
    [41] P S Liu. The Main Degradation Modes of an Aluminide Coating on a Co-Base Superalloy during High-Temperature Oxidation in Air [J]. Oxidation of Metals, 2002,58(3/4):331-336
    [42] James Day, Huang Xiao,Matthew Yao. Study on Composition-InducedMicrostructural Variation in the Interface Between Co-Based Hardfacing Alloys and IN738 Ni-Based Superalloy[J]. Journal of Materials Engineering and Performance,2004,13:158-166
    [43]上海司太立有限公司. http://www.cn-stellite.com/
    [44] J M Drapier, A Davin, A Magnee,et al.Abrasion and corrosion resistant cobalt base alloys for hardfacing[J]. Wear,1975,33(2):271-282
    [45] WANG Linchun, LI D Y. Effects of yttrium on microstructure, mechanical properties and high-temperature wear behavior of cast Stellite 6 alloy[J]. Wear,2003,255(1-6):535-544
    [46] W H Hocking, F W Stanchell, E McAlpine, et al. Mechanisms of corrosion of satellite-6 in lithiated high temperature water[J]. Corrosion Science,1985,25(7):531-557
    [47] J B C Wu, D Raghu. US Patent no. 6479014, November 12, 2002
    [48] A M Human, B Roebuck, H E Exner.Electrochemical polarization and corrosion behavior of cobalt and Co(W,C) alloys in 1N sulphuric acid [J]. Materials Science and Engineering A,1998, 241(1-2):202-210
    [49] N Eliza, Shemesh, R M Latanision. Hot corrosion in gas turbine components [J].Engineering Faliure Analysis,2002,9(1):31-43
    [50] T S Sidhu, R D Agrawal, S Prakash. Hot corrosion of some superalloys and role of high-velocity oxy-fuel spray coatings-a review[J]. Surface and Coatings Technology,2005,198(1-3):441-446
    [51] V Nagarajan, J Stringer, D P Whittle. The hot corrosion of cobalt-base alloys in a modified Dean's rig-II. Co-Cr-Al alloys[J]. Corrosion Science,1982,22(5):429-439
    [52] V Nagarajan, J Stringer, D P Whittle. The hot corrosion of cobalt-base alloys in a modified Dean's rig-III. Co-Cr-Mo alloys[J].Corrosion Science,1982,22(5): 441-453
    [53] V Nagarajan, J Stringer, D P. Whittle. The hot corrosion of cobalt-base alloys in a modified Dean's rig-I. Co-Cr, Co-Cr-Ta and Co-Cr-Ti alloys[J].Corrosion Science,1982,22(5):407-427
    [54] Krishan L Luthra, John H Wood. High chromium cobalt-base coatings for low temperature hot corrosion[J].Thin Solid Films, 1984,119(3): 271-280
    [55] D M Johnson, D P Whittle,J Stringer. Oxidation of Na2SO4-coated cobalt base alloys [J]. Corrosion Science, 1975,15(6-12):649-661
    [56] M E El-Dahshan, D P Whittle,J Stringer.The oxidation of cobalt-tungstenalloys[J].Corrosion Science, 1976,16(2):77-82
    [57]《工程材料实用手册》编辑委员会编.工程材料实用手册(第2卷).变形高温合金和铸造高温合金[M].北京:中国标准出版社,2002
    [58] Lucien Reclaru, Pierre-Yves Eschler, Reto Lerf, et al. Electrochemical corrosion and metal ion release from Co-Cr-Mo prosthesis with titanium plasma spray coating[J]. Biomaterials,2005,26(23):4747-4756
    [59] Robert Wen-Wei Hsu, Chun-Chen Yang, Ching-An Huang,et al. Electrochemical corrosion studies on Co-Cr-Mo implant alloy in biological solutions[J]. Materials Chemistry and Physics,2005,93(2-3): 531-538
    [60] A Pardo,M C Merino,E Otero,et al. Influence of Cr additions on corrosion resistance of Fe-and Co-based metallic glasses and nanocrystals in H2SO4[J].Journal of Non-Crystalline Solids,2006,352 (30-31):3179-3190
    [61] YAO M X, WU J B C, XU W, LIU R. Metallographic study and wear resistance of a high-C wrought Co-based alloy Stellite 706K[J]. Materials Science and Engineering A,2005,407:291-298
    [62] Iulian Radu, LI D Y. The wear performance of yttrium-modified Stellite 712 at elevated temperatures[J]. Tribology International,2007, 40:254-265
    [63] J Sato,T Omori,K Oikawa.Cobalt-Base High-Temperature Alloys[J]. science,2006,312,90-93
    [64]Suzuki A, DeNolf G C, Pollock T M, et al. Flow stress anomalies inγ/γ’two-phase Co-Al-W-base alloys[J].Scripta Materialia,2007,56(5): 385-388
    [65] Akane Suzuki,Tresa M Pollock. High-temperature strength and deformation ofγ/γ' two-phase Co-Al-W-base alloys[J]. Acta Materialia, 2008, 56(6):1288-1297
    [66] PING D H, CUI C Y, GU Y F,et al. Microstructure of a newly developedγ′strengthened Co-base superalloy[J]. Ultramicroscopy, 2007,107(9):791-795
    [67] CHEN R Z, WANG L B, LI J H. Review and prospect on developments of cast superalloys[J].Jaeronaut Materials, 2000, 20(1): 55
    [68]T Omori, Y Sutou, K Oikawa, et al.Shape memory effect in the ferromagnetic Co-14at.% Al alloy [J]. Scripta Materialia, 2005,52(7) 565-569
    [69]LI Xianghui, GAN Bin, FENG Qian,et al. Heat-treated microstructure of Co-Al-W ternary alloys[J].Journal of University of Science and Technology Beijing,2008,30(12):1369-1373
    [70]S V Nagender Naidu, A M Sriramamurthy, P Rama Rao,in Binary Alloy Phase Diagrams, T. B. Massalski et al.,Eds. (ASM International, ed. 2, 1970), pp.1257-1259
    [71] Handbook Committee of Practical Handbook of Engineering Materials. Practical Handbook of Engineering Materials: Wrought and Cast Superalloys. 2nd Ed. Beijing: China Standard Press, 2002:765
    [72] Viatour P, Drapier J M, Coutsouradis D. Stability of theγ′-Co3Ti compound in simple and complex cobalt alloys[J].Cobalt,1973,3:67
    [73]T. Omori, Y. Sutou, K. Oikawa, K. Kainuma, K. Ishida, paper presented at International Conference on Martensitic Transformation (ICOMAT) 05, Beijing(2005)
    [74]刘丽荣,金涛,陈海军等.Ti/Al比对镍基单晶高温合金组织和持久性能的影响[J].稀有金属材料与工程,2009,38(4):612-616
    [75] YEH A C, TIN S. Effects of Ru on the high-temperature phase stability of Ni-base single-crystal superalloys[J]. Metallurgical and Materials Transactions A, 2006,37(9):262l-2631
    [76] Q Feng, T K Nandy, S Tin.Solidification of high-refractory ruthenium-containing superalloys[J].Acta Materialia,2003,51(1):269- 284
    [77] Y Yamabe-Mitarai, Y Gu, C Huang, et sl.JOM 56, 2004,34
    [78]刘丽荣,金涛,孙晓峰等. Al、Ti和Ta含量对镍基单晶高温合金时效组织的影响[J].稀有金属材料与工程,2008,37(7):1253-1256
    [79] GlAS R, JOUIAD M, CARON P, et al. Order and mechanical properties of theγmatrix of superalloys [J]. Acta Materials, 1996,44(12):4917- 4926
    [80]孙跃军,康俊国,宫声. Al、Ti、Ta对镍基单晶高温合金组织和性能的影响[J].特种铸造及有色合金,2008,28(9):660-662
    [81]郑亮,谷臣清,于保正等.低Cr高W铸造镍基高温合金的高温氧化行为及Ta的合金化作用[J].航空材料学报,2005,25(5):1-7
    [82]郑亮,谷臣清,张国庆. Ta对低Cr高W铸造镍基高温合金显微组织的影响[J].稀有金属材料与工程,2005,34(2):194-198
    [83]马文有,韩稚芳,李树索等. Mo含量对一种镍基单晶高温合金显微组织和持久性能的影响[J].金属学报,2006,42(11):1191-1196
    [84]马敬翙,刘光明,曾潮流等.镍基高温合金M17和M38G的电化学腐蚀行为研究[J].表面技术,2006,35(4):15-18
    [85] S A Shirazi, B S McLaury, J R Shadley, E.F. Rybicki, Society of Petroleum Engineers, SPE 28518, pp. 583-592
    [86] D. Raghu, J.B.C. Wu, Corrosion/97, Paper No. 16, 1997
    [87] JIANG X X, LI S Z, TAO D D, YANG J X, Corrosion.1993,49(10): 836-841
    [88] A. Neville, T. Hodgkiess, British Corrosion Journal .1997, 32(3): 197-205
    [89]陈磊,王富岗.抗高温氧化合金的研究进展[J].材料导报,2002,16(5):27-29
    [90] Kai W,Lee C H ,Lee T W,et al. Sulfidation behavior of Inconel 738 superalloy at 500-900℃[J]. Oxidation of Metals,2001,56(1/2):51
    [91] Misra R D K, Sivakumar R. Effect of NaCl vapor on the oxidation of Ni-Cr alloy[J]. Oxidation of Metals,25 (1/2) :83
    [92] Zhu R Z ,[J]. Oxidation of Metals,1987,27(3/4):253
    [93] Bourhis Y,John C S.Na2SO4 and NaCl induced hot corrosion of six nickel-base superalloys [J]. Oxidation of Metals,1975,9(5/6):507
    [94] Kameswa S R. The role of NaCl in the hot-corrosion behavior of nimonic alloy 90[J]. Oxidation of Metals,1986(1/2):33
    [95] CUI H,ZHANG J S,Murata Y,et al.Hot corrosion behavior of Ni -based superalloy with higher Cr contents-partⅡ.Mechanism of hot corrosion behavior[J].Journal University of Science & Technology Beijing ,1996,3:91
    [96]黄乾尧,李汉康等.高温合金[M].北京:冶金工业出版社,2000,100-133
    [97]Robert A Rapp.Hot corrosion of materials: a fluxing mechanism[J]. Corrosion Science,2002,44(2):209-221
    [98]李云,郭建亭,袁超等.镍基铸造高温合金K35的热腐蚀行为[J].中国腐蚀与防护学报,2005,25(4):250-255
    [99] K L LUTHRA.Low temperature hot corrosion of cobalt-base alloys: partⅠ.Morphology of the reaction product[J].Metallurgical Transactions A, 1982,13:1843-1852
    [100] A W E Hodgsona, S Kurz, S Virtanen, et al.Passive and transpassive behvaior of CoCrMo in simulated biological solution[J]. Electrochemical Acta, 2004:49:2167-2178
    [101] Sachiko Hiromoto,Emi Onodera,Akihiko Chiba, et al.Microstructure and corrosion behavior in biological environments of the new fogged low-Ni Co-Cr-Mo alloys[J]. Biomaterials, 2005, 26: 4912-4923
    [102]陈刚,刘尚潭,邵晋德.耐中温浓硫酸用不锈钢研究[J].上海钢研,2000,2:15-20
    [103]李谋成,曾潮流,林海潮等.不锈钢在含SO42-稀HCl中的电化学腐蚀行为[J].腐蚀科学与防护技术,2002,14(3):132-135
    [104] Mansfeld F. The polarization resistance technique for measuring corrosion currents[J]. In: Fontana MG, Stachle RW,editors. Advances in corrosion science and technology, vol. 6. NewYork: Plenum Press; 1976. p. 164-263
    [105] GUO W Y, SUN J, WU J S. Effect of deformation on corrosion behavior ofTi-23Nb-0.7Ta-2Zr-O alloy[J]. Materials Characterization, 2009,60(3):173-177
    [106]H?nninen HE. Influence of metallurgical variables on environment-sensitive cracking of austenitic alloys[J]. International Metal Review, 1979,98:85-136
    [107]Barbucci A, Cerisola G, Cabot P L. Effect of cold-working in the passive behavior of 304 stainless steel in sulfate media[J]. Journal of the Electrochemical Society, 2002,149:B534-42
    [108] Scully J C. The Fundamentals of Corrosion. 3rd edition. New York: Pergamon Pr; 1990
    [109] Bockris J, Khan S. Surface Electrochemistry: A Molecular Level Approach. New York: Plenum Press; 1993
    [110]Joachim Walter Schultze, Arnd Bressel. Principles of electrochemical micro-and nano-system technologies[J]. Electrochimica Acta, 2001,47(1-2):3-21
    [111]Lucien Reclaru, Heinz Luthy, Pierre-Yves Eschler, et al. Corrosion behaviour of cobalt-chromium dental alloys doped with precious metals[J]. Biomaterials, 2005, 26(21):4358-4365
    [112]I Milosev, M Metiko s-Hukovi c, H. Strehblow. Passive film on orthopaedic TiAlV alloy formed in physiological solution investigated by X-ray photoelectron spectroscopy [J] Biomaterials, 2000,21(20):2103-2113
    [113] HUANG Y Z, D J Blackwood.Characterisation of titanium oxide film grown in 0.9%NaCl at different sweep rates[J]. Electrochimica Acta, 2005,51(6):1099-1107
    [114] E.J. Kelly, Mod. Aspects Electrochem.1982,14:319
    [115] Waheed A Badawy, Ahlam M Fathi, Rabab M El-Sherief, et al. Electrochemical and biological behaviors of porous titania (TiO2) in simulated body fluids for implantation in human bodies[J]. Journal of Alloys and Compounds, 2009,475(1-2):911-916
    [116] M. Metikos-Hukovic, A Kwokal, J Piljac.The influence of niobium and vanadium on passivity of titanium-based implants in physiological solution[J]. Biomaterials,2003,24(21):3765-3775
    [117] K.A. d. Souza, A. Robin, Mater. Lett. 2003,57:3010
    [118]Nilson T C Oliveira, Elivelton A, Ferreira, et al. Corrosion resistance of anodic oxides on the Ti-50Zr and Ti-13Nb-13Zr alloys[J]. Electrochimica Acta, 2006,51(10):2068-2075
    [119]Y. Okazaki, K. Kyo, Y. Ito, T. Tateishi, Mater. Trans.1997,38:344
    [120]F L Laque, H R Copson, Corrosion Resistance of Metals and Alloys, Reinhold Publishing Corporation/Chapman & Hall Ltd., New York, London, 1963
    [121] F.L. Laque, H.R. Copson, Corrosion Resistance of Metals and Alloys, Reinhold Publishing Corporation/Chapman & Hall Ltd., New York, London, 1963
    [122] S.Y. Yu, J.R. Scully, Corrosion,1997,53:965
    [123] M A Khan, R L Williams, D F Williams. The corrosion behavior of Ti-6Al-4V,Ti -6Al-7Nb and Ti-13Nb-13Zr in protein solutions[J]. Biomaterials,1999,20(7):631-637
    [124] ZHOU YingLong, Mitsuo Niinomi, Toshikazu Akahori,et al.Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical application[J]. Materials Science and Engineering:A, 2005, 398(1-2): 28-36
    [125] Palit G C, Elayaperumal K. Passivity and pitting of corrosion resistant pure metals Ta, Nb, Ti, Zr, Cr and A1 in chloride solutions[J]. Corrosion Science, 1978,18(2):169-179
    [126]LIU G Q, ZHU Z Y, KEW, et al. Corrosion behavior of stainless steels and nickel-based alloys in acetic acid solutions containing bromide ions[J]. Corrosion, 2001,57(8):738
    [127] GAN Yang, LI Ying, LIN Haichao. Experimental studies on the local corrosion of low alloy steels in 3.5% NaCl[J]. Corrosion Science, 2001,43(3):397-411
    [128] Hong T, Nagumo M. The effect of chloride concentration on early stages of pitting for type 304 stainless steel revealed by the AC impedance method[J]. Corrosion Science, 1997,39(2):285-293
    [129] Batista W, Louvisse A M T,Mattos O R, et al. The Electrochemical behaviour of INCOLOY 800 and AISI 304 steel in solutions that are similar to those within Occluded Corrosion Cells [J]. Corrosion Science, 1988,28(8):759-768
    [130]Alasdair Charles. Electrochemical Techniques in Corrosion Science and Engineering[J]. Electrochimica Acta, 2003,48(8):1082
    [131] K L LUTHRA.Low temperature hot corrosion of cobalt-base alloys: partⅠ.Morphology of the reaction product[J].Metallurgical Transactions A, 1982,13:1843-1852
    [132]赵双群,谢锡善.新型镍基高温合金在模拟燃煤锅炉环境中的腐蚀[J].金属学报,2004,40(6):659-663
    [133]赵双群,董建新,张麦仓等.新型镍基高温合金在950℃和1000℃的氧化行为[J].稀有金属材料与工程,2005,34(2):208-211
    [134]喻育红,孙魁平,邓秀琴等.铁-镍-钴3种高温合金的恒温氧化行为[J].特种钢,2008,29(5):35-37
    [135]刘培生.DZ-40M钴基合金低压气相沉积铝化物涂层的高温氧化行为[J].中国腐蚀与防护学报,1999,19(3):144-148
    [136] HB 5258-2000钢及高温合金的抗氧化性测定试验方法[S],2000
    [137]刘培生,梁开明,顾守仁等. DZ40M钴基合金铝化物涂层的循环氧化[J].稀有金属材料与工程,2000,29(4):231-234
    [138]李云,徐宁,郭建亭等.镍基铸造高温合金K52在900℃恒温氧化性能的研究[J].高等学校化学学报,2007,28(1):113-116
    [139]刘培生,程肯.钴基合金DZ40M的高温氧化激活能[J].稀有金属,2008,32(5):543-546
    [140]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社, 2003
    [141]朱日彰,何业东,齐慧滨.高温腐蚀和耐高温腐蚀材料[M].上海:上海社会科学院出版社, 1995,180-185
    [142] WANG B, GONG J, WANG A Y, et al. Oxidation Behavior of NiCrAlY Coatings on Ni-Based Superalloy[J]. Surface and Coatings Technology, 2002, 149(1):70-75
    [143] Khalid F A, Hussain N, Shahid K A. Microstructure and Morphology of High Temperature Oxidation in Superalloy[J]. Materials Science and Engineering:A, 1999, 26(5):87-93
    [144] LI Meiheng, SUN Xiaofeng, HU Wangyu. Hot Corrosion of a Single Crystal Ni-Base Superalloy by Na-Salts at 900℃[J].Oxidation of Metals, 2006, 65(1/2):137-150
    [145] D Poquillon, D Monceau. Application of a Simple Statistical Spalling Model for the Analysis of High-Temperature,Cyclic-Oxidation Kinetics Data[J].Oxidation of Metals, 2003, 59(3/4),409-431
    [146] LIU P S, ZHOU H Y, LIN A D, et al. Effect of Ti on aluminide coating for DZ40M alloy [J]. Materials and Corrosion, 2001,52(7):497-500
    [147] ZHANG J S, HU Z Q,Y MURATA,et al.Design and development of hot-resistant nickel-base single crystal superalloys by the d-electrons alloy design theory: partⅡ.effects of refractory metals Ti,Ta and Nb on microstructure and properties[J].Metallurgical Transactions A, 1993, 24: 2451-2463
    [148]Y S Zhu,S N Zhang,L Y Xu.Superalloys,1988,Seven springs, Champion,PA, 1988. D.N.Duhl, G.Maurer, S. Antolovich, et al.TMS, Warrendale,PA,1988,703-12
    [149]董巍,单际国,谭稳达.Ni-Al粉末直流TIG电弧堆焊层的稀释率及其控制[J].金属热处理,2007,32(7):41-43
    [150]单际国,谭稳达,任家烈.交流TIG电弧粉末堆焊层成形特点的研究[J].电焊机,2005,35(11):27-29
    [151] J L De Mol Van Otterloo,J Th M De Hosson. Microstructural features and mechanical properties of a cobalt-based laser coating[J]. Acta materialia, 1997, 45(3):1225-1236
    [152] Y P Kathuria.Some aspects of laser surface cladding in the turbine industry[J]. Surface and Coatings Technology,2000,132(2-3): 262-269
    [153] M X Li,Y.zZ. He, Materials & Design, 2004,25 (4):355
    [154]陈伯蠡.焊接冶金原理[M].北京:清华大学出版社,1991
    [155] B F Levin, J N Dupont, A R Marder. Weld overlay coatings for erosion control [J]. Wear, 1995,181-183:810-820
    [156] S. Katayama, J. Light Metal Weld. Constr., 2000, 38 (3):9
    [157] W.F. Savage, Weld. World, 1980, 18 (5/6):89
    [158] XU Guojian, Muneharu Kutsuna, LIU Zhongjie, et al. Comparison between diode laser and TIG cladding of Co-based alloys on the SUS403 stainless steel[J]. Surface and Coatings Technology, 2006, 201(3-4):1138-1144
    [159] S. Kou, AWiley-Interscience Publication, 1987, p.167
    [160] J Przybylowicz,J Kusinski. Laser cladding and erosive wear of Co-Mo-Cr-Si coatings [J]. Surface and Coatings Technology, 2000,125 (1-3):13-18
    [161] S Atamert. Comparison of the Microstructure and Abrasive Wear Properties of Stellite Hardfacing Alloys Deposited by Arc Welding and Laser Cladding [J]. PhD Thesis, University Of Cambridge, UK, 1989
    [162] J.Wiley & Sons, The Superalloys. London, 1984
    [163] P.K. Domalavage, PhD thesis, MIT, USA, 1980
    [164] L. Zhuang, E.W. Langer, Z. Metall,1989, 80:251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700