用户名: 密码: 验证码:
纳米氧化铁、半导体量子点及其复合粒子的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科学的不断发展,各种新型纳米材料和制备手段不断涌现,材料的性能不断提高。随着对纳米材料研究的不断深入,纳米材料逐步走向多功能化。多功能的纳米材料不仅具有多样化的性能,更有强大的应用潜力。于此同时,纳米科学正在经历着产业化的发展阶段,开发符合产业化要求的纳米材料也是当今纳米材料制备所面临的一个重大挑战,为此科学工作者们正在不断努力,使纳米材料这门新兴科技产业更多的融入到人们的日常生活。
     为了开发具有高性能、多功能及实用性的纳米材料,本文选择在诸多领域有着广泛应用的且具有许多奇特性能的氧化铁和半导体量子点为题材,通过一些比较简单环保的方法来获得高性能、构造奇特的氧化铁纳米颗粒、半导体量子点及其复合物。通过X射线衍射分析(XRD)、穆斯堡尔谱仪、差热热重(TDA-TGA)、电子色散能谱(EDS)、透射电镜(TEM)、原子力显微镜(AFM)、振动样品磁强计(VSM)、紫外-可见分光光度计、荧光分光光度计、红外可见光谱(FT-IR)、比表面积分析仪(BET)等多种分析测试手段,对合成的产物进行结构、成分、形貌、磁性能、光性能以及多孔材料的比表面积和孔径分布进行了表征和分析。通过研究表征结果,得出了如下主要结论:
     1、在空气气氛和室温的条件下,通过高能球磨a-FeOOH制得了平均粒径为18nm的a-Fe203。通过穆斯堡尔谱、XRD及TGA-TDA等表征手段对球磨过程中α-FeOOH到α-Fe2O3的转变过程进行分析,得出的球磨机理为:a-FeOOH原料粉末在球磨的撞击过程中颗粒逐渐减小,经过球磨一段时间后其尺度小到使其变为超顺磁性的小颗粒,这些超顺磁的a-FeOOH小颗粒又在球磨过程中脱水生成了α-Fe203颗粒。
     2、通过在聚乙二醇4000(PEG4000)存在的条件下,热分解乙酰丙酮化铁制得了直径在100nm到200nm的Fe304多孔纳米球。这种纳米球是由直径8nm左右的Fe304纳米粒子组装而成,其比表面积达到87.5 m2/g,多数孔径小于4nm。Fe304多孔纳米球的饱和磁化强度达到56.4 emu/g;磁测量和穆斯堡尔谱测量结果表明产物表现出超顺磁性。实验表面PEG的浓度和聚合度对产物形貌有很大影响,并得出介孔Fe304多孔纳米球的形成机理是:在足够高的PEG4000浓度下,PEG4000分子间因交联作用相互缠绕而形成网络,使得处于网络内的Fe304纳米粒子也随之组装起来,最后形成了具有多孔结构的产物。
     3、通过改变CdSe量子点的保存条件来研究其荧光性能的变化,发现在有光照的条件下,CdSe量子点的荧光强度显著增强,量子产率在保存期间持续增强,在保存了44天后量子产率达到36.6%。XRD和pH值的测量结果推断,CdSe量子点表面发生的光诱导的分解作用以及溶解于样品溶液中的02在量子点表面发生的反应,消除了CdSe量子点表面的部分缺陷,是量子点的荧光产率提高的主要原因。CdSe量子点的量子产率增强的过程可以用一个延展的指数函数来拟合,拟合的结果与实验现象基本相符,说明CdSe量子点量子产率的增强动力学可能是CdSe量子点表面分阶段的变化的过程。
     4、通过原位复合制得了CdS/α-Fe2O3复合纳米粒子,TEM表征表明α-Fe2O3纳米粒子的粒径为50nm左右,复合样品中附着于α-Fe2O3纳米粒子表面的CdS粒子的粒径为5nm左右。EDS分析结果表明,通过改变制备过程中CdS原料的量,可以改变复合样品中CdS的包覆量。复合粒子具有一定荧光性能,不同CdS的包覆量的两种复合粒子的量子产率分别为1.18%和1.32%。在甲基橙溶液的光催化实验中发现CdS/α-Fe2O3复合纳米粒子对甲基橙的降解率α-Fe203纳米粒子以及α-Fe2O3和CdS的混合粒子都有所改善,其主要原因是复合粒子表面发生了电荷分离。
     5、实验制备了一种新型的含有Fe304和CdSe量子点的纳米复合材料。FT-IR结果表明:两种粒子通过连结在CdSe量子点表面的还原型谷胱甘肽的氨基和羧基分别与包裹在Fe304表面的淀粉羟基发生氢键作用和部分酯化作用,最终形成了淀粉包裹两种粒子的Fe304-CdSe复合结构。Fe304-CdSe复合粒子的粒径在100nm左右;具有良好的磁响应性,其饱和磁化强度达到48 emu/g;样品同时具有良好的分散稳定性。与不同发射波长的CdSe量子点复合的样品,在荧光显微镜下可以清晰的观察到复合样品所发出的不同颜色的荧光。阿霉素吸附实验表明复合样品对阿霉素具有较高的饱和吸附量,可以达到1.18mg阿霉素/mg复合粒子。吸附动力学曲线和FT-IR分析结果表面,阿霉素在复合样品上的吸附是一个化学吸附与物理吸附并存的状态,其中化学吸附是由于阿霉素的羧基与谷关甘肽的氨基缩合形成酰胺键,物理吸附是由于阿霉素与淀粉及谷胱甘肽之间形成分子间氢键作用。当阿霉素在复合样品上达到饱和吸附的时候,物理吸附占主导地位。阿霉素在PBS7.4缓冲液中的脱附是一个缓慢的过程,在脱附进行94小时候,脱附率为65.2%。VSM结果表明吸附阿霉素的复合样品仍具有较高的饱和磁化强度,其数值可以达到28.3emu/g。由此可见,Fe304-CdSe复合粒子具有较好的磁性能、荧光性能、稳定性;对阿霉素有较高的吸附能力,该复合材料在生物医药学领域具有较大的应用潜力。
During the past decades, numerous novel materials and methods have emerged as the development of nanomaterial science. Dramatic progress has made in synthesizing materials with enhanced properties. Multiple functional nanomaterials present various properties and show large potential in many application fields. They have drawn much attention, and turned out to be a focus. Meanwhile, scientists are being confronted with a great challenge that let the brand-new nanotechnology enter a commercial stage to make them more common and life-oriented.
     In this thesis, we choose iron oxide and semiconductor quantum dots for their extensive applications in many areas and their own novel properties. We aim to gain the nanomaterials with high properties, novel structure and multiple functions, as well as the potential in applications by some simple and green methods. The structure, component, morphologies, magnetic properties, optical properties and porosity of the products were characterized by X-ray diffraction analysis (XRD), Mossbauer spectrum analysis, differential thermal analysis-thermogravimetric analysis (DTA-TGA), X-ray energy dispersive spectrum analysis (EDS), transmission electron microscopy (TEM), atomic force microscopy (AFM), a vibrating sample magnetometer (VSM), a ultraviolet-visible spectrophotometer, a fluorescence spectrophotometer, a Fourier transform infrared spectra (FT-IR) and a surface area analyzer. The main results and conclusions are listed as follows:
     1.α-Fe2O3 nanoparticles were prepared by high-energy ball milling using a-FeOOH as raw materials in the air. The XRD and TEM results showed that after 90 h millingα-Fe2O3 nanoparticles were obtained, and the particle size is about 20 nm. The mechanism of reaction during milling is proposed from Mossbauer spectroscopy that the initialα-FeOOH powder turned smaller and smaller by the high-speed collision during ball milling, later these particles turned to be superparamagnetic, at last these superparamagnetic a-FeOOH particles were dehydrated and transformed intoα-Fe2O3.
     2. Fe3O4 nanoporous particles assembled from small Fe3O4 nanoparticles were prepared by thermal decomposition of iron acetylacetonate in the presence of polyethylene glycol 4000. The size of the spherical nanoporous particles is 100-200 nm. Surface area measurement shows that these Fe3O4 nanoporous particles have a high surface area of 87.5m2/g. Magnetization measurement and Mossbauer spectrum indicate that these particles are nearly superparamagnetic at room temperature. It is found that the morphology of the products is greatly influenced by polyethylene glycol concentration and the polymerization degree of polyethylene glycol. Polyethylene glycol molecules are believed to facilitate the formation of the spherical assembly.
     3. Optical performances of reductive glutathione coated CdSe quantum dots were studied under different ageing conditions. The enhancements of luminescence were obviously occurred for the samples ageing under illumination. The quantum yield of CdSe was enhanced continuously over 44 days at room temperature, and reached as high as 36.6%. O2 was proved to make a certain contribute to the enhancement. The evolutions of the systems during the ageing time were deduced according to the variations of pH values with ageing time and the XRD results of the samples ageing in air with illumination. We conferred that the reduction of surface defects resulted from the photo-induced decomposition of CdSe quantum dots was the main reason for the enhancement of fluorescence. The production of CdO as a result of the surface reaction with O2 made contributions to the enhancement for a certain extent. The curves of quantum yield versus ageing time were fitted with a stretched exponential function. It was found that the course of fluorescence enhancement accorded with the dynamics of system with strongly coupled hierarchical degrees of freedom.
     4. CdS/a-Fe2O3 composite was synthesis by in-situ preparation. The composite was formed by nearly 5nm CdS nanoparticles attaching onto the surfaces of a-Fe2O3 with 50nm in size. EDS results showed the quantity of CdS nanoparticles could changed with the amount of the raw materials. The emission wavelengths were slightly different possibly due to the tiny different in the size of CdS nanoparticles. The photocatalysis results showed the composite had the improved degradation of methyl orange, and charge separation might be the cause of the improvement..
     5. A new type of magnetic-fluorescent composite was prepared using starch-stabilized Fe3O4 and GSH-stabilized CdSe. AFM and TEM showed the group size of the Fe3O4-CdSe composite was about 100 nm. The composites were easily attracted by magnet, and the magnetization of the composites could reach 48emu/g. The composites with green-emitting or red-emitting quantum dots could emit distinguished fluorescence when composed, and the quantum yields are 7.6% and 6.3%. The formation mechanism of the composite was proposed to be the hydrogen bonds between OH of starch and NH of GSH and partial esterification. The adsorption of anticancer drug doxorubicin (DOX) onto the composite was studied. The saturate adsorption could reach 1.18mg DOX/mg composite in PBS7.4 buffer. FT-IR and adsorption kinetics analysis indicated that both chemical and physical adsorption existed between DOX and the composites, and physical adsorption is the main type in the saturate adsorption sample. DOX could release from the composite in PBS7.4 buffer, and the released rate was 65.2% after 94 hours. Moreover, the saturate adsorption sample showed a saturate magnetism of 28.3emu/g. All the result shows the Fe3O4-CdSe composite has a promising application in biomedical region.
引文
[1]N. Pailhe, J. Majimel, S. Pechev, P. Gravereau, M. Gaudon, and A. Demourgues, J. Phys. Chem. C 2008,112:19217-19223
    [2]L. Huo, Q. Li, H. Zhao, L. Yu, S. Gao, J. Zhao, Sensors and Actuat. B 2005,107: 915-920
    [3]J. Ma, J. Lian, X. Duan, X. Liu, W. Zheng, J. Phys. Chem. C 2010,114: 10671-10676
    [4]L.L. Wang, J.S. Jiang, Physica B 2007,390:23-27
    [5]E. Darezereshki, Mater. Lett.,2011,65:642-645
    [6]W. Wang, J.Y. Howe and B. Gu, J. Phys. Chem. C 2008,112:9203-9208
    [7]P. Qiu, C. Jensen, N. Charity, R. Towner, and C. Mao, J. Am. Chem. Soc.2010, 132:17724-17732
    [8]E. Lee, B. Kim, G. Jang, Thin Solid Films,1999,341:73-78
    [9]D.L. Zhang, Progress in Materials Science 2004,49:537-560
    [10]O.M. Lemine, Superlattices and Microstructures 2009,45:576-582
    [11]O.M. Lemine, M. Sajieddine, M. Bououdina, R. Msalam, S. Mufti, A. Alyamani, J. of Alloy. Comp.2010,502:279-282
    [12]S.J. Stewart, R.A. Borzi, E.D. Cabanillas, G. Punte, R.C. Mercader, J. Magn. Magn. Mater.2003,260:447-454
    [13]A. Kihal, B. Bouzabata, G. Fillion, D. Fruchart, Phys. Procedia 2009,2: 665-671
    [14]X.Y. Zhang, Y.J.Chen, L.N. Fan, Z.Y.Li, Solid State Commun.,2006,137: 673-677
    [15]M. Sorescu, J. Nanopart. Res.2000,2:305-308
    [16]J.S. Lee, C. Lee, S. Oh and J.Kim, Scripta mater.2001,44:2023-2026
    [17]M. Zdujic, C. Jovalekic, Lj. Karanovic, M. Mitric, D. Poleti, D. Skala, Mater. Sci. Eng.A1998,245:109-117
    [18]T. Tsuzuki, F. Schaffel, M. Muroi, P.G McCormick, Powder Technol.2011, doi: 10.1016/j.powtec.2011.03.012
    [19]E. Petrovsky, M.D. Alcala, J.M. Criado, T. Grygar, A. Kapicka, J. Subrt, J. Magn. Magn. Mater.2000,210:257-273
    [20]C.R. Lin, Y.M.Chu, S.C.Wang, Mater. Lett.2006,60:447-450
    [21]T. Iwasaki, K. Kosaka, N. Mizutani, S. Watano, T. Yanagida, Hi. Tanaka, T. Kawai, Mater. Lett.2008,62:4155-4157
    [22]T. Iwasaki, K.Kosaka, S. Watano, T. Yanagida, T. Kawai, Mater. Res. Bullet. 2010,45:481-485
    [23]M. Zdujic, C. Jovalekic, Lj. Karanovic, M. Mitric, Mater. Sci. Eng. A 1999,262: 204-213
    [24]M. M. Can, S. Ozcan, A. Ceylan, T. Firat, Mater. Sci. Eng. B 2010,172:72-75
    [25]T. Iwasaki, K. Kosaka, T. Yabuuchi, S. Watano, T. Yanagida, T. Kawai, Adv. Powder Technol.2009,20:521-528
    [26]M. Sorescu, L. Diamandescu, Hyperfine Interact 2010,196:349-358
    [27]P. Sahu, M. De, M. Zdujc, Mater. Chem. Phys.2003,82:864-876
    [28]D. Chen, S. Ni, Z. Chen, China Particuology 2007,5:357-358
    [29]R. Janot, D. Guerard, J. Alloy. Compd.2002,333:302-307
    [30]G. F. Goya, Solid State Commun.2004,130:783-787
    [31]N. Randrianantoandro, A.M. Mercier, M. Hervieu, J.M. Greneche, Mater. Lett. 2001,47:150-158
    [32]M. Sorescu, Tianhong Xu, Lucian Diamandescu, J. Mater. Sci (2011) 46:2350-2358
    [33]K. Simeonidis, Th.Gkinis, S.Tresintsi, C.Martinez-Boubeta, G.Vourlias, I. Tsiaoussis, GStavropoulos, M.Mitrakas, M.Angelakeris, Chem. Eng. J.,2011, doi:10.1016/j.cej.2011.01.074
    [34]M. Sorescu, L.Diamandescu, A.Tomescu, S.Krupa, Physica B 2009,404: 2159-2165
    [35]C.T. Kreage, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beek, Nature 1992, 359:710.
    [36]I. Igor Slowing, L.Juan Vivero-Escoto, Chia-Wen Wu, Victor S.-Y. Lin, Adv. Drug Deliver. Rev.2008,60:1278-1288
    [37]G.φye, W.R. Glomm, T. Vralstad, S. Volden, H. Magnusson, Adv. Colloid Interfac. Sci.2006,123:17-32
    [38]B. Xiao, Q. Yuan, Particuology 2009,7:129-140
    [39]Junko N. Kondo and Kazunari Domen, Crystallization of Mesoporous Metal Oxides, Chem. Mater.2008,20:835-847
    [40]Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, J. Am. Chem. Soc.2008,130: 28-29
    [41]Z. Zhang, L. Zhang, L. Chen, L. Chen, and Q.H. Wan, Biotechnol. Prog.2006, 22:514-518
    [42]W. Zhao, J. Gu, L. Zhang, H. Chen, and J. Shi, J. Am. Chem. Soc.2005,127: 8916-8917
    [43]J.E. Lee, N. Lee, H. Kim, J. Kim, S. H. Choi, J. H. Kim, T. Kim, In Chan Song, J. Am. Chem. Soc.2010,132:552-557
    [44]F. Jiao,J.C. Jumas, M. Womes, A.V. Chadwick, A. Harrison,and P.G. Bruce, J. Am. Chem. Soc.2006,128:12905-12909
    [45]Z. Huang, F. Tang, J. Colloid Interf. Sci.2005,281:432-436
    [46]Y. Zhu, W. Zhao, H. Chen, and J. Shi, J. Phys. Chem. C 2007,111:5281-5285
    [47]X. Liu, Q. Hu, Z. Fang, Q. Wu, and Q. Xie, Langmuir 2009,25(13):7244-7248
    [48]S. Xuan, F. Wang, J. M. Y. Lai, Kathy W. Y. Sham, Y. J. Wang, S. Lee, J. C. Yu, ACS Appl. Mater. Interfaces 2011,3:237-244
    [49]S. Guo, D. Li, L. Zhang, J. Li, E.Wang, Biomaterials 2009,30:1881-1889
    [50]H.B. Xia, J. Yi, P.S. Foo, and B. Liu, Chem. Mater.2007,19:4087-4091
    [51]H. Xia, P. Foo, and J. Yi, Water-Dispersible Spherically Hollow Clusters of Magnetic Nanoparticles, Chem. Mater.2009,21:2442-2451
    [52]L. Chen, Z. Lin, C. Zhao, Y. Zheng, Y. Zhou, H. Peng, J. Alloy. Compd.2011, 509:L1-L5
    [53]W.Seifert, N. Carlsson, M. Miller, M.E. Pistol, L. Samuelson, L. Reine Wallenberg, Prog. Crystal Growth and Charact.1996,33:423-471
    [54]L.E. Brus, J. Chem. Phys.80 (9) (1984) 4403-4408
    [55]关柏鸥,张桂兰,汤国庆,韩关云,光电子,激光,1998,9(3):260-263
    [56]Y. Wang and N. Herron, J. Phys. Chem.1991,95:525-532
    [57]S. J. Rosenthal, J. McBride. S. J. Pennycook, C.Leonard, Surf. Sci. Rep.2007, 62:111-157
    [58]C.B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc.1993,115: 8706-8715.
    [59]J.E.B. Katari, V.L. Colvin, A.P. Alivisatos, J. Phys. Chem.1994,98:4109-4117.
    [60]X. Peng, J. Wickham, P.A. Alivisatos, J. Am. Chem. Soc.1998,120:5343-5344.
    [61]D.V. Talapin, A.L. Rogach, A. Kornowski, M. Haase, and H. Weller, Nano Lett. 2001,1 (4):201-211
    [62]X. Peng, L. Manna,W. Yang, J.Wickham, E. Scher, A. Kadavanich, A.P. Alivisatos, Nature 2000,404(2):59-61.
    [63]T.C. Kippeny, L.A. Swafford, S..J. Rosenthal, J. Chem. Ed.2002,79(9): 1094-1100.
    [64]Z.A. Peng, X. Peng, J. Am. Chem. Soc 2001,123:183-184
    [65]Z.A. Peng, X.Peng, J. Am. Chem. Soc.2001,123:1389-1395.
    [66]L. Qu, A.Z. Peng, X. Peng, Nano Lett.2001,1 (6):333-337.
    [67]W.W. Yu, X. Peng, Angew. Chem. Int. Ed.2002,41 (13):2368-2371.
    [68]Z. Deng, L. Cao, F. Tang and B. Zou, J. Phys. Chem. B,2005,109 (35): 16671-16675
    [69]Z. Adam Peng and Xiaogang Peng, J. Am. Chem. Soc.2002,124:3343-3353
    [70]L. Manna, E.C. Scher, A.P. Alvisatos, J. Am. Chem. Soc.2000,122: 12700-12706.
    [71]D.V. Talapin, A.L. Rogach, I. Mekis, S. Haubold, A. Kornowski, M.Haase, Horst Weller, Colloid Surf. A:Physicochemical and Engineering Aspects 2002,202: 145-154
    [72]T. Rajh, J. Phys. Chem.1993,97:11999-12003
    [73]J. Guo, W. Yang, and C. Wang, J. Phys. Chem. B 2005,109:17467-17473
    [74]A.L. Rogach, T. Franzl, T.A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, J. Phys.Chem. C 2007,111:14628 14637
    [75]Y. Yan, Y. Mu, G. Feng, L. Zhang, L. Zhu, L.Xu, Chem. Res. Chinese U.,2008, 24(1):8-14
    [76]K. Zhao, J. Li, H. Wang, J. Zhuang, and W. Yang, J. Phys. Chem. C 2007,111: 5618-5621
    [77]L. Li, H. Qian, N. Fang, J. Ren, Journal of Luminescence,2006,116:59-66
    [78]C. Jiang, S. Xu, D. Yang, F. Zhang and W. Wang, Luminescence 2007,22: 430-437
    [79]陈启凡,王文星,葛颖新,李梦莹,徐淑坤,张秀娟,分析化学研究简报,2007,35:135-138
    [80]梁佳然,钟文英,于俊生,高等学校化学学报,2009,30:14-18
    [81]F.C. Liu, T.L. Cheng, C.C. Shen, W.L. Tseng, and M.Y. Chiang, Langmuir 2008, 24:2162-2167
    [82]Z. Deng, F.L. Lie, S. Shen, I. Ghosh, M. Mansuripur, and A. J. Muscat, Langmuir 2009,25:434-442
    [83]宋冰,程柯,武超,杜祖亮,材料研究学报,2009,23:89-92
    [84]D. Zhao, Z. He, W.H. Chan, and M.M. F. Choi, J. Phys. Chem. C 2009,113: 1293-1300
    [85]杨卫海.李万万.孙康,水热法合成巯基乙胺稳定的CdTe量子点,高等学校化学学报,2008,29:681-685
    [86]H. Zhang, L. Wang, H. Xiong, L. Hu, B. Yang, W. Li, Adv. Mater.,2003.15:1712-1715.
    [87]H. Qian. X. Qiu, L. Li, and J. Ren, J. Phys. Chem. B 2006,110:9034-9040
    [88]J. Gao, H. Gu, and B. Xu, Acc. Chem. Res.,2009,42:1097-1107
    [89]X. Yu, J. Wan, Y. Shan, K. Chen, and X. Han, A Facile Chem. Mater.2009,21: 4892-4898
    [90]X. Liu, Q. Hu, X. Zhang, Z. Fang, and Q. Wang, J. Phys. Chem. C 2008,112: 12728-12735
    [91]G.H. Du, Z.L.Liu, Q.H. Lu, X. Xia, L.H. Jia, K.L. Yaol, Q. Chu and S.M. Zhang, Nanotechnology 2006,17:2850-2854
    [92]K.W. Kwon and M. Shim, J. Am. Chem. Soc.2005,127:10269-10275
    [93]H. Gu, R. Zheng, X.X. Zhang, and B. Xu, J. Am. Chem. Soc.2004,126: 5664-5665
    [94]X. Hong, J. Li, M. Wang, J. Xu, W. Guo, J. Li, Y. Bai, and T. Li, Chem. Mater. 2004,16:4022-4027
    [95]H.M. Fan, M. Olivo, B.s Shuter, J.B. Yi, R. Bhuvaneswari, H.R. Tan, J. Am. Chem. Soc.2010,132:14803-14811
    [96]A. Saha, S.K. Basiruddin, N. Pradhan, and N. R. Jana, Langmuir 2010,26(6): 4351-4356
    [97]D. Wang, J. He, N. Rosenzweig, and Z. Rosenzweig, Nano Lett.,2004,4: 409-413
    [98]P. Sun, H. Zhang, C. Liu, J. Fang, M. Wang, J. Chen, J. Zhang, C. Mao, and S. Xu, Langmuir 2010,26(2):1278-1284
    [99]A. Agrawal, T. Satthe and S. Nie, J. Agric. Food Chem.2007,55:3778-3782
    [100]S.M. Veronica, A.C. Miguel, M. Spasova, M.L. Luis, and F. Michael, Adv. Funct. Mater.2006,16:509-514
    [101]N. Insin, J.B. Tracy, H. Lee, J.P. Zimmer, R.M. Westervelt, and M.G. Bawendi, ACS Nano,2008,2:197-202
    [102]T.R. Sathe, A. Agrawal, and S. Nie, Anal. Chem.2006,78:5627-5632
    [103]N. Gaponik, I.L. Radtchenko, G.B. Sukhorukov, and A.L. Rogach, Langmuir 2004,20:1449-1452
    [104]H.Y. Xie, C. Zuo, Y. Liu, Z.L. Zhang, D.W. Pang, X.L. Li, J.P. Gong, C. Dickinson, Small 2005,1:506-509
    [105]毕胜.涂料工业,2003,33(7):44-47.
    [106]F. Zhang, H. Yang, X. Xie, L. Li, L. Zhang, J. Yu, H. Zhao, B.n Liu, Sensor. Actuat. B 2009,141:381-389
    [107]B. Sun, J. Horvat, H.S. Kim, W.S. Kim, J. Ahn, and G. Wang, J. Phys. Chem. C 2010,114:18753-18761
    [108]闫世成,罗文俊,李朝升,邹志刚,中国材料进展,2010,29:1-9
    [109]A. Fujishima, K. Hond, Nature 1972,238:37-38.
    [110]W. Zhao, Y. Sun, and F.N. Castellano, J. Am. Chem. Soc.2008,130: 12566-12567
    [111]J. Yu, W. Liu, and H. Yu, Cryst. Growth Des.,2008,8(3):930-934
    [112]J.H. Pan, X. Zhang, J. Du, D.D. Sun, and J.O. Leckie, J. Am. Chem. Soc.2008, 130:11256-11257
    [113]S. Kuang, L. Yang, S. Luo, Q. Cai, Appl. Surf. Sci.,2009,255:7385-7388
    [114]C. Kormann, D.W. Bahnemann and M.R. Hoffmann, J. Photoch. Photobio. A: Chemistry,1989,48:161-169
    [115]K.L Jonathan, J.B Allen. J. Phy. Chem.,1987,91:5076-5083.
    [116]S.W. Cao,Y.J. Zhu, G.F. Cheng,Y.H. Huang, J. Phys. Chem. Solid.,2010,71: 1680-1683
    [117]刘翠,李保山,吴艳萍,工业催化,2007,15:51-54
    [118]S.W. Cao and Y.J. Zhu, J. Phys. Chem. C 2008,112:6253-6257
    [119]J. Yu, X. Yu, B. Huang, X. Zhang, and Y. Dai, Cryst. Growth Des.,2009,9: 1474-1480
    [120]L. Guo, F. Chen, X. Fan, W. Cai, J. Zhang, Appl. Catal. B:Environmental 2010,96:162-168
    [121]York R. Smitha, K. Joseph Antony Raj. Vaidyanathan (Ravi) Subramanianb, Colloid. Surf. A:2010,367:140-147
    [122]Z.J. Chen, B.Z. Lin, Y.L. Chen, K.Z. Zhang, B. Li, H. Zhu, J. Phys. Chem. Solid.,2010,71:841-847
    [123]Y.S. Hu, K.S. Alan, A.J. Forman, D. Hazen, J.N. Park, and E.W. McFarland, Chem. Mater.2008,20:3803-3805
    [124]A.A. Tahir, K.G. Upul Wijayantha, S. Saremi-Yarahmadi, M. Mazhar, V. McKee, Chem. Mater.2009,21:3763-3772
    [125]A. Figuerola, R. Di Corato, L. Manna, T. Pellegrino, Pharmacol. Res.2010,62: 126-143
    [126]J.K. Oh,J.M. Park, Prog. Polym. Sci.2011,36:168-189
    [127]K. Samba Sivudu, K.Y. Rhee, Colloid. Surf. A2009,349:29-34
    [128]Ana C.A. Roque, A. Bicho, Iris L. Batalha, Ana S. Cardoso, Abid Hussain, J. Biotech.2009,144:313-320
    [129]S. Huang, Y Fan, Z. Cheng, D. Kong, P. Yang, Z. Quan, C. Zhang, and J. Lin, J. Phys. Chem. C 2009,113,1775-1784
    [130]J. Chomoucka, J. Drbohlavova, D. Huska, V. Adam, R. Kizek, J. Hubalek, Pharmacol. Res.2010,62:144-149
    [131]T. Jamieson, R. Bakhshi, Da. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biomaterials 2007,28:4717-4732
    [132]V. Biju, S. Mundayoor, R.V. Omkumar, A. Anas, M. Ishikawa, Biotech. Adv. 2010,28:199-213
    [133]M. Han, X. Gao, J.Z. Su, and S.Nie, Nat. Biotechnol.,2001,19:631-635
    [134]B. Christoffer Lagerholm, M. Wang, Lauren A. Ernst, Danith H. Ly, H. Liu, Marcel P. Bruchez, Nano Lett.,2004,4:2019-2022
    [135]Larry C. Mattheakis, Jennifer M. Dias. Y.J. Choi, J. Gong, Marcel P. Bruchez, J. Liu, Anal. Biochem.2004,327:200-208
    [136]A. Sukhanova, J. Devy, L. Venteo, H. Kaplan, M. Artemyev, V. Oleinikov, D.Klinov, Anal. Biochem.,2004,324:60-67.
    [137]Igor L. Medintz, H. Tetsuo Uyeda, Ellen R. Goldman and H. Mattoussi, Nat. Mater.,2005,4:435-446
    [138]J. Kim, J. E. Lee, J. Lee, J.H. Yu, B. Chan Kim, K. An, Y. Hwang, J. Am. Chem. Soc.2006,128:688-689
    [139]H.M. Fan, M. Olivo, B. Shuter, J.B. Yi, R. Bhuvaneswari, H.R. Tan, J. Am. Chem. Soc.2010,132:14803-14811
    [140]P. Sun, H. Zhang, C. Liu, J. Fang, M. Wang, J. Chen, J. Zhang, C. Mao, and S. Xu, Langmuir 2010,26(2):1278-1284
    [141]G.P. Wang, E.Q. Song, H.Y. Xie, Z.L. Zhang, Z.Q. Tian, C. Zuo, D.W. Pang, D.C. Wuc, Chem. Commun.,2005,34:4276-4278
    [1]R.M. Torres Sanchez, J. Mater. Sci. Lett.1996,15:461-463.
    [2]J.S. Lee, C.S. Lee, S.T. Oh, J.G. Kim, Scr. Mater.2001,44:2023-2025.
    [3]J.S. Jiang, L. Gao, X.L. Yang, J.K. Guo, Acta Phys. Chim. Sinica 2000,16: 312-216.
    [4]R.Z. Ma, Mossbauer, Spectroscopy Manual, Metallurgical Industry Press,1993, p. 362.
    [5]Z. Li, Y.P. Ying, Mineral Mo ssbauer, Spectroscopy, Science Press,1996, p.133.
    [1]R.M. Cornell, U. Schwertmann, The Iron Oxides:Structure, Properties, Reactions, Occurrence and Uses (VCH, England,1996)
    [2]C. Song, J.P. Du, J.H. Zhao, S.A. Feng, G.X. Du, Z.P. Zhu, Chem. Mater.2009, 21:1524-1527
    [3]W. Cho,H.J. Lee, M. Oh, J. Am. Chem. Soc.2008,130:16943-16941
    [4]J. Kobler, T. Bein, ACS Nano 2008,2:2324-2327
    [5]G. Bidan, O. Jarjayes, J.M. Fruchart, E. Hannecart, Adv. Mater.1994,6:152-153
    [6]B.Z. Tang, Y. Geng, J.W.Y. Lam, B. Li, X. Jing, X. Wang, F. Wang, A.B. Pakhomov, X.X. Zhang, Chem. Mater.1999,11:1581-1586
    [7]N.N. Greenwood, T.C. Gibb (eds.), Mossbauer Spectroscopy (Chapman and Hall, London,1971)
    [8]A.A. Novakovaa, V.Y. Lanchinskayaa, A.V. Volkov, T.S. Gendler, T.Y. Kiseleva, M.A. Moskvina, S.B. Zezin, J. Magn. Magn. Mater.2003,354:258-261
    [9]S. Si, A. Kotal, T.K. Mandal, S. Giri, H. Nakamura, T. Kohara, Chem. Mater. 2004,16:3489-3493
    [10]K. Woo, J.W. Hong, S.M. Choi, H.W. Lee, J.P. Ahn, C.S. Kim, S.W. Lee, Chem. Mater.2004,16:2814-2817
    [11]A. Ditsch, P.E. Laibinis, D.I.C. Wang, T.A. Hatton, Langmuir 2005,21: 6006-6008
    [12]L.M. Yang, Y.J. Wang, Y.W. Sun, G.S. Luo, Y.Y. Dai, J. Colloid Interf. Sci.299, 823 (2006)
    [13]S.R. Zhai, C.S. Ha, Micropor. Mesopor. Mat. Nanoscale Res. Lett.2009 4:1439-1446
    [1]M Tomasulo,I Yildiz,FM Raymo, J. Phys. Chem. B 2006,110:3853-3855.
    [2]V Biju, Y Makita, A Sonoda, H Yokoyama, Y Baba, M Ishikawa, J. Phys. Chem. B 2005,109:13899-13905.
    [3]T Jin, F Fujii, E Yamada, Y Nodasaka, M Kinjo, J. Am. Chem. Soc.2006, 128:9288-9289.
    [4]SF Wuister, CM Donega, A Meijerink, J. Phys. Chem. B 2004,108:17393-17397.
    [5]JR Lakowicz, I Gryczynski, Z Gryczynski, CJ Murphy, J. Phys. Chem. B 1999, 103:7613-9720.
    [6]GJHM van Sark W, PLTM Frederix, DJ Van den Heuvel, HC Gerritsen, J. Phys. Chem. B 2001,105:8281-8284.
    [7]N Gaponik, DV T alapin, AL Rogach, K Hoppe, EV Shevchenko, A Kornowski, A Eychmuller, H Weller, J. Phys. Chem. B 2002,106:7177-7185.
    [8]Y Wang, ZY Tang, MAC Duarte, IP Santos, M Giersig, NA Kotov, LML Marzan, J. Phys. Chem. B 2004,108:15461-15469.
    [9]HB Bao, YJ Gong, Z Li, MY Gao, Chem. Mater 2004,16:3853-3859.
    [10]M Baumle, D Stamou, JM Segura, R Hovius, H Vogel, Langmuir 2004, 20:3828-3831.
    [11]G Markus, S Monika, L Vladimir, G Nikolai, E Alexander, RG Ute, Anal. Chem. 2009,81:6285-6294.
    [12]RF Kubin, AN Fletcher,. J Lumin 1982,27:455-462.
    [13]Y Ebenstein, T Mokari, U Banin, Appl. Phys. Lett.2002,80:4033-4035.
    [14]U Banin, M Bruchez, AP Alivisatos, T Ha, S Weiss, DS Chemla, J. Chem. Phys. 1999,110:1195-1201.
    [15]M Kuno, DP Fromm, HF Hamann, A Gallagher, DJ Nesbitt, J. Chem. Phys. 2000,112:3117-3120.
    [16]M Jones, J Nedeljkovic, RJ Ellingson, AJ Nozik, G Rumbles, J. Phys. Chem. B 2003,107:11346-11352.
    [17]XD Cao, CM Li, HF Bao, QL Bao, H Dong, Chem. Mater.2007,19:3773-3779.
    [18]D Meissner, R Memming, J. Phys. Chem.1988,92:3476-3483.
    [19]JEB Katari, VL Colvin, AP Alivisatos, J. Phys. Chem.1994,98:4109-4117.
    [20]XP Zhou, ZY Shao, Y Kobayashi, XQ Wang, N Ohuchi, M Taketa, A Kasuya, Optical. Mater.2007,29:1048-1054.
    [21]RG Palmer, DL Stein, E Abrahams, PW Anderson, Phys. Rev. Lett.1984, 53:958-961.
    [22]MH Cohen, GS Grest, Phys. Rev. B 1981,24:4091-4094.
    [1]Y. T. Zhang, Y. S. Wang, and J. S. Jiang, Chinese Sci. Bullet.1986,31:823-826
    [2]K. Claudius, W. B. Detlef, R. H. Michael, J. Photoch. Photobio. A:Chemistry, 1989,48:161-169
    [3]L.L.Wang, J. S. Jiang, J Nanopart Res,2011,13:1301-1309
    [4]Z Wang, B Huang, Y Dai, X Qin, X Zhang, P Wang, H Liu, J Yu. J. Phys. Chem. C 2009.113,4612-4617
    [5]Michael R. Hoffmann, Scot T. Martin, Wonyong Choi, Detlef W. Bahnemannt. Chem. Rev.1995,95,69-96
    [1]Z.F. Gan, J.S. Jiang, Y. Yang, B. Du, M. Qian, P. Zhang. J. Biomed. Mater. Res. A 2008; 84A:10-8.
    [2]Y. Yang, J.S. Jiang, B. Du, Z.F. Gan, M. Qian, P. Zhang. J. Mater. Sci.:Mater. Med.2009; 20:301-7.
    [3]L.L. Wang, J.S. Jiang. J. Nanopart. Res.2011,13:1301-1309
    [4]J.S. Jiang, Z.F. Gan, Y. Yang, B. Du, M. Qian, P. Zhang. J. Nanopart. Res.2009; 11:1321-30.
    [5]P. Rodriguez-Fragoso, de la Cruz G.G., S.A. Tomas, O. Zelaya-Angel. Appl. Surf. Sci.2010; 257:581-4.
    [6]M.F. Kotkata, A.E. Masoud, M.B. Mohamed. Physica E 2009; 41:640-5.
    [7]B.K. Singh, R.K. Sharma, B.S. Garg. Spectrochimica Acta Part A 2006; 63:96-102.
    [8]J. Silver, M.Y. Hamed, I.E.G. Morrison. Inorg. Chim. Acta.1985; 107:169-78.
    [9]G. Domazetis, R.J. Magee, B.D. James. J. Organomet. Chem.1979; 173:357-76.
    [10]R.D. Waldron. J Phys Rev 1955; 99:1727-35.
    [11]D.K. Kweon, D.S. Cha, H.J. Park, S.T. Lim. J. Appl. Polym. Sci.2000; 78: 986-93.
    [12]J. Zhang, S. Rana, R.S. Srivastava, R.D.K. Misra. Acta. Biomater.2008; 4:40-8.
    [13]甘志峰,《磁、生物双功能纳米颗粒的制备及其性能研究》,华东师范大学,2006,p40-41
    [14]Y. Akiyama, S. Fujita, H. Senboku, C.M. Rayner, S.A. Brough, M. Arai, J. Supercritical Fluids 2008; 46:197-205.
    [15]S. Rana, A. Gallo, R.S. Srivastava, R.D.K. Misra, Acta. Biomater.,2007,3: 233-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700