用户名: 密码: 验证码:
含铌介孔分子筛和氧化物的制备及其在若干反应中催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一类新型催化材料,铌化合物由于其独特的性能引起了国内外学者的广泛关注。它们可以作为催化剂的活性组分、助剂或载体使用,其催化作用主要源于其独特的酸性及氧化还原性。它们在许多领域都有着广泛应用,如脱水、脱氢、水合、水解、氧化脱氢、环氧化、氨氧化、甲基氧化偶联、酯化、烷基化、异构化;缩合;碳氢化合物的歧化、氢化、NO的分解与还原、加氢脱硫/脱氮、光催化、环境污染治理等等。我国具有十分丰富的铌矿资源,但在铌化合物的基础研究及应用开发方面尚处于起步阶段。因此,进一步研究铌系催化剂,对开发新型高效、绿色环保的新型催化体系,具有十分重要的理论价值和社会意义。
     本文以五氯化铌NbCl5为铌源,采用前驱体法、水热法和溶胶-凝胶法分别制备了铌负载型含钛硅基分子筛Nb/Ti-MCM-41催化剂、铌基介孔分子筛Nb-MCM-41催化剂和离子掺杂(Nb,I,N)型TiO2催化剂,通过XRD, N2吸附-脱附,FT-IR, UV-vis, TG, XPS等表征技术对其进行了结构分析;并通过紫外光下降解溶液中亚甲基蓝反应(Nb/Ti-MCM-41),双氧水苯酚羟基化反应(Nb-MCM-41)和可见光下催化处理阿奇霉素制药废水中有机残留物反应(离子掺杂型TiO2)来分别考察它们的催化活性。
     催化剂表征结果显示,Nb/Ti-MCM-41和Nb-MCM-41系列催化剂都保持了MCM-41介孔材料的性质,拥有大的比表面积和均匀分布的孔径。Nb/Ti-MCM-41催化剂中,通过浸渍负载的Nb物种均匀的分散在催化剂的表面,但有少量沉积在分子筛孔内;而Nb-MCM-41系列中的Nb原子则顺利的进入了骨架结构中;通过XPS分析可知,掺杂离子(Nb,I,N)都进入到了半导体TiO2的晶格中,TiO2的晶相也随掺杂离子的不同而发生变化。
     实验结果表明,在紫外光下降解亚甲基蓝反应过程中,助剂Nb的加入可使得Ti-MCM-41催化剂对有机物分子的吸附和降解性能都有所提高。催化剂中反应活性最佳的Nb/MCM-41,在暗反应阶段对亚甲基蓝的吸附高达83%,在光反应阶段也表现出了好的降解活性。
     Nb-MCM-41催化苯酚羟基化反应中,对产物苯二酚而言,固液比为50:1的条件下,最佳反应条件为:催化剂中Si/Nb=48,反应温度55℃,催化剂用量0.1 g,反应时间6 h,苯二酚选择性最高为96%;产物中邻苯二酚与对苯二酚(CAT/HQ)的比可达到80。
     所有离子掺杂型TiO2在催化处理阿奇霉素废水中的有机物时都表现出了一定的活性。其中,活性最佳的为I-N-TiO2,可见光下反应12 h后对目标废水COD的去除率高达57.2%,活性最差的为Nb-TiO2,仅2.7%。
To be a new kind of catalytic materials, niobium compound has aroused extensive concern in the domestic and international academics due to its unique structure and excellent properties. They can be used as a catalyst of the active component, promoter or carrier, Niobic acid and compounds containing niobium are applied in a wide range of catalysis fields for their unique acidic property, oxidizing and thermal stability. Such as:dehydration, dehydrogenation, hydration, hydrolysis, epoxidation, ammoxidation, hydroisomerization, esterification, alkylation, condensation, disproportionation, desulfurization, denitrification, photocatalytic reactions and so on. China boasts abundant niobium mineral resources for the development of niobium industry with the advantaged superiority. However, currently the research of theoretical basis, analytical methods, development and application prospects about niobium-based compounds is still at the starting stage. So, It has an important theoretical referenced value and practical significance to explore the catalytic systems of high efficient, clean and green.
     In this study, using NbCls as precursor, three kinds of Nb-based catalyst were prepared. There are Nb/Ti-MCM-41, Nb-MCM-41 and (Nb, I, N) doped TiO2, which synthesized by precursor method, hydrothermal method and sol-gel method, respectively. The samples were characterized by XRD, N2 adsorption-desorption, FT-IR, UV-vis, TG, XPS and the reasons of formation also discussed. The catalytic activity of as-prepared samples were evaluated in the photodegradation of methylene blue under UV-light, hydroxylating phenol reaction, and the visible-light photodegradation of Azithromycin pharmaceutical wastewater, respectively.
     The X-ray diffraction patterns indicate that the modified materials (Nb/Ti-MCM-41 and Nb-MCM-41) retain the standard MCM-41 structure. The Nb deposited into the structure of Ti-MCM-41. Whereas, to Nb-MCM-41, the Nb atoms are present in the framework instead. XPS study shows that the dopants (Nb, I, N) have been doped into the bulk of TiO2.
     Nb/Ti-MCM-41 shows a significant MB elimination efficiency under UV light, duo to its porosity, huge specific surface area and the promoting effect of niobium dispersed into the structure. During a 3-hour reaction, Nb/MCM-41 demonstrates the best adsorption and photocatalytic activity (83% of MB decolored at the dark adsorption) as compared with other samples.
     The catalytic activity of Nb-MCM-41 toward hydroxylation of phenol in aqueous medium was evaluated using H2O2 as the oxidant at 80℃.The effects of reaction parameters such as Si/Nb ratios, temperature, catalyst amount, and time were also investigated. The results show that the optimal reaction condition is a 100 mg L-1 catalyst dosage, Si/Nb=48, reaction temperature of 55℃and a 6-h reaction time. the Nb-MCM-41-48 showes nearly 96% benzenediol selectivity and high CAT/HQ ratio, to 80 times.
     The XRD patterns reveal that the mono-doped samples display only anatase phase, whereas the codoped I-N-TiO2 exhibits a mixed-phase (anatase and rutile phase). All the doped TiO2 were applied in the treatment of Azithromycin pharmaceutical wastewater(APW), and they demonstrates different activity for the photocatalytic treatment of APW under visible light. After a 12-hour reaction, I-N-TiO2 demonstrated the best photocatalytic activity of APW (57% APW degradation percentage). On the contrary, the wost one the Nb-TiO2, with the only 2.7% APW degradation percentage.
引文
[1]Fujishima A, Honda K. Electrochemical Photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37~38.
    [2]Carey J H, Lawrence J, Tosine H M. Photodechlorination of PCB'S in the presence of titanium dioxide in aqueous suspensions [J]. Bulletin of Environment Contamination and Toxicology,1976,16(6):697~701.
    [3]Steven N Frank, Allen J Bard. Semiconductor Electrodes.12.Photoassisted oxidations and Photo-electrosythesis at Polycrystalline TiO2 Electrodes [J]. Journal of American Chemical Society,1977,99(14):4667~4675.
    [4]杨信媛,罗洁,李德良TiO2光催化剂掺杂改性的研究新进展[J].应用化工,2010,39:1397-1400.
    [5]伊洪坤,卢平.TiO2光催化剂的改性技术研究进展[J],环境工程,2009,27(S1):519-521.
    [6]许明霞.碘掺杂与碘氮共掺杂TiO2的制备及其可见光催化活性研究[D].南昌大学,2007.
    [7]Verwey J.W.M,.VanderV.D,. Dirksen, G. J,.Blasse, G. Luminescence processes in the crystalline and glass modifications of LnBGeO5-type compositions [J]. Journal of Solid State Chemistry,1990,89(1):106~117.
    [8]Asahi R, Morikawa T, Ohwakl T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269~271.
    [9]谭怀琴,全学军,赵清华,等.二氧化钛光催化技术研究进展[J].重庆工学院学报,200519(3):79-83.
    [10]闫世成,罗文俊,李朝升,等.新型光催化材料探索和研究进展[J].中国材料进展,2010,29(1):1-9.
    [11]Copidas K R, Bohorgaez M, Kamat P V. Photophysical and Photochemical aspect of coupled semiconductors:Charge transfer Processes in Colloidal CdS-TiO2 and CdS-AgI System [J]. The Journal of Physical Chemistry,1990,94(16):6435~6440.
    [12]陈红霞,王艳,肖彩梅,等.光催化降解催化剂及其研究进展[J].天津化工,2010,24(6):1-4.
    [13]黄雪梅,王苑娜,成晓玲,等.二氧化钛可见光光催化技术研究进展[J].材料导报,2008,22(Z2):47-51.
    [14]陈红霞,王艳,肖彩梅,等.光催化降解催化剂及其研究进展[J].天津化工,2010,24(6):1-4.
    [15]Kresge C T, Leonowicz M E, Roth W J. et al. Mesoporous moleeular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710~712.
    [16]安群力.介孔分子筛MCM-41的合成及性能研究[D].西安科技大学,2005.
    [17]陶涛.MCM-41的合成方法及其催化性能研究[D].江苏大学,2006.
    [18]刘冀锴,安太成,曾祥英,等.含钛介孔光催化剂的制备研究进展[J].材料导报,2007,21(6):124-129.
    [19]Jun Yang, Jun Zhang, Liwei Zhu, et al. Synthesis of nanotitania particles embedded in mesoporous SBA-15:characterization and photocatalytic activity [J]. Journal of Hazardous Materials,2006,137(2):952-958.
    [20]Yoon-Jeong Do, Jin-Ho Kim, Jin-Hwan Park, eta al. Photocatalytic decomposition of 4-nitrophenol on Ti-containing MCM-41 [J]. Catalysis Today,2005,101(3-4):299~305.
    [21]Bo Sun, Ettireddy P. Reddy, Panagiotis G. Smirniotis. Effect of the Cr6+ concentration in Cr-incorporated TiO2-loaded MCM-41 catalysts for visible light photocatalysis [J]. Applied Catalysis B:Environmental,2005,57(2):139-149.
    [22]Hanming Ding, Hong Sun, Yongkui Shan. Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO2 photocatalyst [J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,169(1):101~107.
    [23]Mangalampalli V, Phanikrishna Sharma, Valluri Durga Kumari, et al. TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light:Part2.Silica prepared using a crylic acid emulsion [J]. Journal of Hazardous Materials,2010,175(1-3):1101~ 1105.
    [24]Lev Davydov, Ettireddy P. Reddy, Paul France, et al. Transition-Metal-Substituted Titania-Loaded MCM-41 as photocatalysts for the Degradation of Aqueous Organicsin Visible Light [J]. Journal of Catalysis,2001,203(1):157~167.
    [25]陈春霞,徐成华,冯良荣,等.催化苯酚羟基化制邻、对苯二酚的研究进展[J].化学研究与应用,2004,16(6):745-747.
    [26]孙炜,曹贵平,张明华,等.苯酚羟基化制邻苯二酚催化剂的活性评价[J].精细化工中间体,2003,33(3):44-45.
    [27]石权达,孟明扬,谭立哲,等.双氧水催化氧化法合成邻苯二酚的研究进展[J].染料与染色,2006,43(6):34-36.
    [28]徐海兵SnMCM-41的表面金属有机化学制备及其对苯酚羟基化反应的催化性能研究[D].2003,福州大学.
    [29]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature,1994,368:321~323.
    [30]Marco T,Giovanni P,Bruno Notari.[P].US:4410501,1983-10-18.
    [31]郝向英,郭海福,刘双喜.负载型铜系分子筛催化剂在苯酚羟基化反应中的应用[J].分子催化,2009,23(2):135-138.
    [32]Parida K M, Rath Dharitri. Surface characterization and catalytice valuation of copper-promoted Al-MCM-41 toward hydroxylation of phenol [J]. Journal of Colloid and Interface Science,2009,340(2):209~217.
    [33]Jian Gao, Min Liu, Xiangsheng Wang, et al. Characterization of Ti-ZSM-5 Prepared by Isomorphous Substitution of B-ZSM-5 With TiCl4 and Its Performance in the Hydroxylation of Phenol [J]. Industrial & Engineering Chemistry Research,2010,49(5):2194~2199.
    [34]Guoying Zhang, Jinlin Long, XuxuWang, et al. Catalytic Role of Cu Sites of Cu/MCM-41 in Phenol Hydroxylation [J]. Langmuir,2010,26(2):1362~1371.
    [35]Siyang Jiang, Yan Kong, Jun Wang, et al. Synthesis, characterization of bimetallic Sn-Zn-MCM41 and its catalytic performance in the hydroxylation of phenol [J]. Journal of Porous Materials,2006,13(3):341~346.
    [36]张信芳,张敬畅,陈晓冬,等.酸性中心对复合氧化物催化苯酚羟基化反应的影响[J].化学工业与工程技术,2004,25(5):1-4.
    [37]曹维良,庄绪霞,杨作银,等.苯酚羟基化制备苯二酚反应机理的理论研究[J],高等学校化学学报,2005,26(3):489-492.
    [38]张俊梅,冯惠生.过氧化氢氧化苯酚反应机理及动力学[J].化学反应工程与工艺,200420(3):239-244.
    [39]徐莉.苯酚羟基化合成邻苯二酚铁系催化剂反应性能、结构及反应机理研究[D].2000,南开大学.
    [40]Tanabe K, O kazaki S. Various reactions catalyzed by niobium compounds and materials [J]. Applied Catalysis A:General,1995,133(2),191~218.
    [41]Tanabe K. Catalytic application of niobium compounds [J]. Catalysis Today,2003,78(1-4): 65-87.
    [42]Nowak 1, Ziolek M. Niobium compounds-preparation, characterization and application in heterogeneous catalysis [J]. Chemical Reviews,1999,99(12):3603~3624.
    [43]Ziolek M. Niobium-containing catalysts the state of the art [J]. Catalysis Today,2003, 78(1-4):47~64.
    [44]李应成,岳斌,杨为民,等.铌酸/氧化铌在多相催化反应中的应用[J].化学通报,2005,68(3):172-178.
    [45]孙清,刘兰香,邢晓玲,等.铌的催化作用[J].石油化工,2007,36(4):319-327.
    [46]J M Jehng,I E Wachs. The Molecular Structures and Reactivity of Supported Niobium Oxide Catalysts [J]. Catalysis Today,1990,8(1):37~55.
    [47]J M Jehng, I E Wachs. Molecular structures of supported niobium oxide catalysts under in situ conditions [J]. The Journal of Physical Chemistry,1991,95(19):7373~7379.
    [48]S M Maurer, E I KO. Structural and acidiccharacterization of niobia aerogels [J]. Journal of Catalysis,1992,135(1):125~134.
    [49]Tanabe K. Niobic acid as an unusual acidic solid material [J]. Materials Chemistry and Physics,1987,17(1-2):217~225.
    [50]伍志鲲.铌酸催化剂在有机合成中的应用[D].湖南师范大学,2001.
    [51]F.Kurosawa. Japan Patent Kokai.1979:54~52692
    [52]田部浩三,小野嘉夫等.新固体酸和碱及其催化作用[M].北京:化学工业出版社,1992.
    [53]Hanaoka Takaaki, Takeuchi Kazuhiko, M atsuzaki Takehiko, et al. Solvolysis and isomerization of phenyloxirane catalyzed with niobic acid [J]. Catalysis Letters,1990,5(1): 13-16.
    [54]Sun Qing, Auroux A, Shen Jianyi. Surface acidity of niobium phosphate and steam reforming of dimethoxymethane over CuZnO/Al2O3-NbP complex catalysts [J]. Journal of Catalysis, 2006,244(1):1~9.
    [55]李宁,初旭明,陆翠云,等Nb-F/HZSM-5催化剂催化乙醇脱水制乙烯[J].石油化工,2010,39(2):125-130.
    [56]李春晶,沈键.铌酸的催化应用[J].化学工业与过程,2008,25(4):359-364.
    [57]李春晶,沈健,张亮,等.固体催化剂铌酸催化合成油酸甲酯[J].化学工业与过程,2008,25(6):519-522.
    [58]魏田升,沈健,陈南,段大少Nb-SBA-15介孔分子筛催化合成水杨酸甲酯[J].石化技术与应用,2010(28):191-194.
    [59]Cynthia C, Mendes P, E Lizabeth R L J. Alkylation of toluene and anisole with l-octen-3-ol over niobium catalysts [J]. Applied Catalysis A:General,2006,266(1):67-72.
    [60]李春晶,李剑,沈健,等Nb-SBA-15催化合成2,4-二叔丁基苯酚[J].化学工业与工程,2010,27(1):11-16.
    [61]K Tanabe, S Okazaki. Various reactions catalyzed by niobium compounds and materials [J]. Applied Catalysis A:General,1995,133(2):191~218.
    [62]I Nowak, M Ziolek. Niobium compounds-preparation, characterization and application in heterogeneous catalysis [J]. Chemical Reviews,1999,99(12):3603~3624.
    [63]K. Tanabe. Niobium, catalyst repair kit[J]. Chem tech A,1991,21 (10):628~632.
    [64]K. Tanabe. Application of niobium oxides as catalysts [J]. Catalysis Today,1990, (8):1~11.
    [65]职慧珍,罗军,吕春绪,等.铌酸催化的苯甲醛与甲醇缩合反应[J].化学通报,2008,(3):228-231.
    [66]江桥,赵静,季伟捷,等M-VPO (M=Te, Nb, Ce)上丙烷氧化的研究[J].无机化学学报,2008,24(9):1474-1479.
    [67]Beata Kilos, Alain Tuel, Maria Ziolek, et al. New Nb-containing SBA-3 mesoporous materials—Synthesis, characteristics, and catalytic activity in gas and liquid phase oxidation [J]. Catalysis Today,2006,118 (3-4):416~424.
    [68]白向向,沈健,魏田升Nb-SBA-15的直接合成及其催化氧化苯乙烯性能研究[J].石油化工高等学校学报,2011,24(1):48-58.
    [69]Wachs, Israel E. Oxidative desulfurization of sulfur-containing hydrocarbons [P]. USA, 7374666.2008
    [70]Christophe Geantet, Julio Afonso, Michkle Breysse, et al. Niobium sulfides as catalysts for hydrotreating reactions [J]. Catalysis Today,1996,118(1-2):23~30.
    [71]T. Iizuka, Y. Tanaka, K. Tanabe. Hydrogenation of carbon monoxide and carbon dioxide over supported rhodium catalysts [J]. Journal of Molecular Catalysis,1982,17(2-3):381~389.
    [72]李建中,吕功煊Ni-Nb2O5和Ni-Cu-Nb2O5催化甲烷燃烧活性研究[J].分子催化,2005,19(3):188-192.
    [73]Y. Higashio, T. Nakayama. One-step synthesis of methyl isobutyl ketone catalyzed by palladium supported on niobic acid [J]. Catalysis Today,1996,28(1-2):127~131.
    [74]Caero L C, Romero A R, Ramirez J. Niobium sulfide as a dopant for Mo/TiO2 catalysts [J]. Catalysis Today,2003,78(1-4):513~518.
    [75]R Buffon, A Auroux, F Lefebvre, et al., A surface organometallic approach to the synthesis of rhenium-based catalysts for the metathesis of olefins:CH3ReO3/Nb2O5[J]. Journal of Molecular Catalysis,1992,76(1-3):287-295.
    [76]李新,张维萍,李秀杰,等.多相催化剂上烯烃交义歧化反应[J].化学进展,2008,20(7):1021-1031.
    [77]逄艳,吕维忠,王芳,等SO42-/ZrO2-Nb2O5固体超强酸催化剂的制备与IR表征[J].稀有金属材料与工程,2010,39(Z1):235-238.
    [78]任彦瑾,施力.铈、铌改性镁铝尖晶石作为催化降烯烃助剂的研究[J].中国稀土学报,2008,26(1):1-5.
    [79]张伟德,沙开清,李基涛,等.Nb205对丙烷氧化脱氢催化剂YV04的助催化作用[J].天然气化工,1999,24(1):24-27.
    [80]程振华,于艳秋,陈平文,等Mo-V-Te-Nb-O催化剂在丙烷氧化制丙烯酸反应中活化条件的研究[J].河南化工,2008,25(3):14-17.
    [81]Roussel M, Bouchard M, Karim K, et al. MoVO-based catalysts for the oxidation of ethane to ethylene and acetic acid:Influence of niobium and/or palladium on physicochemical and catalytic properties [J]. Applied Catalysis A:General,2006,308:62~74.
    [82]Kazunari Domen, Akihiko Kudo, Atsushi Shinozaki, et al. Photodecomposition of water and hydrogen evolution from aqueous methanol solution over novel niobate photocatalysts [J]. Chemical Communications,1986,356~357.
    [83]Abe R, Higashi M, Sayama K, et al. Photocatalytic Activity of R3MO7 and R2Ti207 (R=Y, Gd, La; M=Nb, Ta) for Water Splitting into H2 and O2 [J]. The Journal of Physical Chemistry B,2006,110(5):2219~2226.
    [84]Tian Meng kui, Shang guanWenfeng, Yuan Jian, et al. K4Ce2M10O30 (M=Ta, Nb) as visible light-driven photocatalysts for hydrogen evolution from water decomposition [J]. Applied Catalysis A:General,2006,309(1):76~84.
    [85]Ikeda Shigeru, Fubuki Minori, Takahara Yoshiko K, et al. Photocatalytic activity of hydrothermally synthesized tantalate pyrochlores for overall water splitting [J]. Applied Catalysis A:General,2006,300(2):186~190.
    [86]吕全建,王建玲,姬小明.有序介孔金属氧化物的合成及其光催化性能表征[J].河南师范大学学报(自然科学版),2008,36(3):76-78.
    [87]高行龙,于建强,赵修松.具有可见光催化活性的CoNb2O6材料的合成与表征[J].科学技术与工程,2009,9(9):2362-2265.
    [88]Li Xiukai, Tetsuya Kako, Ye Jinhua.2-Propanol photodegradation over lead niobates under visible light irradiation [J]. Applied Catalysis A:General,2007,326(1):1~7.
    [89]K Domen, Y Ebina, S Ikeda, et al. Layered niobium oxides pillaring and exfoliation [J]. Catalysis Today,1996,28(1-2):167~174.
    [90]何杰,杨万秀.Nb掺杂TiO2催化剂结构与光催化性能研究[J].安徽工程科技学院学报,2005,20(2)12-15.
    [91]Carl Renan Estrellan, Chris Salim, Hirofumi Hinode, Photocatalytic decomposition of perfluorooctanoic acid by iron and niobium co-doped titanium dioxide [J]. Journal of Hazardous Materials,2010,179(1-3):79~83.
    [92]Anita Trenczek-Zajac, Marta Radecka, Mieczyslaw Rekas. Photoelectrochemical properties of Nb-doped titanium dioxide [J]. Physica B:Condensed Matter,2007,399(1):55~59.
    [93]Zhang Fengli, Zheng Qi, Wei Kemei, et al. Improved Performance of Au/Fe2O3 Catalysts Promoted with ZrO2 and Nb2O5 in the WGS Reaction under Hydrogen-rich Conditions [J] Catalysis Letter,2006,108(3-4):131~136.
    [94]Kobayashi Shu, Arai Kenzo, Shimizu Haruka, et al. A Novel Dinuclear Chiral Niobium Complex for Lewis Acid Catalyzed Enantioselective Reactions:Design of a Tridentate Ligand and Elucidation of the Catalyst Structure [J]. Angewandte Chemie International Edition,2005,44(5):761~764.
    [95]Segura, Y.; Cool, P.; Voort, P.V.; Mees, F.; Meynen, V; Vansant, E.F. TiOx-VOx Mixed Oxides on SBA-15 Support Prepared by the Designed Dispersion of Acetylacetonate Complexes:Spectroscopic Study of the Reaction Mechanisms[J]. The Journal of Physical Chemistry B,2004,108 (12):3794~3800.
    [96]Lihitkar, N.B.; Abyaneh, M.K.; Samuel, V.; Pasricha, R.; Gosavi, S.W.; Kulkarni, S.K. Titania Nanoparticles Synthesis in Mesoporous Molecular Sieve MCM-41[J]. Journal of Colloid and Interface Science.2007,314(1):310~316.
    [97]Shimada H, Sato T, Yoshimura Y, et al. Support effect on the catalytic activity and properties of sulfided molybdenum catalysts[J]. Journal of Catalysis,1988,110(2):275~284.
    [98]Anilkumar, M.; Holderich, W.F. Highly active and selective Nb modified MCM-41 catalysts for Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam[J]. Journal of Catalysis.2008,260(1):17~29.
    [99]Parvulescu, V.; Anastasescu, C.; Constantin, C.; Su, B.L. Mono(V,Nb) or bimetallic (V-Ti,Nb-Ti) ions modified MCM-41 catalysts:synthesis, characterization and catalysis in oxidation of Hydrocarbons (aromatics and alcohols)[J]. Catalysis Today.2003,78(1~4): 477~4855.
    [100]郑珊,高濂,张青红,等.TiO2修饰MCM-41的结构表征及光催化苯酚降解活性[J].催化学报.2001,Vol.22(2):206-208.
    [101]Lee, D.W.; Ihm, S.K.; Lee, K.H. Mesostructure control using a titania-coated silicananosphere framework with extremely high thermal stability[J]. Chemistry of Materials,2005,17(17):4461~4467.
    [102]Djaoued Y, Badilescu S, Ashrit P V. Low temperature sol-gel preparation of nanocrystalline TiO2 thin films[J]. Journal of Sol-Gel Science and Technology,2002, 24(3):247~254.
    [103]孙丽萍,高山,赵辉,霍丽华,赵经贵。锐钛矿型二氧化钛纳米粉体的IR光谱与光催化性能研究[J].光散射学报,2004,15(4):300-302.
    [104]沈玉龙,吴树新,王丽红,赵亮亮.苯酚羟基化合成苯二酚的热力学分析[J].唐山师范学院学报,2009,31(2):8-10.
    [105]辛靖,张小明,张兆荣,索继栓Nb-MCM-41硅基中孔分子筛的合成与表征[J].分子催化,1999,13(4):308-311.
    [106]徐建华,戴维林,杨新丽,曹勇,范康年.新型MCM-41固载化铌酸催化氧化环戊烯制备戊二醛[J].化学学报,2004,62,(16):1467-1471.
    [107]魏田升,沈健.铌改性SBA-15介孔分子筛催化合成油酸异丙酯[J].辽宁石油化工大学学报.2009,29(3):26-29.
    [108]白向向,刘睁,王雷,魏田升.直接合成Nb-SBA-15催化氧化苯乙烯[J].化学工业与工程,2010,27(6):480-484.
    [109]Wenyue Su, Yongfan Zhang, Zhaohui Li, et al. Multivalency Iodine Doped TiO2: Preparation, Characterization, Theoretical Studies, and Visible-Light Photocatalysis [J]. 2008,24(7):3422~3428.
    [110]M. Anilkumar, W.F. Holderich. Highly active and selective Nb modified MCM-41 catalysts for Beckmann rearrangement of cyclohexanone oxime to ε-caprolactam [J]. Journal of Catalysis,2008,260 (1):17~29.
    [111]Bacsa RR, Kiwi J. Effect of rutile phase on the photocatalytic properties of nanocrystalline titania during the degradation of p-coumaric acid [J]. Applied Catalysis B:Environmental, 1998,16(1):19~29.
    [112]Hurum DC, Agrios AG, Gray KA, Rajh T, et al. Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR [J]. The Journal of Physical Chemistry B,2003,107(19):4545~4549.
    [113]Tojo S, Tachikawa T, Fujitsuka M, Majima T. Iodine-Doped TiO2 Photocatalysts: Correlation between Band Structure and Mechanism [J]. The Journal of Physical Chemistry C,2008,112(38),14948~14954.
    [114]Long MC, Cai WM, Wang ZP, Liu GZ. Correlation of electronic structures and crystal structures with photocatalytic properties of undoped, N-doped and I-doped TiO2 [J]. Chemical Physics Letters,2006,420(1-3):71~76.
    [115]Mattsson A, Leideborg M, Larsson K, et al. Adsorption and Solar Light Decomposition of Acetone on Anatase TiO2 and Niobium Doped TiO2 Thin Films [J]. Journal of Physical Chemistry B,2006,110(3):1210~1220.
    [116]Hong XT, Wang ZP, Cai WM, et al. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide [J]. Chemistry of Materials,2005,17(6):1548~1552.
    [117]Li D, Ohashi N, Hishita S, et al. Origin of visible-light-driven photocatalysis:A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations [J]. Journal of Solid State Chemistry,2005,178(11):3293~3302.
    [118]Wenyue Su, Yongfan Zhang, Zhaohui Li, et al. Multivalency Iodine Doped TiO2: Preparation, Characterization, Theoretical Studies, and Visible-Light Photocatalysis [J]. Langmuir,2008,24(7):3422~3428.
    [119]Parida KM, Naik B. Synthesis of mesoporous TiO2-xNx spheres by template free homogeneous co-precipitation method and their photo-catalytic activity under visible light illumination [J]. Journal of Colloid and Interface Science,2009,333(1):269~276.
    [120]杨万秀.铌掺杂二氧化钦介孔分子筛的合成及光催化性能研究[D].2005,安徽理工大学.
    [121]Tojo S, Tachikawa T, Fujitsuka M. Majima T. Iodine-Doped TiO2 Photocatalysts: Correlation between Band Structure and Mechanism [J]. The Journal of Physical Chemistry C,2008,112(38),14948~14954.
    [122]Hoffmann MR, Martin ST, Choi WY, et al. Environmental Applications of Semiconductor Photocatalysis [J]. Chemical Reviews,1995,95(1):69~96.
    [123]Xiao Q, Ouyang LL. Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline:Effect of calcination temperature [J]. Chemical Engineering Journal,2009,148(2-3):248~253.
    [124]Ihara T, Miyoshi M, Iriyama Y, et al. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping [J]. Applied Catalysis B: Environmental,2003,42(4):403~409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700