用户名: 密码: 验证码:
一维钨纳米材料的制备及其生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钨(W)是重要的功能材料和结构材料,具有熔点高、高温性能好、强度硬度高、电阻率低、电子逸出功低、热膨胀系数和蒸气压低等特点,以及优良的抗腐蚀性能,被广泛应用于国防、航空航天、电子信息、能源化工等领域。一维W纳米材料兼具金属W和一维纳米结构的双重特点,使一维W纳米材料具有更新奇的物理和化学特性。但由于W的超高熔点及超低蒸汽压,其对应一维纳米材料很难采用常规制备方法获得,因此寻求一种简单、稳定、低成本、高可控性、高产量的一维W纳米材料制备方法成为研究的热点。目前,制备W纳米线的方法大多工序繁杂,反应条件苛刻,生产成本高,可控性差,从而限制了W纳米线的批量化制备及规模化应用。本文采用金属催化法制备一维W纳米材料,主要研究了一维W纳米材料的金属催化制备及其生长机理,研究的主要内容和结论如下:
     (1)通过磁控溅射法和化学法在SiO2基片表面制备得到大规模、分散性良好、粒径分布较为均匀的Ni纳米催化颗粒,采用金属催化低温气相沉积的方法在基片上成功合成了W单晶纳米线阵列。研究结果表明,金属催化法同样适合于一维金属纳米材料的制备,这为实现金属纳米线阵列的可控制备提供一种新方法。
     (2)对Ni催化气相沉积制备W纳米线的生长机理进行研究,研究发现在W纳米线的生长过程中顶端有Ni4W的固态催化颗粒,提出了顶端气-固-固(VSS)催化机制。这种VSS催化机制可以实现金属纳米线的可控制备,有效的控制纳米线的生长位置和尺寸大小,为实现纳米器件的大规模生产和应用奠定了基础。
     (3)对一维W纳米结构阵列的可控制备进行系统的研究,研究结果表明:W纳米线阵列的直径主要受到催化剂和N2流量的影响,随着催化剂颗粒尺寸的减小或者N2流量的减小,催化生长后W纳米线直径的尺寸也相应变小;W纳米线阵列的长度主要受到生长时间的影响,生长时间的延长会使W纳米线阵列的长度也相应的增加;W纳米线阵列的密度主要受到催化剂和WO3粉末粒径的影响,随着催化剂颗粒密度的增大或者WO3粒径的减小,W纳米线阵列的密度也相应增大;W纳米线阵列的形貌主要受到生长温度和基片材料的影响,温度升高会使得W纳米线在横向的生长速率不一样,在生长初期形成倒锥形的微观形貌,在生长后期形成有规则的六边形形貌的一维W微米管结构;同时,基片材料也是影响W纳米线阵列形貌的一个重要的因素,在相同条件下,Si02基片上生成的W纳米线阵列为六方结构形貌,而W基片上生成的W纳米线阵列为四方结构形貌。因此,通过对W纳米线阵列可控制备的研究,掌握了对W纳米线阵列的规则、整齐和均一性的全局调控的能力,从而有望实现通过外场控制全局的纳米器件设计思想。
     (4)采用一种基于金属Ni催化气相沉积过程的方法,成功在W基片上合成了具有四方形貌的W纳米线阵列。四方W纳米线顶端呈尖状形貌,底端的宽度要明显大于纳米线的平均宽度。这种具有独特几何形貌结构的W纳米线阵列,是理想的新型场致电子发射材料。论文对四方W纳米线阵列的生长条件进行研究,研究结果表明:四方W纳米线阵列的宽度直接受到Ni催化剂尺寸的影响,随着催化剂颗粒尺寸的减小,四方W纳米线阵列的宽度也逐渐减小;当生长温度在950℃时,四方W纳米线阵列的密度最大,有利于四方W纳米线的生长;随着生长时间的延长,不仅有利于四方W纳米线阵列长度的增加,还有利于形成有序稳定的四方W纳米线结构;N2流量太小或太大都不利于四方W纳米线阵列的生长,N2和H2气压会影响四方W纳米线气相生长基元的平均自由程λ,流速会对温度梯度以及热量散发等因素有影响,对四方W纳米线阵列生长的影响十分重要。另外,本论文首次提出底端VSS催化生长机理制备四方W纳米线阵列,同时认为四方W纳米线阵列的生长遵循空间竞争机制。
     (5)采用磁控溅射法在Si基片表面制备得到Cu纳米催化颗粒,通过气相沉积的方法,在950℃成功合成直径在100nm左右,长度达到10μm,具有极高长径比的W纳米线阵列。Cu-W合金属于固相不溶于液相的系统,在高温过程中不会发生成分的变化,属于假合金。Cu催化合成W纳米线阵列的机理可能是由于Cu纳米颗粒在催化过程中主要起诱导形核的作用,气体W源在H2气氛下还原生成的W原子会优先吸附在Cu纳米颗粒上。随着生长时间的增加,晶核在动力学的作用下会沿着一定的方向择优生长,从而形成W纳米线阵列。
Tungsten (W) is an important function and structural materials. Tungsten having a high melting point, good high temperature performance, high strength and hardness, low resistivity, low electron work function, low thermal expansion coefficient and vapor pressure, and excellent corrosion resistance, is widely used in the defense, aerospace, electronic information, energy, chemical, and other fields. One-dimensional W nanomaterials with novel physical and chemical properties have the dual characteristics of both metal W and one-dimensional nanostructures. However, the one-dimensional W nanomaterial is difficult to synthesize with conventional preparation methods due to its ultra-high melting point and low vapor pressure. Therefore, seeking a simple, stable, low-cost, high controllability and high yield method to synthesize one-dimensional W nanomaterials become hot. Currently, most of the synthesis methods of W nanowires have the following disadvantages, such as the complicated steps, harsh reaction conditions, high production costs, poor controllability, thereby limiting the batch preparation and large-scale applications of W nanowires. In this thesis, a metal catalyzed method was used to prepare one-dimensional W nanomaterials. We will focus on the research of the metal catalyzed preparation and growth mechanism of one-dimensional W nanomaterials. The main contents and conclusions of the thesis are as follows:
     (1) Large-scale, well dispersed and uniform Ni nano-catalytic particles were prepared by magnetron sputtering and chemical methods on SiO2substrate first, and then the single crystal W nanowires were successfully synthesized on the substrate by metal catalyzed vapor deposition method at low temperature. The research results show that the metal catalytic method is also suitable for the preparation of one-dimensional metal nanomaterials, which provides a new method to prepare metal nanowires controllably.
     (2) Growth mechanism of W nanowires synthesized by Ni catalytic vapor deposition was studied. It's found that there were Ni4W solid catalytic particles on the top of the W nanowire during growth process. Therefore the catalytic mechanism of top vapor-solid-solid (VSS) was proposed. The VSS mechanism can achieve the controllable preparation of metal nanowires, which laid the foundation for the large-scale production and application of nanodevices.
     (3) Controllable preparation of W nanowire arrays was studied in detail. The results show that the diameter of the W nanowire arrays is mainly decided by the influence of the catalyst and N2flow. The diameter of the W nanowires is correspondingly decreased with the reduction in size of the catalyst particles, or the reduction of the N2flow rate; The length of the W nanowire arrays is mainly influenced by the growth time. Extension of the growth time will correspondingly increase the length of W nanowire arrays, which is beneficial to synthesis extra long W nanowire arrays; The density of the W nanowire arrays is mainly decided by the influence of the catalyst and N2flow. The density of the W nanowires correspondingly increases with the increasing of the density of the catalyst particles or decreasing of WO3particle size; The morphology of W nanowire arrays is mainly influenced by the growth temperature and the substrate material. The temperature rise will cause that the growth rate in the transverse direction of W nanowire is not the same, which lead to morphology of forming an inverted conical in the initial growth and microns tube in the late growth. The substrate material is also an important factor. Hexagonal structure was generated on SiO2substrate, while tetragonal structure was generated on W substrate under the same conditions. Therefore, by the studying of the controllable preparation of the W nanowire arrays, we master the ability of global regulation, which is expected to achieve design ideas of nanodevices through controlling of the situation through the outfield.
     (4) Tetragonal W nanowire arrays were successfully fabricated on tungsten substrate using Ni catalysts by chemical vapor deposition. The top of the tetragonal W nanowire is tip-shaped morphology, and the bottom of the diameter is significantly larger than the average diameter of the nanowires. The W nanowires with such unique geometry morphology are ideal new field electron emission materials. The study results show that:the diameter of the tetragonal W nanowire is directly affected by the size of the Ni catalyst, the size of the diameter is gradually reduced with the reduction of the thickness of the catalyst; the optimum growth temperature is950℃. With the extension of the growth time, not only conducive to the increase of the length, but also conducive to the formation of an orderly and stable tetragonal W nanowire; Too much or too little N2flow is not conducive the growth of tetragonal W nanowire. The pressure of N2and H2will affect the mean free path λ of the vapor growth primitives. The flow will affect temperature gradient and heat distribution, which is very important to the growth of tetragonal W nanowire arrays. In addition, the bottom VSS catalytic growth mechanism of tetragonal W nanowire was first proposed in the thesis, and growth of tetragonal W nanowire follows the space competition mechanism.
     (5) Cu nano-catalytic particles were prepared by magnetron sputtering on the Si substrate first, and then the W nanowire arrays with diameter of about100nm and length of10μm were successful synthesis by Cu-catalyzed vapor deposition method at950℃. Cu-W alloy is a pseudo-alloy, which belong to the system that the solid phase does not dissolve in the liquid phase and the phase component does not change in a high-temperature process. We believe that the mechanism of the catalytic synthesis could be the induced nucleation of the Cu nano-catalytic particles, and the W atoms in H2atmosphere preferentially adsorbed on Cu nanoparticles. With the increase in the growth time, crystal nucleus will preferential grow along a certain direction under the action of kinetics, thereby forming W nanowire arrays.
引文
[1]Iijima S. Helical microtubules of graphitic carbon[J], nature,1991,354(6348): 56-58.
    [2]Hu J, Ouyang M, Yang P, et al. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires[J]. nature,1999, 399(6731):48-51.
    [3]Pan ZW, Wang ZL. Nanobelts of semiconducting oxides[J]. Science,2001, 291(5510):1947-1949.
    [4]Pierret A, Hocevar M, Diedenhofen S, et al. Generic nano-imprint process for fabrication of nanowire arrays[J]. Nanotechnology,2010,21:065305.
    [5]Liang H-W, Liu S, Yu S-H. Controlled Synthesis of One-Dimensional Inorganic Nanostructures Using Pre-Existing One-Dimensional Nanostructures as Templates[J]. Advanced Materials,2010,22(35):3925-3937.
    [6]Wang S, He Y, Fang X, et al. Structure and Field-Emission Properties of Sub-Micrometer-Sized Tungsten-Whisker Arrays Fabricated by Vapor Deposition[J]. Advanced Materials,2009,21(23):2387-2392.
    [7]Huang H, Wu Y, Wang S, et al. Mechanical properties of single crystal tungsten microwhiskers characterized by nanoindentation[J]. Materials Science and Engineering A,2009,523(1-2):193-198.
    [8]Choi J, Kim J. Highly sensitive hydrogen sensor based on suspended, functionalized single tungsten nanowire bridge[J]. Sensors and Actuators B:Chemical, 2009,136(1):92-98.
    [9]冯永成,董守安,唐春.一维金纳米线的自组装研究[J].贵金属,2007,28(004):1-5.
    [10]Burda C, Chen X, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes[J]. Chemical Reviews-Columbus,2005,105(4):1025-1102.
    [11]Walter E, Murray B, Favier F, et al. Noble and coinage metal nanowires by electrochemical step edge decoration[J]. The Journal of Physical Chemistry B,2002, 106(44):11407-11411.
    [12]Murphy CJ, Jana NR. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Advanced Materials,2002,14(1):80.
    [13]Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods:role of the size and nature of the seed[J]. Chemistry of Materials,2004,16(19):3633-3640.
    [14]张金中,曹茂盛,曹传宝.自组装纳米结构[M].化学工业出版社,2005.
    [15]Li Z, Hao F, Huang Y, et al. Directional light emission from propagating surface plasmons of silver nanowires[J]. Nano Letters,2009,9(12):4383.
    [16]Pyayt AL, Wiley B, Xia Y, et al. Integration of photonic and silver nanowire plasmonic waveguides[J]. Nature Nanotechnology,2008,3(11):660-665.
    [17]杨丰帆,孙建生,徐勤涛,于万增,李吉宏,赵云鹏.Ag纳米线的合成及应用研究进展[J].材料导报,2009,(z1):90-92.
    [18]Tao AR, Yang P. Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowires[J]. The Journal of Physical Chemistry B,2005,109(33): 15687-15690.
    [19]Zhang J, Li X, Sun X, et al. Surface enhanced Raman scattering effects of silver colloids with different shapes[J]. The Journal of Physical Chemistry B,2005,109(25): 12544-12548.
    [20]Dickson RM, Lyon LA. Unidirectional plasmon propagation in metallic nanowires[J]. The Journal of Physical Chemistry B,2000,104(26):6095-6098.
    [21]Gray SK, Kupka T. Propagation of light in metallic nanowire arrays: Finite-difference time-domain studies of silver cylinders[J]. Physical Review B,2003, 68(4):045415.
    [22]Ditlbacher H, Hohenau A, Wagner D, et al. Silver nanowires as surface plasmon resonators[J]. Physical Review Letters,2005,95(25):257403.
    [23]Hu X, Chan C. Photonic crystals with silver nanowires as a near-infrared superlens[J]. Applied Physics Letters,2004,85(9):1520-1522.
    [24]Pang Y, Meng G, Fang Q, et al. Silver nanowire array infrared polarizers [J]. Nanotechnology,2002,14(1):20.
    [25]徐国荣,任凤莲,司士辉.铜纳米线阵列的模板组装[J].功能材料,2007,38(3):459-461.
    [26]Xia Y, Yang P, Sun Y, et al. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications [J]. Advanced Materials,2003,15(5):353-389.
    [27]Huang Q, Lilley CM, Bode M, et al. Surface and size effects on the electrical properties of Cu nanowires[J]. Journal of Applied Physics,2008,104(2): 023706-023709.
    [28]Sharma G, Kripesh V, Sim MC, et al. Synthesis and characterization of patterned and nonpatterned copper and nickel nanowire arrays on silicon substrate [J]. Sensors and Actuators A:Physical,2007,139(1):272-280.
    [29]Duan JL, Liu J, Yao HJ, et al. Controlled synthesis and diameter-dependent optical properties of Cu nanowire arrays[J]. Materials Science and Engineering:B, 2008,147(1):57-62.
    [30]Fang D, Huang K, Liu S, et al. High density copper nanowire arrays deposition inside ordered titania pores by electrodeposition[J]. Electrochemistry Communications,2009,11(4):901-904.
    [31]Chang Y, Lye ML, Zeng HC. Large-scale synthesis of high-quality ultralong copper nanowires[J]. Langmuir,2005,21(9):3746-3748.
    [32]Yen MY, Chiu CW, Hsia CH, et al. Synthesis of Cable-Like Copper Nanowires[J]. Advanced Materials,2003,15(3):235-237.
    [33]Zhang Y, Lam FLY, Hu X, et al. Fabrication of copper nanowire encapsulated in the pore channels of SBA-15 by metal organic chemical vapor deposition[J]. The Journal of Physical Chemistry C,2007,111(34):12536-12541.
    [34]彭伟才,陈康华,李晶儡,等.随机分布Fe纳米线复合材料的吸波性能[J].中国有色金属学报,2005,15(002):288-294.
    [35]苏轶坤,汤皎宁,李钧钦.Co纳米阵列的制备及其直径对磁性的影响[J].稀有金属材料与工程,2007,36(7):1189-1192.
    [36]于美,刘建华,李松梅.基于氧化铝模板直接电沉积法镍纳米线的制备与表征[J].中国有色金属学报,2007,17(5).
    [37]窦卫红,许启明,刘利峰,等.大规模制备Ni纳米线阵列及其磁学特性研究[J].功能材料,2008,39(7):1091-1094.
    [38]Napolsky K, Eliseev A, Knotko A, et al. Preparation of ordered magnetic iron nanowires in the mesoporous silica matrix[J]. Materials Science and Engineering:C, 2003,23(1):151-154.
    [39]Cordente N, Respaud M, Senocq F, et al. Synthesis and magnetic properties of nickel nanorods[J]. Nano Letters,2001,1(10):565-568.
    [40]Vayssieres L, Rabenberg L, Manthiram A. Aqueous chemical route to ferromagnetic 3-D arrays of iron nanorods[J]. Nano Letters,2002,2(12):1393-1395.
    [41]Liu Z, Li S, Yang Y, et al. Complex-Surfactant-Assisted Hydrothermal Route to Ferromagnetic Nickel Nanobelts[J]. Advanced Materials,2003,15(22):1946-1948.
    [42]Xie Q, Dai Z, Huang W, et al. Synthesis of ferromagnetic single-crystalline cobalt nanobelts via a surfactant-assisted hydrothermal reduction process[J]. Nanotechnology,2005,16(12):2958.
    [43]Jiang DD, Fu YB, Ma XH. Fabrication and characterization of tin nanorod electrodes for lithium ion rechargeable batteries [J]. Acta Physico-Chimica Sinica, 2009,25(8):1481-1484.
    [44]Cronin SB, Lin YM, Rabin O, et al. Making electrical contacts to nanowires with a thick oxide coating[J]. Nanotechnology,2002,13(5):653.
    [45]Chatzichristidi M, Speliotis T, Raptis I, et al. Effect of magnetic field on metal-insulator transitions in Bi-wire structures [J]. Microelectronic Engineering, 2007,84(5):1528-1531.
    [46]Huber T, Nikolaeva A, Gitsu D, et al. Quantum confinement and surface-state effects in bismuth nanowires[J]. Physica E:Low-dimensional Systems and Nanostructures,2007,37(1):194-199.
    [47]Wang J, Wang X, Peng Q, et al. Synthesis and characterization of bismuth single-crystalline nanowires and nanospheres[J]. Inorganic Chemistry,2004,43(23): 7552-7556.
    [48]丁占来,张建民,齐芳娟,等.铟纳米颗粒及纳米线的制备[J].中国有色金属学报,2006,16(1):105-109.
    [49]Zhang Y, Ago H, Liu J, et al. The synthesis of In, In2O3 nanowires and In2O3 nanoparticles with shape-controlled[J]. Journal of Crystal Growth,2004,264(1-3): 363-368.
    [50]Guari Y, Soulantica K, Philippot K, et al. Indium and indium-oxide nanoparticle or nanorod formation within functionalised ordered mesoporous silica[J]. New Journal of Chemistry,2003,27(7):1029-1031.
    [51]Kim K, Kim M, Cho SM. Pulsed electrodeposition of palladium nanowire arrays using AAO template[J]. Materials Chemistry and Physics,2006,96(2):278-282.
    [52]Wang D, Zhou WL, McCaughy BF, et al. Electrodeposition of metallic nanowire thin films using mesoporous silica templates[J]. Advanced Materials,2003,15(2): 130-133.
    [53]Fukuoka A, Araki H, Sakamoto Y, et al. Palladium nanowires and nanoparticles in mesoporous silica templates[J]. Inorganica Chimica Acta,2003,350:371-378.
    [54]Shi Z, Wu S, Szpunar JA. Synthesis of palladium nanostructures by spontaneous electroless deposition[J]. Chemical Physics Letters,2006,422(1):147-151.
    [55]Lee YH, Choi CH, Jang YT, et al. Tungsten nanowires and their field electron emission properties[J]. Applied Physics Letters,2002,81(4):745-747.
    [56]Vaddiraju S, Chandrasekaran H, Sunkara M. Vapor phase synthesis of tungsten nanowires[J]. Journal of the American Chemical Society,2003,125(36): 10792-10793.
    [57]Rao C, Govindaraj A, Deepak FL, et al. Surfactant-assisted synthesis of semiconductor nanotubes and nanowires[J]. Applied Physics Letters,2001,78:1853.
    [58]Wang S, He Y, Fang X, et al. Structure and Field-Emission Properties of Sub Micrometer-Sized Tungsten-Whisker Arrays Fabricated by Vapor Deposition[J]. Advanced Materials,2009,21(23):2387-2392.
    [59]Wang S, He Y, Xu J, et al. Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850℃[J]. Journal of Materials Research,2008,23(1):72.
    [60]Wang S, He Y, Zou J, et al. Synthesis of single-crystalline tungsten nanowires by nickel-catalyzed vapor-phase method at 850℃ C[J]. Journal of Crystal Growth,2007, 306(2):433-436.
    [61]Levitt AP. Whisker technology[M]. New York:Wiley-interscience,1970.
    [62]Vaddiraju S, Chandrasekaran H, Sunkara MK. Vapor phase synthesis of tungsten nanowires[J]. Journal of the American Chemical Society,2003,125(36): 10792-10793.
    [63]Choi H, Park SH. Seedless growth of free-standing copper nanowires by chemical vapor deposition[J]. Journal of the American Chemical Society,2004, 126(20):6248-6249.
    [64]Zhou J, Deng SZ, Gong L, et al. Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition:Synthesis, growth mechanism, and device application[J]. Journal of Physical Chemistry B,2006, 110(21):10296-10302.
    [65]Kar S, Ghoshal T, Chaudhuri S. Simple thermal evaporation route to synthesize Zn and Cd metal nanowires[J]. Chemical Physics Letters,2006,419(1-3):174-178.
    [66]Wagner R, Ellis W. Vapor-Liquid-Solid Mechanism of Single Crystal Growth[J]. Applied Physics Letters,1964,4(5):89-94.
    [67]Givargizov E. Fundamental aspects of VLS growth[J]. Journal of Crystal Growth, 1975,31:20-30.
    [68]Kamins T, Williams R, Basile D, et al. Ti-catalyzed Si nanowires by chemical vapor deposition:Microscopy and growth mechanisms[J]. Journal of Applied Physics, 2001,89:1008.
    [69]Possin GE. A method for forming very small diameter wires[J]. Review of Scientific Instruments,1970,41(5):772-774.
    [70]Zach MP, Ng KH, Penner RM. Molybdenum nanowires by electrodeposition[J]. Science,2000,290(5499):2120-2123.
    [71]Walter EC, Zach MP, Favier F, et al. Metal nanowire arrays by electrodeposition[J]. ChemPhysChem,2003,4(2):131-138.
    [72]Sun Y, Xia Y. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process[J]. Nature,1991,353:737.
    [73]Lei SB, Wang C, Yin SX, et al. Assembling nanometer nickel particles into ordered arrays[J]. ChemPhysChem,2003,4(10):1114-1117.
    [74]Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available:UV-VIS spectra of silver nanorods. [J]. Chemical Communications,2001, (7):617-618.
    [75]Mohamed MB, Volkov V, Link S, et al. Thelightning'gold nanorods:fluorescence enhancement of over a million compared to the gold metal[J]. Chemical Physics Letters,2000,317(6):517-523.
    [76]Smith D. Quantum point contact switches[J]. Science (New York, NY),1995, 269(5222):371.
    [77]Choi S, Wang K, Leung M, et al. Fabrication of bismuth nanowires with a silver nanocrystal shadowmask[J]. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films,2000,18(4):1326-1328.
    [78]Lee Y, Choi C, Jang Y, et al. Tungsten nanowires and their field electron emission properties[J]. Applied Physics Letters,2002,81(4):745-747.
    [79]Zhou J, Deng S, Gong L, et al. Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition:Synthesis, growth mechanism, and device application[J]. The Journal of Physical Chemistry B,2006, 110(21):10296-10302.
    [80]Schmidt M, Kusche R, Von Issendorff B, et al. Irregular variations in the melting point of size-selected atomic clusters[J]. Nature,1998,393(6682):238-240.
    [81]Link S, Burda C, Mohamed M, et al. Femtosecond transient-absorption dynamics of colloidal gold nanorods:Shape independence of the electron-phonon relaxation time[J]. Physical Review B,2000,61(9):6086.
    [82]Diao J, Gall K, Dunn ML. Surface-stress-induced phase transformation in metal nanowires[J]. Nature Materials,2003,2(10):656-660.
    [83]张立德,解思深.纳米材料和纳米结构一国家重大基础研究项目新进展:北京:化学工业出版社,2005.
    [84]秦润华.一维磁纳米线阵列的制备及其应用[J].微纳电子技术,2006,43(8):372-376.
    [85]Walter E, Penner R, Liu H, et al. Sensors from electrodeposited metal nanowires[J]. Surface and Interface Analysis,2002,34(1):409-412.
    [86]Yazawa M, Koguchi M, Muto A, et al. Semiconductor nanowhiskers[J]. Advanced Materials,1993,5(7-8):577-580.
    [87]Holmes JD, Johnston KP, Doty RC, et al. Control of thickness and orientation of solution-grown silicon nanowires[J]. Science,2000,287(5457):1471-1473.
    [88]Zhang Y, Liu J, He R, et al. Synthesis of aluminum nitride nanowires from carbon nanotubes[J]. Chemistry of Materials,2001,13(11):3899-3905.
    [89]Yu F, Tang D, Hai K, et al. Fabrication of SnO2 one-dimensional nanosturctures with graded diameters by chemical vapor deposition method[J]. Journal of Crystal Growth,2010,312(2):220-225.
    [90]Kuykendall T, Pauzauskie PJ, Zhang Y, et al. Crystallographic alignment of high-density gallium nitride nanowire arrays[J]. Nature Materials,2004,3(8): 524-528.
    [91]Peng H, Wang N, Zhou X, et al. Control of growth orientation of GaN nanowires[J]. Chemical Physics Letters,2002,359(3):241-245.
    [92]Ge S, Jiang K, Lu X, et al. Orientation-Controlled Growth of Single-Crystal Silicon-Nanowire Arrays[J]. Advanced Materials,2005,17(1):56-61.
    [93]王超,贺跃辉,彭超群,等.一维W纳米材料的场发射性能及其可控制备的研究进展[J].中国有色金属学报,2012,22(6):1632-1641.
    [94]Tseng CH, Tambe MJ, Lim SK, et al. Position controlled nanowire growth through Au nanoparticles synthesized by galvanic reaction[J]. Nanotechnology,2010, 21:165605.
    [95]Wang X, Song J, Summers CJ, et al. Density-controlled growth of aligned ZnO nanowires sharing a common contact:a simple, low-cost, and mask-free technique for large-scale applications [J]. The Journal of Physical Chemistry B,2006,110(15): 7720-7724.
    [96]Zhang Y, Li G, Zhang J, et al. Shape-controlled growth of one-dimensional nanomaterials[J]. Nanotechnology,2004,15:762.
    [97]翟华嶂,安晓强,曹传宝,等.MgO单晶一维纳米结构的制备与表征[J].稀有金属材料与工程,2008,37(A01):667-670.
    [98]池俊红,王娟.Mn掺杂Sn02一维纳米结构的制备,形貌及光学性质[J]. 物理化学学报,2010,26(8):2306-2310.
    [99]武祥,蔡伟,曲凤玉.ZnO一维纳米结构的形貌调控与亲疏水性研究[J].物理学报,2009,58(11):8044-8049.
    [100]海阔,唐东升,袁华军,等.大面积α-Fe203纳米线及纳米带阵列的制备研究[J].物理学报,2009,(002):1120-1125.
    [101]张祥涛,吴起白,张海燕,等.一维纳米结构氧化锌的水热法制备及紫外光敏特性研究[J].材料导报,2009,23(022):15-18.
    [102]Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires[J]. Science,1998,279(5348):208-211.
    [103]Kong Y, Yu D, Zhang B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach[J]. Applied Physics Letters,2001,78: 407-409.
    [104]Li YL, Kinloch IA, Windle AH. Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis[J]. Science,2004,304(5668):276-278.
    [105]Xie T, Wu G, Geng B, et al. A simple route to large scale synthesis of crystalline aSi3N4 nanowires[J]. Applied Physics A:Materials Science & Processing,2005,80(5): 1057-1059.
    [106]Huang MH, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers[J]. Science,2001,292(5523):1897-1899.
    [107]Liang C, Shimizu Y, Sasaki T, et al. One-step growth of silica nanotubes and simultaneous filling with indium sulfide nanorods[J]. Journal of Materials Chemistry, 2004,14(2):248-252.
    [108]Routkevitch D, Bigioni T, Moskovits M, et al. Electrochemical Fabrication of CdS Nanowire Arrays in Porous Anodic Aluminum Oxide Templates[J]. Journal of Physical Chemistry,1996,1996(100):14037-14047.
    [109]Wang W, Zhan Y, Wang G One-step, solid-state reaction to the synthesis of copper oxide nanorods in the presence of a suitable surfactant[J]. Chemical Communications,2001, (8):727-728.
    [110]Wang W, Wang G, Liu Y, et al. Synthesis and characterization of aragonite whiskers by a novel and simple route[J]. Journal of Materials Chemistry,2001,11(6): 1752-1754.
    [111]Yu D, Wang D, Meng Z, et al. Synthesis of closed PbS nanowires with regular geometric morphologies[J]. Journal of Materials Chemistry,2002,12(3):403-405.
    [112]Kamins T, Li X, Williams RS, et al. Growth and structure of chemically vapor deposited Ge nanowires on Si substrates[J]. Nano Letters,2004,4(3):503-506.
    [113]Hou WC, Chen LY, Tang WC, et al. Control of Seed Detachment in Au-Assisted GaN Nanowire Growths[J]. Crystal Growth and Design,2011,11(4):990-994.
    [114]Wang M, Fei GT, Zhu XG, et al. Density-controlled homoepitaxial growth of ZnS nanowire arrays[J]. The Journal of Physical Chemistry C,2009,113(11): 4335-4339.
    [115]Marcu A, Trupina L, Zamani R, et al. Catalyst Size Limitation in Vapor-liquid-solid ZnO Nanowire Growth using Pulsed Laser Deposition[J]. Thin Solid Films,2011.
    [116]Young Kim H, Park J, Yang H. Synthesis of silicon nitride nanowires directly from the silicon substrates[J]. Chemical Physics Letters,2003,372(1):269-274.
    [117]Velamakanni A, Ganesh K, Zhu Y, et al. Catalyst-Free Synthesis and Characterization of Metastable Boron Carbide Nanowires[J]. Advanced Functional Materials,2009,19(24):3926-3933.
    [118]Bootsma G, Gassen H. A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane [J]. Journal of Crystal Growth, 1971,10(3):223-234.
    [119]Kamins T, Williams RS, Basile D, et al. Ti-catalyzed Si nanowires by chemical vapor deposition:Microscopy and growth mechanisms [J]. Journal of Applied Physics, 2001,89:1008.
    [120]Dick KA, Deppert K, Martensson T, et al. Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires[J]. Nano Letters,2005, 5(4):761-764.
    [121]Wang GT, Talin AA, Werder DJ, et al. Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal-organic chemical vapour deposition[J]. Nanotechnology,2006,17:5773.
    [122]Wang Y, Schmidt V, Senz S, et al. Epitaxial growth of silicon nanowires using an aluminium catalyst[J]. Nature nanotechnology,2006,1(3):186-189.
    [123]Baron T, Gordon M, Dhalluin F, et al. Si nanowire growth and characterization using a microelectronics-compatible catalyst:PtSi[J]. Applied Physics Letters,2006, 89:233111.
    [124]Adhikari H, Marshall AF, Chidsey CED, et al. Germanium nanowire epitaxy: shape and orientation control[J]. Nano Letters,2006,6(2):318-323.
    [125]Geelhaar L, Cheze C, Weber W, et al. Axial and radial growth of Ni-induced GaN nanowires[J]. Applied Physics Letters,2007,91:093113.
    [126]Ohno Y, Shirahama T, Takeda S, et al. Mechanism of the growth of ZnSe nanowires with Fe catalysts[J]. Solid State Communications,2007,141(4):228-232.
    [127]Yan H, Xing Y, Hang Q, et al. Growth of amorphous silicon nanowires via a solid-liquid-solid mechanism[J]. Chemical Physics Letters,2000,323(3):224-228.
    [128]Chandrasekaran H, Sumanasekara GU, Sunkara MK. Rationalization of nanowire synthesis using low-melting point metals[J]. The Journal of Physical Chemistry B,2006,110(37):18351-18357.
    [129]Trentler TJ, Hickman KM, Goel SC, et al. Solution-liquid-solid growth of crystalline III-V semiconductors:an analogy to vapor-liquid-solid growth[J]. Science, 1995,270(5243):1791-1794.
    [130]Heitsch AT, Fanfair DD, Tuan HY, et al. Solution-Liquid-Solid (SLS) Growth of Silicon Nanowires[J]. Journal of the American Chemical Society,2008,130(16): 5436-5437.
    [131]Ahrenkiel S, Micic O, Miedaner A, et al. Synthesis and characterization of colloidal InP quantum rods[J]. Nano Letters,2003,3(6):833-837.
    [132]Ouyang L, Maher KN, Yu CL, et al. Catalyst-assisted solution-liquid-solid synthesis of CdS/CdSe nanorod heterostructures[J]. Journal of the American Chemical Society,2007,129(1):133-138.
    [133]Hanrath T, Korgel BA. Supercritical fluid-liquid-solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals[J]. Advanced Materials, 2003,15(5):437-440.
    [134]Tuan HY, Lee DC, Hanrath T, et al. Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents[J]. Nano Letters,2005,5(4): 681-684.
    [135]Tuan HY, Lee DC, Korgel BA. Nanocrystal-Mediated Crystallization of Silicon and Germanium Nanowires in Organic Solvents:The Role of Catalysis and Solid-Phase Seeding[J]. Angewandte Chemie International Edition,2006,45(31): 5184-5187.
    [136]Barth S, Kolesnik MM, Donegan K, et al. Diameter-Controlled Solid-Phase Seeding of Germanium Nanowires:Structural Characterization and Electrical Transport Properties[J]. Chemistry of Materials,2011.
    [137]Barrett CA, Gunning RD, Hantschel T, et al. Metal surface nucleated supercritical fluid-solid-solid growth of Si and Ge/SiOx core-shell nanowires[J]. Journal of Materials Chemistry,2009,20(1):135-144.
    [138]Lassner E, Schubert WD. Tungsten:Properties, chemistry, technology of the element, alloys, and chemical compounds[M]. Springer Us,1999.
    [139]Guha S, Kyriacou C, Withers J, et al. A low cost synthesis technique for tungsten whiskers of< 100> orientation[J]. Material and Manufacturing Process,1994, 9(6):1061-1086.
    [140]Karpovich NF, Lebukhova NV, Zavodinsky VG, et al. Mechanism of the Single-Crystal Tungsten Whiskers Growth in the Process of the NiWO4 Reduction by CO[J]. The Journal of Physical Chemistry C,2008,112(47):18455-18458.
    [141]Wang C, He Y, Wang S, et al. Low-temperature growth of tetragonal tungsten nanowire arrays on tungsten substrate using Ni solid catalysts[J]. Journal of Crystal Growth,2011.
    [142]Thong J, Oon C, Yeadon M, et al. Field-emission induced growth of nanowires[J]. Applied Physics Letters,2002,81:4823.
    [143]Mitsuishi K, Shimojo M, Han M, et al. Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons [J]. Applied Physics Letters, 2003,83:2064.
    [144]Liu Z, Mitsuishi K, Furuya K. Features of self-supporting tungsten nanowire deposited with high-energy electrons[J]. Journal of Applied Physics,2004,96:619.
    [145]Umnov A, Shiratori Y, Hiraoka H. Giant field amplification in tungsten nanowires[J]. Applied Physics A:Materials Science & Processing,2003,77(1): 159-161.
    [146]Guise OL, Ahner JW, Jung MC, et al. Reproducible electrochemical etching of tungsten probe tips[J]. Nano Letters,2002,2(3):191-193.
    [147]Karabacak T, Mallikarjunan A, Singh JP, et al.β-phase tungsten nanorod formation by oblique-angle sputter deposition[J]. Applied Physics Letters,2003,83: 3096.
    [148]Karabacak T, Wang PI, Wang GC, et al. Growth of single crystal tungsten nanorods by oblique angle sputter deposition:Warrendale, Pa.; Materials Research Society; 1999,2004:75-80.
    [149]Martin CR. Nanomaterials:a membrane-based synthetic approach[J]. Science, 1994,266(5193):1961.
    [150]Li Y, Li X, Deng Z-X, et al. From Surfactant-Inorganic Mesostructures to Tungsten Nanowires[J]. Angewandte Chemie International Edition,2002,41(2): 333-335.
    [151]Liu ZQ, Mitsuishi K, Furuya K. Effects of focus change on the fabrication of tungsten nanowire by electron-beam-induced deposition[J]. Nanotechnology,2004, 15(6):S414.
    [152]Liu Z, Mitsuishi K, Furuya K. The growth behavior of self-standing tungsten tips fabricated by electron-beam-induced deposition using 200 keV electrons [J]. Journal of Applied Physics,2004,96:3983.
    [153]Chen C, Arakawa K, Mori H. Two-dimensional metallic tungsten nanowire network fabricated by electron-beam-induced deposition[J]. Nanotechnology,2010, 21:285304-285307.
    [154]Li W, Fenton J, Gu C, et al. Superconductivity of ultra-fine tungsten nanowires grown by focused-ion-beam direct-writing[J]. Microelectronic Engineering,2011, 88(8):2636-2638.
    [155]Li Y, Li X, Deng ZX, et al. From Surfactant-Inorganic Mesostructures to Tungsten Nanowires[J].Angewandte Chemie,2002,114(2):343-345.
    [156]Milenkovic S, Hassel AW. Spatial features control of self-organised tungsten nanowire arrays[J]. physica status solidi (a),2009,206(3):455-461.
    [157]徐剑,贺跃辉,王世良,等.一种制备金属钨纳米针的新方法[J].材料研究学报,2006,20(6):576-580.
    [158]徐剑,贺跃辉,王世良,等.Ni, Fe含量对制备钨纳米晶须的影响[J].中国钨业,2006,21(2):25-28.
    [159]Wang S, He Y, Zou J, et al. Catalytic growth of metallic tungsten whiskers based on the vapor-solid-solid mechanism[J]. Nanotechnology,2008,19: 345604-345608.
    [160]Wang S, He Y, Zou J, et al. Growth of single-crystal W whiskers during humid H2/N 2 reduction of Ni, Fe-Ni, and Co-Ni doped tungsten oxide [J]. Journal of Alloys and Compounds,2009,482(1):61-66.
    [161]Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence[J]. Physical Review B,1996, 54(24):17954.
    [162]黄培云.粉末冶金原理[M].冶金工业出版社,1997.
    [163]朱静.纳米材料和器件[M].清华大学出版社有限公司,2003.
    [164]Hochbaum Al, Fan R, He R, et al. Controlled growth of Si nanowire arrays for device integration[J]. Nano Letters,2005,5(3):457-460.
    [165]Huang Z, Fang H, Zhu J. Fabrication of silicon nanowire arrays with controlled diameter, length, and density[J]. Advanced Materials,2007,19(5):744-748.
    [166]Mohan P, Motohisa J, Fukui T. Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays[J]. Nanotechnology,2005,16(12):2903.
    [167]薛增泉.纳米科技探索[M].清华大学出版社有限公司,2002.
    [168]方晓生,张立德.气相法合成一维无机纳米材料的研究进展[J].无机化学学报,2006,22(9):1555-1567.
    [169]Wang J, Plissard S, Hocevar M, et al. Position-controlled [100] InP nanowire arrays[J]. Applied Physics Letters,2012,100(5):053107-053107-053103.
    [170]Mandl B, Dey AW, Stangl J, et al. Self-seeded, position-controlled InAs nanowire growth on Si:A growth parameter study[J]. Journal of Crystal Growth,2011, 334(1):51-56.
    [171]Kim B-S, Kim MJ, Lee JC, et al. Control of Lateral Dimension in Metal-Catalyzed Germanium Nanowire Growth:Usage of Carbon Sheath[J]. Nano Letters,2012,12(8):4007-4012.
    [172]Kumar B, Lee KY, Park H-K, et al. Controlled Growth of ZnO Nanowire, Nanowall, and Hybrid Nanostructures on Graphene for Piezoelectric Nanogenerators[J]. arXiv preprint arXiv:1102.0124,2011.
    [173]Cho HS, Kamins TI. In situ control of Au-catalyzed chemical vapor deposited (CVD) Ge nanocone morphology by growth temperature variation[J]. Journal of Crystal Growth,2010,312(16):2494-2497.
    [174]Koto M, Marshall AF, Goldthorpe IA, et al. Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon[J]. Small,2010,6(9): 1032-1037.
    [175]Cui Y, Lauhon LJ, Gudiksen MS, et al. Diameter-controlled synthesis of single-crystal silicon nanowires[J]. Applied Physics Letters,2001,78:2214.
    [176]Azulai D, Cohen E, Markovich G. Seed Concentration Control of Metal Nanowire Diameter[J]. Nano Letters,2012,12(11):5552-5558.
    [177]Roussey A, Gentile P, Lafond D, et al. Cu nanoparticles on 2D and 3D silica substrates:controlled size and density, and critical size in catalytic silicon nanowire growth[J]. Journal of Materials Chemistry C,2013,1(8):1583-1587.
    [178]Samanta C, Chander DS, Ramkumar J, et al. Catalyst and its diameter dependent growth kinetics of CVD grown GaN nanowires[J]. Materials Research Bulletin,2012,47(4):952-956.
    [179]Sharma S, Kamins T, Williams RS. Diameter control of Ti-catalyzed silicon nanowires[J]. Journal of Crystal Growth,2004,267(3):613-618.
    [180]Li C, Zhang D, Han S, et al. Diameter-Controlled Growth of Single-Crystalline In2O3 Nanowires and Their Electronic Properties[J]. Advanced Materials, 2003,15(2):143-146.
    [181]Wang Q, Shimizu T, Shingubara S. Control of crystalline orientation and diameter of Si nanowires based on VLS method and electrodeposition of catalyst using AAO template. Electron Devices, Kansai,(IMFEDK),2011 International Meeting for Future of:IEEE,2011:60-61.
    [182]Tsivion D, Schvartzman M, Popovitz-Biro R, et al. Guided growth of millimeter-long horizontal nanowires with controlled orientations[J]. Science,2011, 333(6045):1003-1007.
    [183]Tomioka K, Motohisa J, Hara S, et al. Control of InAs nanowire growth directions on Si[J]. Nano Letters,2008,8(10):3475-3480.
    [184]Huang X, Li L, Luo X, et al. Orientation-controlled synthesis and ferromagnetism of single crystalline Co nanowire arrays [J]. The Journal of Physical Chemistry C,2008,112(5):1468-1472.
    [185]Jensen LE, Bjork MT, Jeppesen S, et al. Role of surface diffusion in chemical beam epitaxy of InAs nanowires[J]. Nano Letters,2004,4(10):1961-1964.
    [186]Dick KA, Deppert K, Karlsson LS, et al. Position-controlled interconnected InAs nanowire networks[J]. Nano Letters,2006,6(12):2842-2847.
    [187]Yen J-H, Leu C, Wu M-T, et al. Density control for carbon nanotube arrays synthesized by ICP-CVD using AAO/Si as a nanotemplate[J]. Electrochemical and Solid-State Letters,2004,7(8):H29-H31.
    [188]Lin PA, Liang D, Reeves S, et al. Shape-Controlled Au Particles for InAs Nanowire Growth[J]. Nano Letters,2011,12(1):315-320.
    [189]Kobayashi N, Wu W, Stewart DR, et al. Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures:Google Patents,2011.
    [190]Adhikari H, Marshall AF, Chidsey CE, et al. Germanium nanowire epitaxy: shape and orientation control[J]. Nano Letters,2006,6(2):318-323.
    [191]Zhang J, Yang Y, Xu B, et al. Shape-controlled synthesis of ZnO nano-and micro-structures[J]. Journal of Crystal Growth,2005,280(3):509-515.
    [192]Fang X, Zhang L. One-dimensional (1D) ZnS nanomaterials and nanostructures[J]. JOURNAL OF MATERIALS SCIENCE AND TECHNOLOGY-SHENYANG-,2006,22(6):721.
    [193]Ding Y, Wang XD, Wang ZL. Phase controlled synthesis of ZnS nanobelts:zinc blende vs wurtzite[J]. Chemical Physics Letters,2004,398(1):32-36.
    [194]Yu WW, Wang YA, Peng X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals:ligand effects on monomers and nanocrystals[J]. Chemistry of Materials,2003,15(22):4300-4308.
    [195]张克从,张乐潓.晶体生长科学与技术[M].科学出版社,1997.
    [196]Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species[J]. Science,2001,293(5533): 1289-1292.
    [197]Law M, Greene LE, Johnson JC, et al [J]. Nature Materials,2005,4(6): 455-459.
    [198]Gudiksen MS, Lauhon LJ, Wang J, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature,2002,415(6872): 617-620.
    [199]Wan Q, Li Q, Chen Y, et al. Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors[J]. Applied Physics Letters,2004,84(18):3654-3656.
    [200]Duan X, Huang Y, Agarwal R, et al. Single-nanowire electrically driven lasers[J]. Nature,2003,421(6920):241-245.
    [201]Wang ZL, Song J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science,2006,312(5771):242-246.
    [202]Cui Y, Zhong Z, Wang D, et al. High performance silicon nanowire field effect transistors[J]. Nano Letters,2003,3(2):149-152.
    [203]Yang P, Yan R, Fardy M. Semiconductor nanowire:What's next?[J]. Nano Letters,2010,10(5):1529-1536.
    [204]Yan R, Gargas D, Yang P. Nanowire photonics[J]. Nature Photonics,2009,3(10): 569-576.
    [205]Chang H-C, Lai K-Y, Dai Y-A, et al. Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency [J]. Energy & Environmental Science,2011,4(8):2863-2869.
    [206]Peng HY, Pan ZW, Xu L, et al. Temperature dependence of Si nanowire morphology [J]. Advanced Materials,2001,13(5):317-320.
    [207]Plante M, LaPierre R. Control of GaAs nanowire morphology and crystal structure[J]. Nanotechnology,2008,19(49):495603.
    [208]Dayeh SA, Wang J, Li N, et al. Growth, defect formation, and morphology control of germanium-silicon semiconductor nanowire heterostructures[J]. Nano Letters,2011,11(10):4200-4206.
    [209]Yao L, Zheng M, Ma L, et al. Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays[J]. Nanoscale Research Letters,2011,6: 74.
    [210]Iacopi F, Vereecken P, Schaekers M, et al. Plasma-enhanced chemical vapour deposition growth of Si nanowires with low melting point metal catalysts:an effective alternative to Au-mediated growth[J]. Nanotechnology,2007,18(50):505307.
    [211]Nguyen P, Ng HT, Meyyappan M. Catalyst metal selection for synthesis of inorganic nanowires[J]. Advanced Materials,2005,17(14):1773-1777.
    [212]Allen JE, Hemesath ER, Perea DE, et al. High-resolution detection of Au catalyst atoms in Si nanowires[J]. Nature Nanotechnology,2008,3(3):168-173.
    [213]Hersee SD, Sun X, Wang X. The controlled growth of GaN nanowires[J]. Nano Letters,2006,6(8):1808-1811.
    [214]Yeong K, Thong J. Field-emission properties of ultrathin 5 nm tungsten nanowire[J]. Journal of Applied Physics,2006,100:114325.
    [215]Wu Z, Deng S, Xu N, et al. Needle-shaped silicon carbide nanowires:Synthesis and field electron emission properties [J]. Applied Physics Letters,2002,80(20): 3829-3831.
    [216]Frank F. XC. On tin whiskers[J]. Philosophical Magazine,1953,44(355): 854-860.
    [217]Shi WS, Peng HY, Zheng YF, et al. Synthesis of large areas of highly oriented, very long silicon nanowires[J]. Advanced Materials,2000,12(18):1343-1345.
    [218]Li DC, Dai L, Huang S, et al. Structure and growth of aligned carbon nanotube films by pyrolysis[J]. Chemical Physics Letters,2000,316(5):349-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700