用户名: 密码: 验证码:
稻麦秸秆和淀粉制备复合材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能和环保是当今世界的紧迫要求。开发和利用农作物废弃物等可再生且能降解的复合材料已成为当前研究的热点,是环境友好材料研究领域未来的发展方向,也是农作物废弃物利用和抑制环境污染的有效途径之一。秸秆资源丰富,具有低密度性、可再生性及洁净性;淀粉来源广泛、价格便宜,具有可生物降解、可再生等诸多优点。采用农作物秸秆和淀粉制备的复合材料,具有其它复合材料无法比拟的质轻价廉、可再生及可生物降解等优点。秸秆/淀粉复合材料的研究和应用对我国可持续发展具有重要意义。
     本研究以稻、麦秸秆和玉米淀粉、木薯淀粉及马铃薯淀粉为主要原料,通过模压成型制备了秸秆/淀粉全降解复合材料,探讨秸秆纤维预处理方法(2%草酸溶液、2%氢氧化钠溶液、水热处理及未处理)、秸秆纤维尺寸、淀粉类型、阻湿剂含量、增塑剂含量及胶粘剂含量对复合材料内结合强度(IB)、弯曲强度(FS)、弯曲弹性模量(MOE)、拉伸强度(TS)、拉伸模量(MOR)、断裂伸长率(EOF)、冲击强度(IS)、2h吸水厚度膨胀率(2hTS)及吸湿率(MA)的影响。分析比较了稻、麦秸秆纤维预处理前后表面化学成分、表面形貌、吸湿性及浸润性能的变化情况。也对比分析了不同配比淀粉胶粘剂表观粘度随温度和剪切速度的变化规律。并观察了复合材料微观结构。取得的主要成果如下:
     (1)秸秆拉伸性能测试表明,稻、麦秸秆预处理均能不同程度的降低其拉伸强度,其中氢氧化钠处理后秸秆纤维拉伸强度降幅最大。
     (2)红外光谱(IR)和扫描电子显微镜(SEM)分析表明,稻、麦秸秆纤维预处理能不同程度的去除其表面蜡质-硅化层、木质素及半纤维素等化学成分,表面形貌发生较大变化,使细胞壁物质充分暴露,即秸秆纤维表面纤维素、半纤维素以及木质素的特征官能团暴露,红外吸收峰个数增多、峰吸收增强,使秸秆纤维持水力增加,提高其表面润湿性。其中氢氧化钠处理和水热处理效果较为显著,而草酸处理未显著影响秸秆纤维基本组织形态。
     (3)秸秆纤维吸湿性能研究表明,稻、麦秸秆纤维吸湿率均随时间的增加而增大,且6h前吸湿率增加较快,10~20mm秸秆段吸湿率在整个吸湿过程中始终较小其吸湿平衡率分别为0.931%和1.071%。粉碎后,稻、麦秸秆纤维吸湿率不同程度的有所增大;其中氢氧化钠处理秸秆纤维吸湿率最大,分别为2.243%和2.411%;水热处理次之,分别为1.84%和1.714%;草酸处理后,分别为1.591%和1.514%;而未处理秸秆纤维吸湿率较小,分别为1.585%和1.449%。通过对秸秆纤维吸湿率数据进行一元非线性回归,得出吸湿率随时间的变化模型,发现所选模型能较好的描述秸秆纤维吸湿率曲线。
     (4)秸秆纤维浸润性研究表明,稻、麦秸秆纤维预处理均能不同程度的降低其表面接触角,增强蒸馏水对其表面的浸润性。水热处理、氢氧化钠处理、草酸处理及未处理稻秸秆纤维6min接触角分别为71.5°、61.5°、88.5°和95.5°,麦秸秆纤维6min接触角分别为71.1°、56.5°、74.4°和73.6°。
     (5)秸秆纤维热性能研究表明,稻、麦秸秆纤维预处理均能不同程度改变其玻璃化转变温度Tg,并能去除部分硅化物等无机物质。
     (6)制备了淀粉与水质量比分别为1/6、1/8和1/10的玉米淀粉、木薯淀粉和马铃薯淀粉胶粘剂,研究分析了其在不同温度和不同剪切速度下表观粘度的变化情况,结果表明:3种淀粉制备的胶粘剂存在剪切稀化现象,即表观粘度随剪切速度的增大而减小,且淀粉与水质量比越小,表观粘度越低。玉米淀粉胶粘剂表观粘度随温度的升高先增大后减小,10℃有最大值。木薯淀粉胶粘剂表观粘度随温度的升高而减小,15℃前变化明显,之后趋于缓和。马铃薯淀粉胶粘剂表观粘度随温度的升高而逐渐减小。通过对不同配比的淀粉胶粘剂流变性能数据进行一元非线性回归,得出淀粉胶粘剂在不同温度下的流变模型,发现所选模型能较好的描述淀粉胶粘剂流变性能。此外,在相同条件下,3种淀粉胶粘剂表观粘度大小顺序为:马铃薯淀粉>玉米淀粉>木薯淀粉。
     (7)通过正交试验方法L9(34),以弯曲强度和弯曲弹性模量为优化参数,得出制备复合材料最佳模压工艺参数为:压力4MPa、温度120℃、时间30min。
     (8)在最佳工艺参数条件下,制备了不同尺寸秸秆纤维及不同淀粉复合材料:复合材料力学性能基本随秸秆纤维尺寸的减小而先增大后减小,且各项性能随秸秆纤维尺寸的变化有所不同,0.2~0.45mm时,IB较好;0.45~0.9mm时,FS、MOE、TS较好;0.9~30mm时,MOR、EOF和IS较好;<0.2mm时,力学性能较差;混合纤维时,各项力学性能也较好;10~20mm秸秆段时,仅有IS较好。2hTS和MA随秸秆纤维尺寸的减小先减小后增大,0.9~30mm时,2hTS较大;0.2~0.45mm时,2hTS较小;10~20mm秸秆段制备的复合材料在浸水0.5h左右结构变的松散,甚至分解。玉米淀粉基复合材料IB、MOE、MOR及IS较好,EOF较小;木薯淀粉基复合材料FS和TS较好;马铃薯淀粉复合材料性能较差;淀粉类型对2hTS和MA影响甚微。
     (9)水热处理稻、麦秸秆纤维复合材料FS、MOE、IS、TS、MOR较高,IB较低;氢氧化钠处理时,IB较高,FS较低;草酸处理时,IB、FS、MOE、IS均有不同程度的降低。氢氧化钠处理秸秆纤维复合材料2hTS较小,而秸秆纤维预处理不同程度的降低复合材料防湿性能,MA增大。
     (10)阻湿剂的加入导致稻、麦秸秆纤维复合材料各项力学性能降低,IB、FS、MOE、TS、MOR、EOF及IS最大降幅分别为:56.25%、6.68%、11.31%、40.17%、54.74%、20.4%和26.46%(稻秸秆纤维复合材料),以及36.1%、56.2%、68.5%、56.5%、58.1%、20.3%和27.4%(麦秸秆纤维复合材料)。适量阻湿剂(1%)能提高复合材料防水防湿性能。
     (11)增塑剂的加入导致稻、麦秸秆纤维复合材料MOR和EOF略微降低,而其它力学性能均有不同程度的提高,同时复合材料防水防湿性能也提高。
     (12)稻秸秆纤维复合材料力学性能随淀粉胶粘剂含量的增大均先增大后减小;淀粉胶粘剂含量为10%时,IB、FS、MOE、TS、IS均达最大值,淀粉胶粘剂含量9%时,EOR和EOF达最大值;麦秸秆纤维复合材料IB在淀粉胶粘剂含量为9%时有最大值,EOF和IS在10%时有最大值,而其它力学性能均随淀粉胶胶剂含量的增加而降低。稻、麦秸秆纤维复合材料2hTS随淀粉胶粘剂含量的增加而略有减小,吸湿率变化不明显。
     (13)复合材料微观结构分析表明:基体和增强体两相界面结合存在明显缝隙、空洞现象,且随秸秆纤维尺寸的增大而变大,其中<0.2mm时,复合材料表面出现较多裂纹。
     综上所述,秸秆纤维预处理能不同程度的去除稻、麦秸秆纤维表面有机硅-蜡质层,使细胞壁物质充分暴露,且降低秸秆粗纤维、半纤维素和木质素含量,秸秆纤维持水力增加,提高了其吸湿性能,同时降低其表面接触角,使秸秆纤维表面易被浸润,为淀粉胶粘剂和秸秆纤维的结合提供良好界面。复合材料性能随多个影响因素相互“竞争”的结果不同而有所差异。在相同条件下,不同淀粉胶粘剂表观粘度差异较大,但其制备的复合材料相关性能并未表现相似差异。秸秆纤维尺寸、预处理、阻湿剂含量、增塑剂含量及胶粘剂含量均对复合材料各项性能的影响差异较大。
Energy saving and environmental protection are the world's urgent requirements. Development and utilization of agricultural waste and other renewable and degradable composites materials have become a research focus, which is environmental-friendly materials' research direction for future development, and also an effective way of using crop waste and reducing environmental pollution. Straw and starch are both rich in resources, and their composites represented low density, light weight, low cost, renewable nature, and acceptable biodegradability, which other composites can not match. Research and applications of straw/starch composites have important significance for sustainable development, not only to ease the conflict of timber supply and demand, but also to prosper rural economy and increase farmers' income.
     The main goal of this work was to use rice, wheat straw and corn starch, tapioca starch and potato starch as the main raw material to prepare environmentally sound, biodegradable composites using starch-based adhesives by a compression molding process. Effects of straw fiber pretreatments, straw fiber sizes, starch type, moisture resistance agent content, plasticizer content, and adhesive content on internal bond strength (IB), flexural strength (FS), modulus of elasticity (MOE), tensile strength (TS), modulus of rupture (MOR), elongation of fracture (EOF), impact strength (IS),2h thickness swelling (2hTS) and the moisture absorption rate (MA) of the obtained composites were investigated. Analysis and comparison of rice, wheat straw fiber morphology and properties were undertaken before and after pretreatments. The influence of temperature and shear rate variation on apparent viscosity of starch adhesive of different combinations had been also investigated. The main results obtained as follows:
     (1) Testing for tensile properties indicated that:pretreatments reduced the tensile strength of rice, wheat straw, and the biggest down-range appeared after NaOH treatment.
     (2) Infrared spectroscopy (IR) and scanning electron microscopy (SEM) suggested that:all pretreatments were efficient in partially changing RS surface properties, by removing wax-silicide layer on rice, wheat straw fibre surface in different levels, fully exposing the cell wall materials, as well as exposing functional groups of cellulose, hemicellulose, and lignin on the surface of straw, increasing the number of infrared absorption peak, enhancing the peak absorption, increasing water-holding capacity, improving the surface wettability. Among them, effects of NaOH treatment and hot-water treatment were more significant, while the oxalic acid treatment did not affect the basic organizational form of straw fibre significantly.
     (3) Moisture absorption of straw fiber showed that:moisture absorption rate increased with time increasing, and increased rapidly within6h. Moisture absorption rate of10-20mm straw section was smaller in the whole process, and their moisture equilibrium rates were0.9314%and1.071%. After crushing, rice, wheat straw fibers' moisture absorption rate increased in different levels; after NaOH treatment, moisture absorption rate was largest, where2.243%and2.411%, respectively; hot-water treatment followed, where1.84%and1.714%, respectively; after oxalic acid treatment, where1.591%and1.514%, respectively; moisture absorption rate of untreated straw fiber was smaller, where1.585%and1.449%, respectively.
     (4) Wettability of straw fiber was also investigated and showed that:pretreatments of rice, wheat straw fiber lowered surface contact angle and enhanced wettability of distilled water on the straw surface. Hot-water treatment, NaOH treatment, oxalic acid treatment and untreated rice straw fibers' contact angle at6min were71.5°,61.5°,88.5°and95.5°, and wheat straw fibers'were71.1°,56.5°,74.4°, and73.6°, respectively.
     (5) Differential scanning calorimetry (DSC) suggested that:pretreatments changed the glass transition temperature (Tg) of rice, wheat straw fiber, and decreased the contents of inorganic matter such as silicide.
     (6) Corn starch, tapioca starch and potato starch adhesives of starch to water mass ratio1/6,1/8and1/10were prepared. The influence of temperature and shear rate (decided by rotor speed) on apparent viscosity of starch adhesives was also investigated. Three starch adhesives showed a shear thinning phenomenon. Apparent viscosity decreased with starch/water mass ratio decreasing. The apparent viscosity of corn starch adhesive increased and then decreased with temperature increasing, and reached peak value at10℃. Apparent viscosity of cassava starch adhesive decreased with temperature increasing, changing significantly before15℃, and then easing. Apparent viscosity of potato starch adhesive decreased with temperature increasing.
     (7) The optimum molding process parameters of composites were pressure of4MPa, temperature of120℃, and pressure-holding time of30min, which were obtained by orthogonal test method L9(34) and flexural strength and flexural modulus as optimization parameters.
     (8) Based on the optimum molding process parameters, composites of different sizes straw fibers and different starch were prepared:(a), each property of composites changed differently with different dimensions, at0.2-0.45mm, IB was better; at0.45-0.9mm, FS, MOE were better; at0.9~30mm, TS, MOR, EOF and IS were better; at mixing straw fibres, the mechanical properties picked-up in different levels; at10-20mm section, only IS was better.2hTS and MA decreased and then increased with straw fiber size decreasing, at0.9~30mm,2hTS was bigger; at0.2~0.45mm,2hTS was smaller; composites from10~20mm section straw fibres dissolved in about0.5h.(b), IB, MOE, MOR and IS of corn starch-based composites were better, and EOF was smaller. FS and TS of cassava starch-based composites were better. Potato starch-based composites showed poor mechanical properties. The effect of starch types on2hTS and MA was slight.
     (9) FS, MOE, IS, TS, and MOR of composites from hot-water treatment straw fibers were higher, IB was lower; after NaOH treatment, IB was higher, FS was lower; after oxalic acid treatment, IB, FS, MOE, IS decreased in different levels. After NaOH treatment,2hTS was smaller. Pretreatments of straw fibers decreased moisture resistance properties of composites, and MA increased.
     (10) The introduction of moisture resistance agent reduced the mechanical properties in different levels, the maximum drops of IB, FS, MOE, TS, MOR, EOF, and IS were as follows:56.25%,6.68%,11.31%,40.17%,54.74%,20.4%and26.46%(rice straw fibers composites), and36.1%,56.2%,68.5%,56.5%,58.1%,20.3%and27.4%(wheat straw fibers composites).1%moisture resistance agent improved the performance of composites' waterproof and moisture resistance.
     (11) The introduction of plasticizer reduced MOR and EOF slightly, but enhanced the other mechanical properties in different levels, while improved the performance of composites' waterproof and moisture resistance.
     (12) The mechanical properties of rice straw fibers composites increased and then decreased with starch adhesive content increasing; IB, FS, MOE, TS, and IS reached peak value at10%adhesives content; IB and IS of wheat straw fibers composites reached peak value at9%adhesives content, while the other mechanical properties decreased with adhesives content increasing in different levels.2hTS reduced with starch adhesive content increasing slightly. The effect of adhesives content on MA was slight.
     (13) Microstructure of composites was also studied:all composites surfaces were smooth, but there are apertures, and gaps obviously in interface of matrix and reinforcement, which facilitated water or moisture to infiltrate inside of the composites. This also could explain why the moisture resistance was poor. The apertures and gaps become larger with the straw fibers size increasing. Otherwise, there were many cracks at<0.2mm.
     In summary, pretreatments of straw fibers changed surface properties or removed silicone-waxy layer partly, exposed the cell wall material, reduced cellulose, hemicellulose, and lignin content, increased water-holding capacity, improved surface wettability and moisture absorption, and reduced the surface contact angle, which provided a better combination interface of straw fiber and starch adhesives. Composites' properties were decided by "competitive results" among the multiple factors. Under the same conditions, the apparent viscosity of different starch adhesives was quite different, but the relevant composites did not show similar performance as adhesives did. Straw fiber sizes, pretreatments and moisture resistance agents, plasticizers, adhesives content showed greater impact on performance of composites.
引文
[1]Reddy N, Yang Y. Biofibers from agricultural byproducts for industrial applications[J]. Trends in Biotechnology,2005,23(1):22-27.
    [2]孙育峰,丰成学,李友权.我国农作物秸秆资源及其利用与开发[J].调研世界,2009(7):37-39.
    [3]程尧,方雷,石报荣.农作物秸秆物料特性及粉碎设备的研究[J].贵州大学学报(自然科学版),2009(3):86-89.
    [4]刘圣勇,陈开碇,张百良.国内外生物质成型燃料及燃烧设备研究与开发现状[J].可再生能源,2002(4):14-15.
    [5]李保谦,马孝琴,张百良,等.秸秆成型与燃烧技术的产业化分析[J].河南农业大学学报,2001(1):78-80.
    [6]王志飞,亢燕茹,韩宝生,等.压块机工艺参数对生产率和功率的影响[J].农机化研究,2007(4):106-108.
    [7]李新芸,江波.农作物秸秆综合利用现状及对策[J].湖南农机,2006(2):16-18.
    [8]范利红.秸秆饲料压捆生产设备的改进设计[D].河南农业大学农业机械化工程,2006.
    [9]唐伟家,李茂彦,吴汾.世界塑木复合材料市场动向和开发建议[J].中外能源,2007(6):15-19.
    [10]S. Malherbe, T. E. Cloete. Lignocellulose biodegradation:Fundamentals and applications[J]. Rev Environ Sci Biotech,2002,1(2):105-114.
    [11]K N Niladevi, R K Sukumaran, P Prema. Utilization of Rice Straw for Laccase Production by Streptomyces Psammoticus in Solid-State Fermentation[J]. J Ind Microbiol Biotechnol, 2007,34(10):665-674.
    [12]Parka J, Riki S, Muhammad I A, et al. A novel lime pretreatment for subsequent bioethanol production from rice straw-Calcium capturing by carbonation (CaCCO) process[J]. Bioresource Technology,2010,101 (17):6805-6811.
    [13]张伏,佟金.植物纤维及其增强复合材料的研究进展[J].农业工程学报,2006(10):252-256.
    [14]鲁礼娟.我国木塑复合材料的生产现状及发展趋势[J].木材加工机械,2008(6):40-42.
    [15]马力,史文萍,张双保.利用木质废弃物生产人造板的研究现状及存在的问题[J].木材加工机械,2007(4):42-43.
    [16]Halvarsson S, Norgren M, Edlund H. Manufacturing of fiber composite medium density fiberboards (MDF) based on annual plant fiber and urea formaldehyde resin: ICECFOP1-International conference on environmentally-compatible forest products, Oporto, Portugal,2004[C]. Fernando Pessoa University.
    [17]M. Sarwar Jahanb, Sung Phil Muna. Studies on the macromolecular components of nonwood available in Bangladesh[J]. Industrial Crops and Products,2009,30(3):344-350.
    [18]X. F. Sun, F. Xu, R. Sun, et al. Characteristics of degraded cellulose obtained from steam-exploded wheat straw[J]. Carbohydrate Research,2005,340(1):97-106.
    [19]Yang Han-Seung, Hyun-Joong Kim, Hee-Jun Park, et al. Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites[J]. Composite Structures, 2007,77(1):45-55.
    [20]刘洪凤,俞镇慌.秸秆纤维性能[J].东华大学学报(自然科学版),2002(2):123-128.
    [21]许民.生物质-塑料复合工学[M].北京:科学出版社,2006.
    [22]Mingzhu Pan, Dingguo Zhou, Xiaoyan Zhou, et al. Improvement of straw surface characteristics via thermo mechanical and chemical treatments[J]. Bioresource Technology, 2010,101 (20):7930-7934.
    [23]Hua Jiang, Yang Zhang, Xuefei Wang. Effect of lipases on the surface properties of wheat straw[J]. Industrial Crops and Products,2009,30(2):304-310.
    [24]杨亚洲.仿生哑铃型黄麻纤维增强摩擦材料[D].长春:吉林大学,2006.
    [25]冼杏娟,冼定国,叶颖薇.竹纤维增强树脂复合材料及其微观形貌[M].北京:科学出版社,1995.
    [26]曾竟成,肖加余,梁重云,等.黄麻纤维增强聚合物复合材料工艺与性能研究[J].玻璃钢/复合材料,200 1(2):30-33.
    [27]张一甫,张长安,孟弋洁.苎麻落麻纤维的PVC包覆处理研究[J].玻璃钢/复合材料,2002(4):13-15.
    [28]李欣欣,普萨那,张伟,等.天然椰壳纤维及其增强复合材料[J].上海化工,1999(14):28-30.
    [29]Ming Qiu Zhang, Min Zhi Rong, Xun Lu. Fully biodegradable natural fiber composites from renewable resources:All-plant fiber composites[J]. Composites Science and Technology, 2005,65(15-16):2514-2525.
    [310]肖加余,曾竟成,王春奇,等.高性能天然纤维复合材料及其制品研究与开发现状[J].玻璃钢/复合材料,2000(2):38-43.
    [31]Yang H, Kim D, Lee Y, et al. Possibility of using waste tire composites reinforced with rice straw as construction materials[J]. Bioresource Technology,2004,95(1):61-65.
    [32]Qin L, Qiu J, Liu M, et al. Mechanical and thermal properties of poly(lactic acid) composites with rice straw fiber modified by poly(butyl acrylate)[J]. Chemical Engineering Journal, 2011,166(2):772-778.
    [33]Li X, Cai Z, Winandy J E, et al. Effect of oxalic acid and steam pretreatment on the primary properties of UF-bonded rice straw particleboards[J]. Industrial Crops and Products, 2011,33(3):665-669.
    [34]Li X, Cai Z, Winandy J E, et al. Selected properties of particleboard panels manufactured from rice straws of different geometries[J]. Bioresource Technology,2010,101 (12):4662-4666.
    [35]Yao F, Wu Q, Lei Y, et al. Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading[J]. Industrial Crops and Products,2008,28(1):63-72.
    [36]Madhoushi M, Nadalizadeh H, Ansell M P. Withdrawal strength of fasteners in rice straw fibre-thermoplastic composites under dry and wet conditions[J]. Polymer Testing, 2009,28(3):301-306.
    [37]Kim S, Kim H, Park J C. Application of recycled paper sludge and biomass materials in manufacture of green composite pallet[J]. Resources, Conservation and Recycling, 2009,53(12):674-679.
    [38]Hiziroglu S, Jarusombuti S, Bauchongkol P, et al. Overlaying properties of fiberboard manufactured from bamboo and rice straw[J]. Industrial Crops and Products, 2008,28(1):107-111.
    [39]Yang H, Kim D, Kim H. Rice straw-wood particle composite for sound absorbing wooden construction materials[J]. Bioresource Technology,2003,86(2):117-121.
    [40]Halvarsson S, Edlund H, Norgren M. Properties of medium-density fibreboard (MDF) based on wheat straw and melamine modified urea formaldehyde (UMF) resin[J]. Industrial Crops and Products,2008,28(1):37-46.
    [41]Kuang X, Kuang R, Zheng X, et al. Mechanical properties and size stability of wheat straw and recycled LDPE composites coupled by waterborne coupling agents[J]. Carbohydrate Polymers, 2010,80(3):927-933.
    [42]Zou Y, Huda S, Yang Y. Lightweight composites from long wheat straw and polypropylene web[J]. Bioresource Technology,2010,101(6):2026-2033.
    [43]Tabarsa T, Jahanshahi S, Ashori A. Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol-formaldehyde adhesive[J]. Composites Part B: Engineering,2011,42(2):176-180.
    [44]Pfister D P, Larock R C. Green composites from a conjugated linseed oil-based resin and wheat straw[J]. Composites Part A:Applied Science and Manufacturing,2010,41(9):1279-1288.
    [45]Kaushik A, Singh M, Verma G. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw[J]. Carbohydrate Polymers, 2010,82(2):337-345.
    [46]Halvarsson S, Edlund H, Norgren M. Manufacture of non-resin wheat straw fibreboards[J]. Industrial Crops and Products,2009,29(2-3):437-445.
    [47]Alemdar A, Sain M. Biocomposites from wheat straw nanofibers:Morphology, thermal and mechanical properties[J]. Composites Science and Technology,2008,68(2):557-565.
    [48]Reddy C R, Sardashti A P, Simon L C. Preparation and characterization of polypropylene-wheat straw-clay composites[J]. Composites Science and Technology, 2010,70(12):1674-1680.
    [49]Panthapulakkal S, Sain M. Agro-residue reinforced high-density polyethylene composites:Fiber characterization and analysis of composite properties[J]. Composites Part A:Applied Science and Manufacturing,2007,38(6):1445-1454.
    [50]Nourbakhsh A, Ashori A. Wood plastic composites from agro-waste materials:Analysis of mechanical properties[J]. Bioresource Technology,2010,101(7):2525-2528.
    [51]Pfister D P, Larock R C. Thermophysical properties of conjugated soybean oil/corn stover biocomposites[J]. Bioresource Technology,2010,101(15):6200-6206.
    [52]Ahankari S S, Mohanty A K, Misra M. Mechanical behaviour of agro-residue reinforced poly(3-hydroxybutyrate-co-3-hydroxyvalerate), (PHBV) green composites:A comparison with traditional polypropylene composites[J]. Composites Science and Technology, 2011,71(5):653-657.
    [53]Ashori A, Nourbakhsh A. Bio-based composites from waste agricultural residues[J]. Waste Management,2010,30(4):680-684.
    [54]Bledzki A K, Mamun A A, Volk J. Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites[J]. Composites Part A:Applied Science and Manufacturing,2010,41(4):480-488.
    [55]Ye X P, Julson J, Kuo M, et al. Properties of medium density fiberboards made from renewable biomass[J]. Bioresource Technology,2007,98(5):1077-1084.
    [56]Nourbakhsha A, Foad F B, Alireza A. Nano-SiO2 filled rice husk/polypropylene composites: Physico-mechanical properties[J]. Industrial Crops and Products,2011,33(1):183-187.
    [57]Habibi Y, El-Zawawy W K, Ibrahim M M, et al. Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues[J]. Composites Science and Technology,2008,68(7-8):1877-1885.
    [58]Akil H M, Cheng L W, Mohd Ishak Z A, et al. Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites[J]. Composites Science and Technology, 2009,69(11-12):1942-1948.
    [59]Ashori A, Sheshmani S. Hybrid composites made from recycled materials:Moisture absorption and thickness swelling behavior[J]. Bioresource Technology,2010,101 (12):4717-4720.
    [60]Kijenska M, Kowalska E, Palys B, et al. Degradability of composites of low density polyethylene/polypropylene blends filled with rape straw[J]. Polymer Degradation and Stability, 2010,95(4):536-542.
    [61]Bledzki A K, Mamun A A, Volk J. Barley husk and coconut shell reinforced polypropylene composites:The effect of fibre physical, chemical and surface properties[J]. Composites Science and Technology,2010,70(5):840-846.
    [62]Ciannamea E M, Stefani P M, Ruseckaite R A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives[J]. Bioresource Technology, 2010,101(2):818-825.
    [63]张伏.淀粉/玉米秸秆纤维复合材料的制备及仿生层构板材[D].长春:吉林大学农业机械化工程,2007.
    [64]刘淑丽.不同胶粘剂的稻草碎料板工艺研究[D].南京:南京林业大学木材科学与技术,2003.
    [65]Nikuni Z. Studies on starch granules[J]. Starch,1978,30:105-106.
    [66]黄强,罗发兴,杨连生.淀粉颗粒结构的研究进展[J].高分子材料科学与工程,2004,5(5):19-23.
    [67]Ann-Charlotter Eliasson. Starch in food:structure,function and applications[M]. England: Woodhead Publishing Limited and CRC Press,2004.
    [68]KWEON M R, PARK C S, AUH J H, et al. Phospholipid Hydrolysate and Antistaling Amylase Effects on Retrogradation of Starch in Bread[J]. Journal of Food Science, 1994,59(5):1072-1076.
    [69]卫芳.浅谈小麦品质与面粉特性[J].内蒙古科技与经济,1999(S2):113-114.
    [70]严瑞瑄.水溶性高分子[M].北京:化学工业出版社,1998.
    [71]Lineback D R. The starch granule organization and properties[J]. Bake's Dig,1984,58(2):12-18.
    [72]Frech D. Starch Chemistry and Technology:Academic Press, Orlando,1984[C].
    [73]吴溪,侯昭升,阚成友.化学改性淀粉胶黏剂研究进展[J].化学与粘合,2009(5):45-49.
    [74]李慧连,刘国军,张桂霞,等.淀粉胶黏剂的最新研究进展[J].化学与粘合,2008(5):50-53.
    [75]张毅,张立武.不同氧化条件下氧化马铃薯淀粉胶粘剂影响因素的研究[J].包装工程, 2008(1):18-20.
    [76]丁晓民.H_20_2氧化法冷制淀粉胶的生产工艺研究[J].粘接,2008(3):26-27.
    [77]陈丽珠,陈少平,陈颖,等.催化氧化法制备快干型木薯淀粉胶粘剂[J].吉林化工学院学报,2007(1):28-32.
    [78]陈颖,陈少平,游纪平,等.催化氧化木薯淀粉的结构与胶粘性能[J].应用化学,2006(10):1173-1175.
    [79]郭晓红,郭红革.快干型氧化淀粉粘合剂的研制[J].包装工程,2007(5):48-50.
    [80]付丽红,吕立学.羧甲基化氧化淀粉粘度的影响因素[J].皮革与化工,2008(1):5-9,22.
    [81]任树梅,李考真.淀粉粘合剂改性途径的探讨[J].化学与粘合,1999(4):200-201.
    [82]钱亚良,曹海建.丁二酸酯淀粉浆料的制备及浆液性能研究[J].棉纺织技术,2005(11).
    [83]R Santayanon, J Wootthikanokkhan. Modification of cassava starch by using propionic anhydride and properties of the starch-blended polyester polyurethane[J]. Carbohydrate Polymers,2003,51(1):17-24.
    [84]时君友,涂怀刚,王淑敏.热压胶接API主剂用复合变性玉米淀粉的性能[J].林业科学,2008(8):100-104.
    [85]LIU H J, RAMSDEN L, CORKE H. Physical Properties of Cross-linked and Acetylated Normal and Waxy Rice Starch[J]. Starch-Starke,1999,51(7):249-252.
    [86]龚大春,罗华军,涂志英.PVF树脂改性玉米淀粉胶粘剂的研制[J].化学与粘合,2000(3):122-1 23.
    [87]林秀培,祝志峰,殷丽华.淀粉醚化变性对羊毛纤维黏附性能的影响[J].毛纺科技,2007(7):45-48.
    [88]李曼丽,祝志峰,顾云.淀粉烯丙基化预处理型PMA接枝淀粉的研究[J].棉纺织技术,2007(12):12-15.
    [89]时君友,王淑敏.玉米淀粉改性API胶研究[J].中国胶粘剂,2006(1):35-37.
    [90]杜拴丽,李文莉.淀粉改性酚醛胶粘剂的研究[J].粘接,2001(1):16-17.
    [91]阎春绵,张忠厚,吴卫林,等.环保耐水型木材用胶粘剂的研究[J].中国胶粘剂,2008(7):1-5.
    [92]庄伟洲,梁亮,殷榕灿,等.乙二醛交联氧化淀粉粘合剂的研制及其性能研究[J].中国胶粘剂,2006(12):14-17.
    [93]刘玉环,阮榕生,刘成梅,等.淀粉基聚酯型耐水性木材胶粘剂(英文)[J].农业工程学报,2008(9):309-312.
    [94]Syed H. Imam, Sherald H. Gordon, Lijun Mao, et al. Environmentally friendly wood adhesive from a renewable plantpolymer:characteristics and optimization [J]. Polymer Degradation and Stability,2001,73(3):529-533.
    [95]由英才,朱常英,焦京亮,等.淀粉/DL-丙交酯接枝共聚物的合成和生物降解性能研究[J].高分子学报,2000(6):746-750.
    [96]王彦斌,苏琼.淀粉-苯乙烯共聚乳液的合成与应用[J].化学建材,2005(3):12-13.
    [97]李敏,苏涛,郭立强,等.淀粉醋酸酯与醋酸乙烯接枝共聚制备白乳胶[J].中国胶粘剂,2005(10):24-26.
    [98]吴艳波,吕成飞,韩美娜.淀粉基木材胶黏剂的制备与性能[J].化学与粘合,2008(6):9-12.
    [99]王俊丽,扶雄,黄强,等.淀粉基木板胶粘剂的研究进展[J].中国胶粘剂,2006(1):45-48.
    [100]林巧佳,刘景宏,杨桂娣.高性能淀粉胶制备机理的研究[J].福建林学院学报,2004(2):101-106.
    [101]张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001.
    [102]罗立新.淀粉氧化改性粘合剂发展现状及展望[J].包装工程,2002(5):65-70.
    [103]Biby G, Hanna M A, Fang Q. Water-resistant degradable foam and method of making the same: US,6184261[P],2001-2-6.
    [104]Bastioli C, Hanna M A. Relationship between amylase contend and extrusion expansion properties of corn starches[J]. Cereal Chemistry,1998,65:138-143.
    [105]张可喜,符新.淀粉复合材料的研究进展[J].化学工程师,2006(5):22-24.
    [106]黄明福,王洪媛,马骁飞,等.热塑性淀粉基生物分解材料研究进展[J].材料导报,2006(3):60-64.
    [107]赫玉欣,由文颖,宋文生,等.淀粉基生物降解塑料的应用研究现状及发展趋势[J].河南科技大学学报(自然科学版),2006(1):61-64.
    [108]冀玲芳,李树材,李梅.热塑性淀粉/纤维共混物性能的研究[J].塑料工业,2005(5):46-48.
    [109]Ma X, Jiugao Y, Ang Z. Properties of biodegradable poly(propylene carbonate)/starch composites with succinic anhydride[J]. Composites Science and Technology, 2006,66(13):2360-2366.
    [110]李申,周晔,任天斌,等.聚乳酸/淀粉复合材料的制备及性能研究[J].塑料,2006(4):7-11.
    [111]高建平,于九皋,王为.完全生物可降解热塑性淀粉复合材料[J].高分子材料科学与工程,1999,15(3):93-95.
    [112]张秀梅,徐伟民.高粱秸秆发泡包装材料的微观结构研究[J].武汉工业学院学报,2006(1):50-52.
    [113]于洁,马海龙.可降解缓冲包装材料的研究[J].化工新型材料,2006(1):66-68.
    [114]冯孝中,陈杰,佟立新,等.可降解模塑粉的制备及模压成型工艺[J].郑州轻工业学院学报,2002(4):14-16.
    [115]滕翠青,杨军,韩克清,等.一次性可降解秸秆花盆的研制[J].工程塑料应用,2002(6):30-32.
    [116]滕翠青,杨军,韩克清,等.秸秆纤维增强复合材料的可降解性能研究[J].东华大学学报(自然科学版),2002,28(1):83-86.
    [117]Junjie G, Hanna M A. Effect of Bagasse Fiber on the Flexural Properties of Biodegradable Composites[J]. Biomacromolecules,2004,5(6):2329-2339.
    [118]Fang Q, Milford A H. Characteristics of biodegradable Mater-Bio-starch based foams as affected by ingredient formulations[J]. Industrial Crops and Products,2001,13(3):219-227.
    [119]Abar, Yogaraj, Narayan. Biodegradable starch foam packaging for automotive applications: Global Plastics Environmental Conference 2004-Plastics:Helping Grow a Greener Environment, 2004[C].
    [120]CHINNASWAMY R, HANNA M A. Optimum Extrusion-Cooking Conditions for Maximum Expansion of Corn Starch[J]. Journal of Food Science,1988,53(3):834-836.
    [121]Miladinov V D, M. A Hanna. Temperatures and ethanol effects on the properties of extruded modified starch[J]. Industrial Crops and Products,2001,13(1):21-28.
    [122]Guan Junjie, Milford A Hanna. Morphological and functional properties of acetylated starch foams extruded with cellulose:Annual Technical Conference ANTEC,Conference Proceedings, 2004[C].
    [123]Noguchi T, Miyashita M, Inagaki Y, et al. A new recycling system for expanded polystyrene using a natural solvent. Part 1. A new recycling technique[J]. Packaging Technology and Science,1998,11(1):19-27.
    [124]G. M Glenn, W. J Orts. Properties of starch-based foam formed by compression/explosion processing[J]. Industrial Crops and Products,2001,13(2):135-143.
    [125]S. H. Alavia, S. S H Rizvib, P. Harriottc. Process dynamics of starch-based microcellular foams produced by supercritical fluidextrusion. Ⅱ:Numerical simulation and experimental evaluation[J]. Food Research International,2003,36(4):321-330.
    [126]Soykeabkaew N, Pitt S, Ratana R. Preparation and characterization of jute-and flax-reinforced starch-based composite foams[J]. Carbohydrate Polymers,2004,58(1):53-63.
    [127]Vilaseca F, J. A Mendez, A. Pelach, et al. Composite materials derived from biodegradable starch polymer and jute strands[J]. Process Biochemistry,2007,42(3):329-334.
    [128]A. A. S Curvelo, A. J F De Carvalho, J. A M Agnelli. Thermoplastic starch-cellulosic fibers composites:preliminary results[J]. Carbohydrate Polymers,2001,45(2):183-188.
    [129]R. L Shogren, J. W Lawton, K. F Tiefenbacher. Baked starch foams:starch modifications and additives improve process parameters, structure and properties[J]. Industrial Crops and Products, 2002,16(1):69-79.
    [130]J. W Lawton, R. L Shogren, K. F Tiefenbacher. Aspen fiber addition improves the mechanical properties of baked cornstarch foams[J]. Industrial Crops and Products,2004,19(1):41-48.
    [131]Soykeabkaew N, Pitt S, Ratana R. Preparation and characterization of jute-and flax-reinforced starch-based composite foams[J]. Carbohydrate Polymers,2004,58(1):53-63.
    [132]Vilaseca F, Mendez J A, Pelach A, et al. Composite materials derived from biodegradable starch polymer and jute strands[J]. Process Biochemistry,2007,42(3):329-334.
    [133]Shinji Ochi. Development of high strength biodegradable composites using Manila hemp fiber and starch-based biodegradable resin[J]. Composites Part A:Applied Science and Manufacturing,2006,37(11):1879-1883.
    [134]Hieronim Szymanowskia, Mariusz K, Maciej G, et al. New biodegradable material based on RF plasma modified starch[J]. Surface and Coatings Technology,2005,200(1-4):539-543.
    [135]贾贤,任露泉,陈秉聪,等.土壤动物体表非光滑对体表润湿性的影响[J].农业工程学报,1995(4):1-4.
    [136]Tong Jin, Ren Luquan, Chen Bingcong. Geometrical morphology, chemical constitution and wettability of body surfaces of soil animals[J]. International Agricultural Engineering Journal, 1994,3(1-2):58-65.
    [137]佟金,孙霁宇,张书军,等.神农蜣螂前胸背板表面形态分形及润湿性[J].农业机械学报,2002(4):74-76.
    [138]杨晓东,尚广瑞,李雨田,等.植物叶表的润湿性能与其表面微观形貌的关系[J].东北师大学报(自然科学版),2006(3):91-95.
    [139]Jin Tonga, Jiyu Sun, Donghui Chen, et al. Geometrical features and wettability of dung beetles and potential biomimetic engineering applications in tillage implements[J]. Soil and Tillage Research,2005,80(1-2):1-12.
    [140]张建红,徐信武,周定国.水热处理对麦秸化学构成的影响[J].南京林业大学学报(自然科学版),2004(3):31-33.
    [141]皇才进,韩鲁佳,刘贤,等.基于近红外光谱技术的秸秆工业分析[J].光谱学与光谱分析,2009(4):960-963.
    [142]徐勇,沈其荣,钟增涛,等.水稻秸秆接力处理过程中的红外光谱研究[J].光谱学与光谱分析,2004(9):1050-1054.
    [143]吴章康,周定国.稻草原料表面特性FTIR和XPS分析[J].木材工业,2003(6):6-8.
    [144]周晓燕,周定国,施登军.微波处理对稻草表面特性的影响[J].林产工业,2005(5):28-30.
    [145]姚杰,徐信武,冯玉英.用红外光谱法研究麦秸各层面的化学组成[J].光谱学与光谱分析,2003(1):58-60.
    [146]陈允魁.红外吸收光谱法及其应用[M].上海:上海交通大学出版社,1993.
    [147]Chen L M, Wilson R H, Mccann M C. Ivestigation of macromolecule orientation in dry and hydrated walls of single onion epidermal cells by FTIR microspectroscopy[J]. Journal of Molecular Structure,1997,408-409(1):257-260.
    [148]Gastaldi G, Capretti G, Focher B, et al. Characterization and properties of cellulose isolated from the crambe abyssinica hull[J]. Industrial Crops and Produets,1998,8(3):205-218.
    [149]Revol J F. On the cross-sectional shape of cellulose crystallites in valonia ventricosa[J]. Carbohydrate Polymers,1982,2(2):123-134.
    [150]Stewart D, Wilson H M, Hendra P J, et al. Fourier-transform infrared and raman-spectroscopic study of biochemical and chemical treatments of oak wood(Quercus rubra)and barley(Hordeum vulgare)straw[J]. Journal of Agriculture and Food Chemistry,1995,43(8):2219-2225.
    [151]王佳堃.稻草预处理后超微结构及其理化性能变化规律研究[D].杭州:浙江大学动物科学学院,2006.
    [152]王雪飞.脂肪酶改善麦秸表面浸润性能的研究[D].南京:南京林业大学.
    [153]王俊丽,扶雄,黄强,等.淀粉基木板胶粘剂的研究进展[J].中国胶粘剂,2006(1):45-48.
    [154]段善海,徐大庆,缪铭.物理法在淀粉改性中的研究进展[J].食品科学,2007(3):361-366.
    [155]钱建亚,顾林.三种常用淀粉糊化测定方法的比较[J].西部粮油科技,1999(4):42-46.
    [156]沃丁柱.复合材料大全[M].北京:化学工业出版社,2000.
    [157]陈哲,刘德桃,赵仁杰.废旧塑料原料与竹加工剩余物制作竹塑复合板的试验研究[J].人造板通讯,2004(8):11-13.
    [158]张冰,江波,许澍华,等.废旧塑料/木质纤维复合材料的一步法生产技术与装备[J].塑料,2002(4):15-19.
    [159]杨绮云,冯鹏.木塑复合材料生产工艺、设备及应用[J].哈尔滨商业大学学报(自然科学版),2008(6):730-732.
    [160]于艳滨,唐跃,姜蔚.木塑复合材料成型工艺及影响因素的研究[J].工程塑料应用,2008(11):36-40.
    [16I]冯孝中.塑料包装的循环再生—木塑材料加工技术[J].包装工程,1997(5):15-18.
    [162]杨庆贤.木/塑复合材料及其增强机理的研究[J].复合材料学报,1992(4):77-82.
    [163]张金斌,许澍华,江波.木塑复合材料制品一步法挤出成型技术的研究[J].塑料,2004(5):1-5.
    [164]张金斌,董博宇,许澍华,等.串联式磨盘螺杆挤出机一步法挤出成型木塑复合材料的研 究[J].中国塑料,2004,18(9):56-59.
    [165]Myers G E, Chahyadi I S, Coberly C A, et al. Wood flour and polypropylene or high-density polyethylene composites:influence of maleated polypropvlene concentration and extrusion temperature on properties[J]. Forest Products Journal,2002,32(2):149-159.
    [166]潘丽军,陈锦权.试验设计与数据处理[M].南京:东南大学出版社,2008.
    [167]高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004.
    [168]王春红,王瑞,于飞,等.竹原/亚麻复合材料力学性能的模糊评判[J].纺织学报,2007,28(3):34-37.
    [169]冯保成.模糊数学实用集萃篇[M].北京:中国建筑工业出版社,1991.
    [170]荩垆.实用模糊数学[M].北京:科学技术文献出版社,1989.
    [171]朱栋君.不同填料及塑料基复合材料模压成型工艺及其性能研究[D].南京:南京农业大学工学院,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700