用户名: 密码: 验证码:
拉曼光谱数据处理与定性分析技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拉曼光谱分析技术由于具有无损、信息丰富、无需样品制备等优点,在食品、材料、环境监测等众多领域得到了越来越广泛的应用。手持拉曼光谱仪由于具有操作简单、小巧轻便等优点被广泛应用于工业生产中的物料鉴定。目前,国外各大光谱仪生产商均已经推出了各种型号的手持拉曼光谱仪,国内市场已被其垄断,因此研制我国拥有独立自主知识产权的手持拉曼光谱仪具有重要意义。
     本文针对手持拉曼光谱仪数据处理与定性分析技术展开了相关研究。由于手持拉曼光谱仪主要应用于工业生产中的定性判别问题,生产线上操作员往往不具备专业的化学分析知识,因此减少拉曼光谱分析过程中的人工干预,实现拉曼光谱数据处理与定性分析的自动化是手持拉曼光谱定性分析技术的关键。
     本文系统地研究了手持拉曼光谱的数据处理与定性分析算法流程,主要研究工作如下:
     (1)研究了拉曼光谱质量评价方法。实现了小尺度小波变换法、空域相关小波变化法、Donoho鲁棒估计法及改进的二阶差分法等噪声标准差估计方法,对比了其估计噪声标准差的精度,结果表明改进的二阶差分法的估计精度最高;提出了一种新的信噪比计算方法,新的信噪比计算方法与传统的信噪比定义相比能更好的表征信号质量。
     (2)研究了拉曼光谱数据处理技术。实现了各种常见的光谱预处理方法,重点研究了拉曼光谱的去尖峰、去基线、去噪声方法。提出了一种无需设置任何参数的、可实现完全自动化的去尖峰方法——改进的循环消去法;实现了一种基于三点零阶Savitzky-Golay滤波器的自动化降噪方法,对比了其与传统的滑动窗口平均法、滑动窗口中位值法、Savitzky-Golay滤波器法、小波阈值滤波法的降噪效果,数值实验表明该方法具有最优的去噪效果,同时引起的谱峰退化程度也最小,能够最大量的保留谱峰信息;提出了一种新的基线估计方法——改进的小窗口滑动平均法,该方法无需设置任何参数,可实现基线的自动估计,估计精度良好。
     (3)研究了拉曼光谱谱峰识别技术。实现了连续小波变换法识别拉曼谱峰,提出了两种新的拉曼谱峰识别方法——双尺度相关法及多尺度局部信噪比法,对比了其与连续小波变换法识别拉曼谱峰的能力。仿真实验表明,多尺度局部信噪比法具有最优的谱峰识别能力。对于处于检测限的单峰,仍有95.1%的识别准确率,谱峰信噪比大于等于6时谱峰识别准确率高达100%;对于重叠峰,谱峰信噪比大于等于7时达到100%识别。多尺度局部信噪比法具有最高的峰位估计准确度。
     (4)研究了拉曼光谱判别分析技术。实现了直接比较法和基于簇类的软独立模型法,对比了两者的性能。直接比较法的不足是,当参考谱库中没有待测样品的参考光谱时,直接比较法仍然会给出一个最佳的匹配结果。基于簇类的软独立模型法具有更加优越的性能,该方法具有较高的识别准确率,当未知样品不属于类库中的任何类时,该方法可识别出未知样品属于某一新的类型。利用基于簇类的软独立模型法还可以获得两类间的相似度、变量对样品判别的重要性、样品与某类的相关性等信息。
Raman spectrum analysis technique is gaining a wider use in many fields suchas food, materials and environmental monitoring due to its advantages ofnon-destructive, rich information, no sample preparation etc.. Handheld Ramanspectrometer is widely used in the material identification of industrial productionbecause of its advantages of easy to operate, compact construction, lightweight etc.Currently, major foreign spectrometer manufacturers have already launched variousmodels of handheld Raman spectrometer. The domestic market has beenmonopolized by these products. Therefore the need of development of our ownhandheld Raman spectrometer with independent intellectual property rights isbecoming extremely urgent.
     In this paper, related research on data processing and qualitative analysis ofhandheld Raman spectrometer is carried out. Because handheld Raman spectrometeris mainly used in qualitative discrimination issues in industrial production, andproduction line operators often do not have the professional knowledge of chemicalanalysis, reducing the need of manual intervention and achievement of automation ofdata processing and spectrum analysis process become a critical point.
     This paper systematically studied the algorithm of data processing andqualitative analysis of handheld Raman spectroscopy. The major research work is as follows:
     (1) Studied the quality evaluation methods of Raman spectrum. Noise standarddeviation methods such as small scale wavelet transform method, spatial correlationwavelet transform method, Donoho robust estimation method and improvedsecond-order difference method were realized. Estimation accuracy of noise standarddeviation of these methods were compared, results showed that improvedsecond-order difference method is the most accurate estimation method. Proposed anew method for the calculation of SNR, the new SNR can better characterize thequality of Raman spectrum in comparison with the conventional SNR.
     (2) Studied the data processing methods of Raman spectrum. The commonspectrum preprocessing methods were realized. The research were focused on thedespeike, debaseline and denoise methods of Raman spectrum. Proposed a novelmethod for spectrum despike, improved iteratively stripping method, which is atotally automated despike method without any parameter need to be specified.Realized an automated noise reduction method based on three points zero-orderSavitzky-Golay filter. It’s denoise performance was compared with the traditionaldenoise methods such as sliding window average, sliding window median method,Savitzky-Golay filter and wavelet threshold filter. Numerical experiments showedthat the method had the best denoising performance. Meanwhile the degradation ofpeak caused by denoising was minimal. It could retain most of the informationcontained in Raman peaks. Proposed a novel baseline estimation method, improvedsmall window moving average method, which is a totally automatic debaselinemethod without any parameters to be set. The novel method’s baseline estimationaccuracy is pretty good.
     (3) Studied the peak recognition methods of Raman spectrum. Realized the peakrecognition method based on continuous wavelet transform. Proposed two novel peakrecognition methods: bi-scale correlation method and multi-scale local SNR method.Their peak recognition performance of these methods was compared. Simulationresults showed that the multi-scale local SNR method outperformed the continuous wavelet transform method and bi-scale correlation method. The simulationexperiment shows that: for singular peak on the detection limit the recognitionaccuracy of multi-scale local SNR method is95.1%, when the peak SNR is greaterthan or equal to6, the recognition accuracy of proposed algorithm is up to100%, forcongested peak, when the peak SNR is greater than or equal to7, the recognitionaccuracy is up to100%, multi-scale local SNR method had the highest peak positionestimation accuracy.
     (4) Studied the discriminant analysis methods of Raman spectrum. Directcomparison method and soft independent modeling of class analogy method wererealized. Their performance was compared. The disadvantage of direct comparisonmethod is that when the reference spectrum of unkown sample wasn’t contained inthe reference library, the direct comparison method would still give one best matchresult. Soft independent modeling of class analogy method outperformed the directcomparison method. The soft independent modeling of class analogy method hadmore superior identification performance. When the reference spectrum of unkownsample wasn’t contained in the reference library the soft independent modeling ofclass analogy method could tell us that the unkown sample belonged to a new class.Through soft independent modeling of class analogy method we could get otherinformation such as the similarity between the two classes, the relevance of avariable and the similarity between one sample and certain class.
引文
[1]李淑玲.拉曼光谱仪及其应用进展[J].盐矿测试,1998,17(4):312-316
    [2]白利涛,张丽萍,赵国文.拉曼光谱的应用及进展[J].福建分析测试,2011,20(2):27-30
    [3]田国辉,陈亚杰,冯清茂.拉曼光谱的发展及应用[J].化学工程师,2008(1):34-36
    [4]北京第二光学仪器厂.我国第一台WFL激光拉曼分光光度计介绍[J].分析仪器,1977(2):28-35
    [5]林逸群.LRZ-1型激光拉曼光谱仪计算机系统的研制[J].光谱学与光谱分析,1986,8(1):26-30
    [6]张树霖.改造和研制激光拉曼光谱仪二十年[J].现代科学仪器,1998(4):18-20
    [7]邵晟宇,张琳,曹丙庆,等.便携式拉曼光谱仪的应用研究现状及展望[J].现代科学仪器,2013(1):28-32
    [8]邹文龙,蔡志坚,吴建宏.便携式拉曼光谱仪发展综述[J].光学仪器,2011,33(6):86-90
    [9] OMNIC User’s Guide Version8.0. Thermo Scientific,2008
    [10]OPUS User Manual. Bruker Optik,2006
    [11]辛勤,罗孟飞.现代催化研究方法[M].北京:科学出版社,2009.221-222
    [12]纪伟.表面增强拉曼散射化学增强机理的研究及其应用[D]:[博士学位论文].吉林:吉林大学化学学院,2013
    [13]丁松园,吴德印,杨志林,等.表面增强拉曼散射增强机理的部分研究进展[J].高等学校化学学报,2008,29(12):2569-2581
    [14]朱自营,顾仁敖,陆天虹.拉曼光谱在化学中的应用[M].沈阳:东北大学出版社,1998.10-11
    [15]刘锦淮,黄行九.纳米敏感材料与传感技术[M].北京:科学出版社,2011.345-346
    [16]来永超.面向环境有机污染物快速分析的表面增强拉曼光谱方法[D]:[博士学位论文].济南:山东大学化学学院,2013
    [17]窦文虎.拉曼光谱在药物与食品安全检测上的应用[D]:[硕士学位论文].重庆:西南大学化学学院,2013
    [18]韦娜.拉曼光谱法检测辣椒制品中罗丹明B和掺兑地沟油的花生油[D]:[硕士学位论文].沈阳:沈阳农业大学研究生院,2013
    [19]周秀军.基于拉曼光谱的食用植物油定性鉴别与定量分析[D]:[硕士学位论文].浙江:浙江大学控制科学与工程学系,2013
    [20]黄祖芳.基于拉曼光谱的人体精液质量的初步研究[D]:[硕士学位论文].福建:福建师范大学光学工程系,2013
    [21]李晓舟,杨天月,丁建华.唾液表面增强拉曼光谱用于肺癌的诊断[J].光谱学与光谱分析,2012,32(2):391-393
    [22]赵肖蓉,张兰天,王利军,等.拉曼光谱在食品检测中的应用[J].食品工业,2013(12):158-160
    [23]陈健,肖凯军,林福兰.拉曼光谱在食品分析中的应用[J].食品科学,2007,28(12):554-558
    [24]赵亚佩,陈宁.拉曼光谱无损检测技术在医学上的应用[J].数理医药学杂志,2011,24(5):595-597
    [25]叶莉.拉曼光谱技术在水环境质量管理中的应用[J].企业导报,2013(10):268-269
    [26]刘燕德,刘涛,孙旭东,等.拉曼光谱技术在食品质量安全检测中的应用[J].光谱学与光谱分析,2010,30(11):3007-3012
    [27]孙璐,陈斌,高瑞昌,等.拉曼光谱技术在食品分析中的应用[J].中国食品学报,2013,12(12):113-118
    [28]尉颖琪.拉曼光谱技术及其在医学中的应用[J].科技创新导报,2012(33):81-81
    [29]陈珊,李晓宁,梁逸曾,等.拉曼光谱的荧光背景扣除及其用于药物聚类分析[J].光谱学与光谱分析,2010,30(8):2157-2160
    [30]叶宇煌,陈阳,李永增,等.基于拉曼光谱的鼻咽癌与正常鼻咽细胞株的分类研究[J].中国激光,2012,39(5):132-136
    [31]汪仕韬,卫荣,胡建,等.表面增强拉曼散射光谱法在环境污染物检测中的应用[J].理化检验化学分册,2013(1):118-120
    [32]龚继来,吕璞,曾光明.表面增强拉曼光谱在环境分析中的研究进展[J].化学传感器,2009(3):8-12
    [33]刘鹏,李吉祥,李文静.表面增强拉曼光谱在反恐中的应用[J].光谱实验室,2010(1):321-324
    [34]张树霖.拉曼光谱学与低维纳米半导体[M].北京:科学出版社,2008.68-72
    [35]安岩,孙强,朴仁官,等.用于微型拉曼光谱仪的外光路光学系统[J].激光与光电子学进展,2012(49),032204:1-5
    [36]安岩,孙强,刘英,等.交叉型消象散Czerny-Turner结构光谱仪设计[J].中国光学,2012,5(5):470-475
    [37]安岩,刘英,孙强,等.便携式拉曼光谱仪的光学系统设计与研制[J],光学学报,2013,33(3),0330001:1-7
    [38]刘兵,于凡菊,孙强,等.手持式拉曼光谱仪探头系统的杂光抑制新方法[J],中国激光,2014,41(1),0115001:1-8
    [39]杨序纲,吴琪琳.拉曼光谱的分析与应用[M].北京:国防工业出版社,2008.19-25
    [40]McCreery R L. Raman spectroscopy for chemical analysis [M]. New York:John Wiley&Sons,2005.52-61
    [41]姚天任,孙洪.现代数字信号处理[M].武汉:华中理工大学出版社,1999.9-10
    [42]瓦塞.现代数字信号处理与噪声降低[M].北京市:电子工业出版社,2007.18-18
    [43]潘泉,戴冠中,张洪才.具有理论阈值的子波域滤波方法[J].宇航学报,1998,19(4):81-86
    [44]Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage [J].Biometrika,1994,81(3):425-455
    [45]Schulze H G, Yu M M L, Addison C J, et al. Automated estimation of whitegaussian noise level in a spectrum with or without spike noise using a spectral shiftingtechnique [J]. Applied spectroscopy,2006,60(7):820-825
    [46]Gao H Y, Bruce A G. WaveShrink with firm shrinkage [J]. Statistica Sinica,1997,7(4):855-874
    [47]Schulze H G, Foist R B, Ivanov A, et al. Fully automated high-performancesignal-to-noise ratio enhancement based on an iterative three-point zero-orderSavitzky–Golay filter [J]. Applied spectroscopy,2008,62(10):1160-1166
    [48]Rowlands C J, Elliott S R. Denoising of spectra with no user input: aspline‐smoothing algorithm [J]. Journal of Raman Spectroscopy,2011,42(3):370-376
    [49]Saptari V. Fourier transform spectroscopy instrumentation engineering [M].Washington: SPIE press,2004.11-15
    [50]梁逸曾,俞汝勤.分析化学手册:化学计量学[M].北京:化学工业出版社,2000.
    [51]Hillig K J, Morris M D. A digital impulse noise removal filter [J]. AppliedSpectroscopy,1982,36(6):700-701
    [52]Bussian B M, H rdle W. Robust smoothing applied to white noise and singleoutlier contaminated Raman spectra [J]. Applied spectroscopy,1984,38(3):309-313
    [53]Phillips G R, Harris J M. Polynomial filters for data sets with outlying or missingobservations: application to charge-coupled-device-detected Raman spectracontaminated by cosmic rays [J]. Analytical Chemistry,1990,62(21):2351-2357
    [54]Hill W, Rogalla D. Spike-correction of weak signals from charge-coupled devicesand its application to Raman spectroscopy [J]. Analytical Chemistry,1992,64(21):2575-2579
    [55]Takeuchi H, Hashimoto S, Harada I. Simple and efficient method to eliminatespike noise from spectra recorded on charge-coupled device detectors [J]. Appliedspectroscopy,1993,47(1):129-131
    [56]Stone D C. Application of median filtering to noisy data [J]. Canadian journal ofchemistry,1995,73(10):1573-1581
    [57]Ehrentreich F, Sümmchen L. Spike removal and denoising of Raman spectra bywavelet transform methods [J]. Analytical chemistry,2001,73(17):4364-4373
    [58]Zhang D, Jallad K N, Ben-Amotz D. Stripping of cosmic spike spectral artifactsusing a new upper-bound spectrum algorithm [J]. Applied Spectroscopy,2001,55(11):1523-1531
    [59]Behrend C J, Tarnowski C P, Morris M D. Identification of outliers inhyperspectral Raman image data by nearest neighbor comparison [J]. Appliedspectroscopy,2002,56(11):1458-1461
    [60]Ehrentreich F. Wavelet transform applications in analytical chemistry [J].Analytical and Bioanalytical chemistry,2002,372(1):115-121
    [61]Katsumoto Y, Ozaki Y. Practical algorithm for reducing convex spike noises on aspectrum [J]. Applied spectroscopy,2003,57(3):317-322
    [62]Zhang D, Hanna J D, Ben-Amotz D. Single scan cosmic spike removal using theupper bound spectrum method [J]. Applied spectroscopy,2003,57(10):1303-1304
    [63]Cappel U B, Bell I M, Pickard L K. Removing cosmic ray features from Ramanmap data by a refined nearest neighbor comparison method as a precursor forchemometric analysis [J]. Applied spectroscopy,2010,64(2):195-200
    [64]梁逸曾,俞汝勤.化学计量学[M].北京:高等教育出版社,2003.85-90
    [65]Donoho D L. Wavelet shrinkage and WVD sa ten-minute tour [C]. InternationalConference on Wavelets and Applications, Toulouse, France.1992:1-12
    [66]Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage [J].Biometrika,1994,81(3):425-455
    [67]Donoho D L, Johnstone I M, Kerkyacharian G, et al. Wavelet shrinkage:asymptopia?[J]. Journal of the Royal Statistical Society. Series B (Methodological),1995:301-369
    [68]Donoho D L, Johnstone I M. Adapting to unknown smoothness via waveletshrinkage [J]. Journal of the american statistical association,1995,90(432):1200-1224
    [69]Donoho D L. De-noising by soft-thresholding [J]. Information Theory, IEEETransactions on,1995,41(3):613-627
    [70]Xu Y, Weaver J B, Healy Jr D M, et al. Wavelet transform domain filters: aspatially selective noise filtration technique [J]. Image Processing, IEEE Transactionson,1994,3(6):747-758
    [71]Greek L S, Schulze H G, Blades M W, et al. SNR enhancement and deconvolutionof Raman spectra using a two-point entropy regularization method [J]. Appliedspectroscopy,1995,49(4):425-431
    [72]Gao H Y, Bruce A G. Waveshrink and semisoft shrinkage [C]. StatSci Division ofMathSoft, Inc.1995:1-25
    [73]Abramovich F, Benjamini Y. Adaptive thresholding of wavelet coefficients [J].Computational Statistics&Data Analysis,1996,22(4):351-361
    [74]Barclay V J, Bonner R F, Hamilton I P. Application of wavelet transforms toexperimental spectra: smoothing, denoising, and data set compression [J]. AnalyticalChemistry,1997,69(1):78-90
    [75]Gao H Y, Bruce A G. WaveShrink with firm shrinkage [J]. Statistica Sinica,1997,7(4):855-874
    [76]Sardy S, Tseng P, Bruce A. Robust wavelet denoising [J]. Signal Processing,IEEE Transactions on,2001,49(6):1146-1152
    [77]Eilers P H C. A perfect smoother [J]. Analytical chemistry,2003,75(14):3631-3636
    [78]Ramos P M, Ruisánchez I. Noise and background removal in Raman spectra ofancient pigments using wavelet transform [J]. Journal of Raman Spectroscopy,2005,36(9):848-856
    [79]Fried R, Einbeck J, Gather U. Weighted repeated median smoothing and filtering[J]. Journal of the American Statistical Association,2007,102(480):1300-1308
    [80] lupek M, Matějka P, Volka K. Noise reduction in Raman spectra: Finite impulseresponse filtration versus Savitzky–Golay smoothing [J]. Journal of RamanSpectroscopy,2007,38(9):1174-1179
    [81]Li G. Noise Removal of Raman Spectra Using Interval Thresholding Method [C].Intelligent Information Technology Application,2008. IITA'08. Second InternationalSymposium on. IEEE,2008,1:535-539
    [82]Feuerstein D, Parker K H, Boutelle M G. Practical methods for noise removal:applications to spikes, nonstationary quasi-periodic noise, and baseline drift [J].Analytical chemistry,2009,81(12):4987-4994
    [83]Quintero L, Matth us C, Hunt S, et al. Denoising of single scan Ramanspectroscopy signals [C]. BiOS. International Society for Optics and Photonics,2010:756817-756817-12
    [84]Rowlands C J, Elliott S R. Denoising of spectra with no user input: aspline‐smoothing algorithm [J]. Journal of Raman Spectroscopy,2011,42(3):370-376
    [85]Quintero L, Matth us C, Hunt S, et al. Denoising of single scan Ramanspectroscopy signals [C]. BiOS. International Society for Optics and Photonics,2010:756817-756817-12
    [86]Goehner R P. Background subtract subroutine for spectral data [J]. Analyticalchemistry,1978,50(8):1223-1225
    [87]Liu J, Koenig J L. A new baseline correction algorithm using objective criteria [J].Applied spectroscopy,1987,41(3):447-449
    [88]Dietrich W, Rüdel C H, Neumann M. Fast and precise automatic baselinecorrection of one-and two-dimensional NMR spectra [J]. Journal of MagneticResonance (1969),1991,91(1):1-11
    [89]Karstang T V, Kvalheim O. Multivariate prediction and background correctionusing local modeling and derivative spectroscopy [J]. Analytical chemistry,1991,63(8):767-772
    [90]Iwata T, Koshoubu J. New Method to Eliminate the Background Noise from aLine Spectrum [J]. Applied spectroscopy,1994,48(12):1453-1456
    [91]Mosier-Boss P A, Lieberman S H, Newbery R. Fluorescence rejection in Ramanspectroscopy by shifted-spectra, edge detection, and FFT filtering techniques [J].Applied spectroscopy,1995,49(5):630-638
    [92]Friedrichs M S. A model-free algorithm for the removal of baseline artifacts [J].Journal of Biomolecular NMR,1995,5(2):147-153
    [93]Ruckstuhl A F, Jacobson M P, Field R W, et al. Baseline subtraction using robustlocal regression estimation [J]. Journal of Quantitative Spectroscopy and RadiativeTransfer,2001,68(2):179-193
    [94]Lieber C A, Mahadevan-Jansen A. Automated method for subtraction offluorescence from biological Raman spectra [J]. Applied spectroscopy,2003,57(11):1363-1367
    [95]Schulze G, Jirasek A, Yu M M L, et al. Investigation of selected baseline removaltechniques as candidates for automated implementation [J]. Applied spectroscopy,2005,59(5):545-574
    [96]Gan F, Ruan G, Mo J. Baseline correction by improved iterative polynomialfitting with automatic threshold [J]. Chemometrics and Intelligent Laboratory Systems,2006,82(1):59-65
    [97]Zhao J, Lui H, McLean D I, et al. Automated autofluorescence backgroundsubtraction algorithm for biomedical Raman spectroscopy [J]. Applied spectroscopy,2007,61(11):1225-1232
    [98]Morhá M. An algorithm for determination of peak regions and baselineelimination in spectroscopic data [J]. Nuclear Instruments and Methods in PhysicsResearch Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment,2009,600(2):478-487
    [99]Zhang Z M, Chen S, Liang Y Z, et al. An intelligent background‐correctionalgorithm for highly fluorescent samples in Raman spectroscopy [J]. Journal ofRaman Spectroscopy,2010,41(6):659-669
    [100] Li G. Removing Background of Raman Spectrum Based on WaveletTransform [C]. Future Computer and Communication,2009. FCC'09. InternationalConference on. IEEE,2009:198-200
    [101] Zhang Z M, Chen S, Liang Y Z. Baseline correction using adaptiveiteratively reweighted penalized least squares [J]. Analyst,2010,135(5):1138-1146
    [102] Liland K H, Alm y T, Mevik B H. Optimal choice of baseline correction formultivariate calibration of spectra [J]. Applied spectroscopy,2010,64(9):1007-1016
    [103] Rowlands C, Elliott S. Automated algorithm for baseline subtraction inspectra [J]. Journal of Raman Spectroscopy,2011,42(3):363-369
    [104] Prakash B D, Wei Y C. A fully automated iterative moving averaging (AIMA)technique for baseline correction [J]. Analyst,2011,136(15):3130-3135
    [105] Schulze H G, Foist R B, Okuda K, et al. A model-free, fully automatedbaseline-removal method for Raman spectra [J]. Applied spectroscopy,2011,65(1):75-84
    [106] Schulze H G, Foist R B, Okuda K, et al. A Small-Window MovingAverage-Based Fully Automated Baseline Estimation Method for Raman Spectra [J].Applied spectroscopy,2012,66(7):757-764
    [107] Reich G. Recognizing chromatographic peaks with pattern recognitionmethods: Part1. Development of a k-Nearest-Neighbour Technique [J]. Analyticachimica acta,1987,201:153-170
    [108] Reich G. Recognizing chromatographic peaks with pattern recognitionmethods: Part2. Evaluation of different distance measures [J]. Analytica chimica acta,1987,201:171-183
    [109] Reich G. Recognizing chromatographic peaks with pattern recognitionmethods III. Application of the algorithm for peak recognition in trace analysis [J].Chromatographia,1987,24(1):659-665
    [110] Janssens F, Francois J P. Evaluation of three zero-area digital filters for peakrecognition and interference detection in automated spectral data analysis [J].Analytical chemistry,1991,63(4):320-331
    [111] W tzig H. Peak recognition technique by a computer program copying thehuman judgement [J]. Chromatographia,1992,33(5-6):218-224
    [112] Likar A, Vidmar T. A peak search method based on spectrum convolution [J].Journal of Physics D: Applied Physics,2003,36(15):1903
    [113] Vivó-Truyols G, Torres-Lapasió J R, Van Nederkassel A M, et al. Automaticprogram for peak detection and deconvolution of multi-overlapped chromatographicsignals: Part I: Peak detection [J]. Journal of Chromatography A,2005,1096(1):133-145
    [114] Du P, Kibbe W A, Lin S M. Improved peak detection in mass spectrum byincorporating continuous wavelet transform-based pattern matching [J].Bioinformatics,2006,22(17):2059-2065
    [115] Wee A, Grayden D B, Zhu Y, et al. A continuous wavelet transform algorithmfor peak detection [J]. Electrophoresis,2008,29(20):4215-4225
    [116] Zhang P, Li H, Zhou X, et al. Peak detection using peak tree approach formass spectrometry data [J]. International Journal of Hybrid Intelligent Systems,2008,5(4):197-208
    [117] Cai Z, Wu J. An automatic peak detection algorithm for Raman spectroscopybased on wavelet transform [C]. International Conference on Optical Instruments andTechnology (OIT2011). International Society for Optics and Photonics,2011:82000E-82000E-9
    [118] Cooper G, Kubik M, Kubik K. Wavelet based Raman spectra comparison [J].Chemometrics and Intelligent Laboratory Systems,2011,107(1):65-68
    [119]樊启斌.小波分析[M].武汉:武汉大学出版社,2008.31-37
    [120]李建平,杨万年.小波十讲[M].北京:国防工业出版社,2004.29-34
    [121]孙延奎.小波分析及其应用[M].北京:机械工业出版社,2005.119-152
    [122]陈彦.小波变换的在形变监测数据处理中的应用研究[J].四川地质学报,2013,33(1):197-200
    [123]尹士畅,喻松林.基于小波变换和直方图均衡的红外图像增强[J].激光与红外,2013,43(2):225-228
    [124]孟宗,李姗姗.基于小波半软阈值和EMD的旋转机械故障诊断[J].中国机械工程,2013,24(1):1279-1283
    [125]许禄,邵学广.化学计量学方法[M].北京:科学出版社,1995.318-372
    [126]李庆波,杨丽敏,凌晓锋,等.SIMCA法在中红外癌症检测技术中的应用[J].光谱学与光谱分析,2004,24(4):414-417
    [127]陈全胜,赵杰文,张海东,等.SIMCA模式识别方法在近红外光谱识别茶叶中的应用[J].食品科学,2006,27(4):186-189
    [128]杨忠,江泽慧,费本华,等.SIMCA法判别分析木材生物腐朽的研究[J].光谱学与光谱分析,2007,27(4):686-690
    [129]张宁,张德权,李淑荣,等.近红外光谱结合SIMCA法溯源羊肉产地的初步研究[J].农业工程学报,2009,24(12):309-312
    [130] Li J, Hibbert D B, Fuller S, et al. A comparative study of point-to-pointalgorithms for matching spectra [J]. Chemometrics and intelligent laboratorysystems,2006,82(1):50-58
    [131] Kwiatkowski A, Gnyba M, Smulko J, et al. Algorithms of chemicalsdetection using raman spectra [J]. Metrology and Measurement Systems,2010,17(4):549-559
    [132]严衍禄.近红外光谱分析基础与应用[M].北京:中国轻工业出版社,2005.74-75
    [133] Wold S, Johansson E, Jellum E, et al. Application of SIMCA multivariatedata analysis to the classification of gas chromatographic profiles of human braintissues [J]. Analytica Chimica Acta,1981,133(3):251-259
    [134] Dr ge J B M, Van't Klooster H A. An evaluation of SIMCA. Part1—Thereliability of the SIMCA pattern recognition method for a varying number of objectsand features [J]. Journal of Chemometrics,1987,1(4):221-230
    [135] Dr ge J B M, Rinsma W J, Van'T Klooster H A, et al. An evaluation ofSIMCA. Part2—classification of pyrolysis mass spectra of pseudomonas and serratiabacteria by pattern recognition using the SIMCA classifier [J]. Journal ofchemometrics,1987,1(4):231-241
    [136] Wold S. Pattern recognition by means of disjoint principal componentsmodels[J]. Pattern recognition,1976,8(3):127-139
    [137] Derde M P, Coomans D, Massart D L. Effect of scaling on class modelingwith the SIMCA method [J]. Analytica Chimica Acta,1982,141:187-192
    [138] Wold S, Sj str m M. Comments on a recent evaluation of the SIMCAmethod [J]. Journal of chemometrics,1987,1(4):243-245
    [139] Saddler G S, O'Donnell A G, Goodfellow M, et al. SIMCA patternrecognition in the analysis of streptomycete fatty acids [J]. Journal of generalmicrobiology,1987,133(5):1137-1147
    [140] Mertens B, Thompson M, Fearn T. Principal component outlier detection andSIMCA: a synthesis [J]. Analyst,1994,119(12):2777-2784
    [141] Fl ten G R, Grung B, Kvalheim O M. A method for validation of referencesets in SIMCA modeling [J]. Chemometrics and Intelligent Laboratory Systems,2004,72(1):101-109
    [142] Malinowski E R. Determination of the number of factors and theexperimental error in a data matrix [J]. Analytical Chemistry,1977,49(4):612-617
    [143] Wold S. Cross-validatory estimation of the number of components in factorand principal components models [J]. Technometrics,1978,20(4):397-405
    [144] Eastment H T, Krzanowski W J. Cross-validatory choice of the number ofcomponents from a principal component analysis [J]. Technometrics,1982,24(1):73-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700