用户名: 密码: 验证码:
植物电信号特征分析及其与环境因子关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物电信号是植物细胞或组织的静息电位在外界刺激下,发生变化并能在细胞、组织间传递的一种微弱信号,是一种能表征植物生理过程及体内信息变化的重要植物生理信号。环境变化能激发刺激植物电信号的变化。因为产生植物电信号的植物电生理系统是一个非线性和非稳态的系统,所以植物电信号是一种具有非平稳性和非线性的随机信号,而且与植物生命活动密切关联。植物电信号属于微弱低频信号范畴,其幅度在几微伏到几十毫伏之间,这种信号总是被强噪声背景所包围,这些噪声除了来自于测试现场,植物内部各种信号之间也存在干扰,这对植物电信号的提取和分析技术提出了更高的要求。
     目前就植物电信号的处理方法而言,方法单一,关于植物电信号的研究多只是停留在对信号进行分析上,研究植物电信号的方法及目的意义有待进一步开发。纵观大量文献,如何从植物电信号出发,探寻信号特征与植物生理变化的关系,如何建立信号特征参数与环境因子的定量关系,以实现对植物的保护、监测,这些方面的研究相对偏少。本文致力于将先进的、优化的信号处理和分析方法应用于植物电信号,综合考虑植物电信号时域、频域、时频域中的各种特征,以期从中发掘出与植物体生理特性相关的信息,使植物成为“会说话的植物”,其次探索特征值与环境因子的关系,为指导灌溉、调控环境参数提供科学依据。本文主要研究内容和结论如下:
     从植物电信号的特点出发,采用小波硬阈值消噪法、小波软阈值消噪法、无偏风险估计法及改进的自适应小波阈值去噪法,对采集的植物叶片电信号进行降噪处理,通过对信噪比SNR和均方误差MSE两个参数的比较,得出结论:当利用标准的小波固定阈值消噪时,虽然对白噪声性质的仪器噪声具有良好的去除效果,但是对一些随机噪声的去除效果不理想,采用改进的自适应小波软阈值收缩法进行消噪处理,获得了较标准固定阈值收缩法更好的降噪效果。
     对植物叶片电信号时域特征进行了分析。分析结果显示:四种植物的叶片电信号呈现随机性、差异性,体现出不同植物具有不同的电生理特性。植物电信号的均方值都小于200μV2,说明正常环境下的植物电信号的能量很小,表明植物自身的电信号是一种微弱信号。采用相关法测试了芦荟在烧伤、冻伤、刺伤三种刺激性伤害下所产生的变异信号,信号的传递速度分别为22.4mm/s、15.8mm/s、9.5mm/s,为植物电信号测速提供了可行的方法。为了实现植物电信号的拟合与预测,采用自适应AR模型进行参数估计,建立了观音莲和君子兰两种植物电信号AR模型,结果表明该方法收敛速度快,所需样本数据个数少,易于实现实时在线预报。
     对所采集的四种盆栽植物叶片电信号进行了频谱分析。从重心频率分布看,四种植物电信号的功率主要集中在1.78Hz、1.34Hz、1.3Hz和1.53Hz附近,说明植物电信号属于低频信号。从功率谱熵的数据看四种植物信号的复杂程度在正常状态下相近,但由于植物个体的差异性,使得它们为响应不同的胁迫刺激,各自植物体内离子运动的快慢程度不同。改变不同土壤含水量采集碧玉叶片电信号分析其频谱参数,当含水量在1.9%到27.8%时,边缘频率呈现上升的趋势;当含水量超过27.8%后,边缘频率呈现下降趋势,说明27.8%的含水量是碧玉的需水饱和点;当含水量在5%到20%时边缘频率变化很小,说明该植物有对应的合适需水范围。
     选择“db3”小波作为基函数,对采集的植物电信号进行5尺度小波分解,从小波分解图中能清晰地区分不同胁迫时各高频、低频部分的差别及细节部分出现的噪声。结合小波包分解提取特征值能力强的优点,用模糊准则来优化小波包分解,进而以此来提取植物电信号中各种胁迫的特征,应用于四种植物所处的七种胁迫因子的识别,结果表明本文所提方法下的识别率明显高于统计方法下的识别率,四种植物胁迫的平均识别率达到96%以上,说明了此方法的准确性和可行性。
     从空气温度、相对湿度、光照度及土壤含水量四个因子出发,在其他环境因子不变的条件下,分别改变某个单一环境因子,研究了时域、频域及时频域中典型特征参数与这一因子的变化关系,分析了单个因子与这些参数的相关程度,建立了相关程度最大的参数与这些单一因子的数量关系模型,从拟合优度看决定系数均达到0.98以上。为了建立适合碧玉生长的环境因子模型,利用学习速度快、范化性能好的极限学习机,在环境温度、光照度及空气相对湿度三个变量中,分别以其中一个变量为输出,选取剩下的两个环境因子变量、土壤含水量及信号的7个特征值作为输入变量,建立对应输出因子的预测模型,通过与BP神经网络算法进行对比,从预测评价结果看,三个因子的预测模型决定系数均大于0.92,充分说明了此方法的可行性。
     本文选取的植物是温室中的典型盆栽植物,研究方法和结论对其他植物也适用,从实用性上看,可以利用对植物电信号的预测数据作为温室或塑料大棚自动调控系统的重要输入参数,为实现温室等农业环境的自动监测提供方便。如果综合考虑影响植物生长的环境因子与植物体的生理状况,建立更优化模型,将为植物的生物信息学提供新的研究内容和方法。
The electrical signal in plant is a weak signal that can be changed and transferred in cells and tissues when resting potential in cells or tissues is stimulated from the external, and it is a kind of important physiological signal that can characterize plant physiological process and body information. Environmental change can stimulate the changes of electrical signals in plant. Electrical physiological system that produces electrical signal in plant is a nonlinear and unstable state system, so it is a kind of non-stationary and nonlinear random signal, and is closely related to life activity. Plant electrical signal belongs to the weak and low frequency category, and its amplitude is from several microvolts to dozens of millivolt. This signal is always surrounded by strong noise from the test field environment, also from internal various signals in plant, so it needs higher request for electrical signal extraction and analysis technology.
     At present, the processing methods about plant electrical signal were simple, and the research about the plant electrical signal was just staying analysis period, so the method and the significance need further development. In a large number of documents, some research on how to inquire relationship between signal characteristics and plant physiological change, how to establish the quantitative relationship between the signal feature parameters and the environment factors in order to realize on plant protection and monitoring, was comparatively less. In this paper the advanced optimized processing and analysis methods were applied and characteristics of plant electrical signal in time domain, frequency domain and time frequency domain were considered in order to explore information from the plant physiological characteristics and finally to make the plants become "talking plants".If relationship between characteristic values and environmental factors can be explored, that will provide scientific basis for guiding irrigation. The main contents and conclusions of this paper were as follows:
     Based on characteristics of plant electrical signals, denoise processing to plant leaves signals has been completed by wavelet hard threshold method, wavelet soft threshold method, SURE method and the improved adaptive wavelet threshold method.From SNR and MSE, some conclusion was drawn:although the dialogue noise of the instrument noise could be removed effectively by using standard wavelet fixed threshold denoising, but to some random, denoising effect is not ideal.An improved denoising method by adaptive wavelet soft threshold has obtained better effect than a standard fixed threshold method.
     The time domain characteristics about four kinds of plant leaves signals were analysized. In the same conditions, four kinds of electrical signal in plant leaves were different and random, meanwhile different plants had different electrical physiological characteristics. That the mean square value of signal was less than200^iV2showed that the signal energy was very small and it belonged to a kind of weak signal. Speeds of the variation signal by three kinds of damage:burns, frostbite, stuck in aloe were22.4mm/s,15.8mm/s,9.5mm/s, and it was proved that correlation way was a feasible method. AR models of signals in alocasia and clivia have been established by adaptive parameter estimation, and the results showed that the method was to speed up the convergence speed, to reduce the number of sampling, and to realize real-time prediction easily.
     Spectrum analysis for the four kinds of signals in plant was done.From SCF, signal power of four kinds of plant mainly concentrated in1.78Hz,1.34Hz,1.3Hz and1.53Hz, which explained that plant electrical signal belonged to low frequency signal. In normal state signal complexity in four kinds of plant was close on base of PSE, but due to the differences of individual plants the movement speeds of plant ion were different under different stress. After the spectrum parameters under the different soil moisture were analyzed, it could be found that when water content changed from1.9%to27.8%, SEF showed a rising trend; when water content was more than27.8%, SEF was declines; when the water content was from5%to20%, the variation of SEF was very small. So it was shown that27.8%was the critical saturation point of the moisture content and the plant had a corresponding scope of water requirement.
     By "db3" wavelet, plant electrical signals were decomposited into5scales, under different stress the high frequency part and low frequency part were different and the noise was in the detail part. In order to extract characteristic of plant electrical signal in four kinds of plant under seven stress, with the fuzzy criterion to optimize wavelet packet decomposition, the results showed that the recognition rate by the proposed method is higher than that of the statistical method obviously, and average stress recognition rate was above96%, so this method was accurate and feasible,
     In four environmental factors:air temperature, relative humidity, light and soil moisture, a single environment factor was changed respectively, and the relationship between characteristic parameters in the time domain, frequency domain, time frequency domain and the factor were analyzed. The relation models of the single factor and the largest correlation parameters have been set up, at last the determination coefficient reached more than0.98. In order to establish a environment factor model that was suitable for Peperomia growth, one of the variable from environmental temperature, light and air relative humidity, was chosen as an input, then the other two variables, soil moisture and the seven characteristic values formed10input variables, finally the prediction model of corresponding output factor has been established by use of ELM that it's the fast learning and general. By being compared with the BP neural network algorithm, the forecast results showed that the determination coefficients of three factor prediction models were greater than0.92. It is shown that this method was feasible.
     The plants which were typical plants in greenhouse were selected in this paper, so these research methods and conclusions can be also applied on other plants. Prediction data of plant electrical signal can be used as the important input parameter in automatic control system, greenhouse or plastic shelter, and prediction data also can provide the convenience for automatic monitoring system in agricultural environment.If more optimization models can be established after considering the effects on environment factors and the physiological status in plants, which will provide new research content and method for plant bioinformatics.
引文
[1]Burdon Sanderson. Note on the electrical phenomena which accompany stimulation of the leaf of Dionaea muscipula[J].Proc Roy Soc London,1873,21:495-496.
    [2]Davies E. Action potentials multifunctional signals in plants:a unifying hypothesis to explain apparently disparate wound responses[J]. Plant Cell and Environment,1987,10:623-631.
    [3]Zawadzki T, Dziubinska H,Davies E. Characteristics of action potentials generated spontaneously in Helianthus[J]. Physiologia Plantarum,1995,93:291-297.
    [4]Stankovic B, Davies E. Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Letters,1996,9-390(3):275-279.
    [5]陆静霞,丁为民,李林,等.植物电信号分析技术研究现状[J].安徽农业科学,2009,37(30):14583-14584.
    [6]娄成后.高等植物中电化学波的信使传递[J].生物物理学报,1996,12(4):739-745.
    [7]任海云,王学臣,娄成后.高等植物体内电信号存在的普遍性及其生理效应(英文)[J].植物生理学报,1993,19(1):97-101.
    [8]郭金耀,杨晓玲.高等植物中的电信号研究进展[J].中国农学通报,2005,21(10):188-190.
    [9]冷强,黄岚,花宝光,等.植物叶片局部电位与气孔行为的灰色关联分析[J].科学通报,1998,4(10):1083-1086.
    [10]陆静霞,丁为民,李林,等.植物微弱电信号研究现状[J].安徽农业科学,2008,36(4):1295-1296.
    [11]Mwesigwa J, Collies D J, Volkov A G. Electrochemical signaling in green plants:effects of 2,4-dinitrophenol on variation and action potentials in soybean [J]. Bioelectrochemistry, 2000, (51):201-205.
    [12]Volkov A G. Green plants:electrochemical interfaces[J]. Journal of Electroanalytical Chemistry,2000,483(1-2):150-156.
    [13]Volkov A G, Mwesigwa J.Electrochemistry of soybean:effects of uncouplers, pollutants, and pesticides[J]. Electroanalytical Chemistry.2001,496(1-2):153-157.
    [14]王学臣,任海云,娄成后.干旱胁迫下植物根与地上部间的信息传递[J].植物生理学通讯,1992,28(6):397-402.
    [15]郭金耀,花宝光,娄成后.柳苗对盐激的快速反应[J].植物学报,1997,39(3):247-252.
    [16]Stolarek J,Jablonska B, Pazurbiewicz Kocot K. Light induced action potentials in Phaseolus Vulgaris[M]. Plant membrane Transport:Current conceptual Issues. Elsevier Noth Holl:Biomedical Press,1980.
    [17]Paszewski A,Zawadzki T. Action potentials in Lupinus angustifolius shoots 3 Determination of the refractory periods[J]. J Exp Bot,1976,27:369-374.
    [18]Volkov A G et al. Electrical signaling in Aloe vera induced by localized thermal stress [J]. Bioelectrochemistry,2007,71 (2):192-197.
    [19]Pickard B G. Action potential in higher plants [J]. Bot Rev,1973,39:172-201.
    [20]Pickard B G. Action potential resulting from mechanical stimulation of pea epicotyls [J]. Plant,1971,97:106-115.
    [21]Paszewski A, Zawadzki T. Action potentials in lupinus angustifolius shoots[J]. J Exp Bot, 1973,24:804-809.
    [22]Roblin G. Analysis of the variation potential induced by wounding in plants[J]. Plant Cell Phsiol,1985,26:455-461.
    [23]Roblin G. Propogation in Vicia faba stem of a potential variation induced by wounding[J]. Plant Cell Phsiol,1985,26:1273-1283.
    [24]郭建,赵博光,刘云飞,等.健康黑松幼苗中的电波传递[J].南京林业大学学报,2000,24(3):77-80.
    [25]赵博光,郭建,张沂泉,等.接种松材线虫后黑松幼苗体内电波传递的变化[J].南京林业大学学报,2000,24(3):81-83.
    [26]郭建,赵博光,刘云飞.植物体内的电波传递[J].南京林业大学学报,2000,24(3):71-76.
    [27]BOSE J C. Growth and tropic movement of plants [M]. London:Longmans Green and Co, 1929.
    [28]卢善发,杨世杰.变异电波的传递方向与传递速度[J].植物学通报,1995(增刊):55-56.
    [29]卢善发.植物体内的电信号传递[J].植物杂志,1995,(4):10-11.
    [30]卢善发.植物电信号的传递途径与方式[J].植物学通报,1996,13(4):23-27.
    [31]郭金耀,花宝光,娄成后.柳苗中的变异电波传递[J].林业科学,1997,33(1):1-7.
    [32]郭金耀,吴玉香,杨晓玲.柳茎木质部中的变异电波传递[J].山西农业大学学报,1996,16(1):36-39.
    [33]郭金耀,杨晓玲,吴玉香.柳茎韧皮部的变异电波传递[J].山西农业大学学报,1996,16(3):269-272.
    [34]任海云,娄成后.高等植物共质体区内与区间的电波传递[J].植物生理与分子生物学报,1993,19(3):265-274.
    [35]花宝光,杨文定,厉秀茹.丝瓜卷须快速弯曲中电化学波传递与原生质收缩[J].科学通报,1995,40(15):1501-1503.
    [36]娄成后.高等植物中根一冠的相互关系[J].生命科学,1994,6(5):1-6.
    [37]赵子恺.试论植物微弱电信号研究[J].中国计量学院学报,2002,13(3):253-257.
    [38]胡俊海.水胁迫下植物电信号的测量及研究[D].吉林大学硕士论文,2006,4
    [39]张晓东,毛罕平,左志宇,等.基于多光谱视觉技术的油菜水分胁迫诊断[J].农业工程学报,2011,27(3):152-156.
    [40]杨洪强,贾文锁,张大鹏.植物水分胁迫信号识别与转导[J].植物生理学通讯,2001,37(2):149-153.
    [41]王强.基于虚拟仪器杨树苗木水胁迫声发射监测与灌溉系统研究[D].河北农业大学硕士论文,2007,6.
    [42]王静英,李永春,尹钧,等.旱胁迫下植物的信号转导及基因表达研究进展[J].中国农学通报,2008,24(1):271-274.
    [43]卢琼琼,宋新山,严登华.干旱胁迫对大豆苗期光合生理特性的影响[J].中国农学通报,2012,28(9):42-47.
    [44]李新国,孟庆伟,赵世杰.强光胁迫下银杏叶片的光抑制及其防御机制[J].林业科学,2004,40(3):56-59.
    [45]祁海艳,刘晓东,王菲.光胁迫对中华金叶榆叶色的影响[J].河北林业科学,2009,(3):1-3.
    [46]樊传辉,孙广玉,吕清友.光胁迫下烤烟幼苗叶片光抑制及Ca2+的缓解作用[J].东北林业大学学报,2007,35(6):34-36.
    [47]梁文娟,王美玲,艾希珍,等.黄瓜幼苗光合作用对亚适温弱光胁迫的适应性[J].农业工程学报,2008,24(8):240-243.
    [48]梁芳,郑成淑,孙宪芝,等.低温弱光胁迫及恢复对切花菊光合作用和叶绿素荧光参数的影响[J].应用生态学报,2010,21(1):29-34.
    [49]孙健.胡杨响应盐胁迫与离子平衡调控信号网络研究[D].北京林业大学博士论文,2011,6.
    [50]原海燕,绳仁立,黄苏珍.甜叶菊不同品种对盐胁迫的生理响应[J].江苏农业科学,2011(1):106-109.
    [51]裘丽珍,黄有军,黄坚钦,等.不同耐盐性植物在盐胁迫下的生长与生理特性比较研究[J].浙江大学学报(农业与生命科学版),2006,32(4):420-427.
    [52]张素红,刘立新,苗立新,等.盐胁迫对水稻苗期的影响研究一盐胁迫对水稻苗期水分的影响[J].北方水稻,2010,40(2):18-21.
    [53]赵胡,李裕红.植物对重金属耐性机理的研究进展[J].阜阳师范学院学报(自然科学版),2008,25(3):35-39.
    [54]刘俊祥,孙振元,韩蕾,等.草坪草对重金属胁迫响应的研究现状[J].中国农学通报,2009,25(13):142-145.
    [55]聂胜委,黄绍敏,张水清,等.不同种类重金属胁迫对两种小麦产量及构成因素的影响[J].农业环境科学学报,2012,31(3):455-463.
    [56]梁英,王帅,冯力霞,等.重金属胁迫对三角褐指藻生长及叶绿素荧光特性的影响[J].海洋 环境科学,2009,28(4):374-381.
    [57]孔祥瑞.重金属胁迫下硫对作物苗期根系导水率的影响[D].西北农林科技大学硕士论文,2007,6.
    [58]李冰,刘宏涛,孙大业,等.植物热激反应的信号转导机理[J].植物生理与分子生物学学报,2002,28(1):1-10.
    [59]王俊玲,高志奎,赵飞.热激胁迫对番茄果实表面光系统活性的影响[J].园艺学报2011,38(4):675-682.
    [60]朱校奇,邓启云,龙世平,等.高温胁迫下2个超级杂交稻组合耐受性比较[J].植物资源与环境学报,2009,18(2):28-33.
    [61]王利军,战吉成,黄卫东.葡萄幼苗高温锻炼过程中与水杨酸相关的信号转导的初步研究[J].植物学通报,2002,19(6):710-715.
    [62]宋丽莉,姜育龙,赵华强.高温胁迫下一氧化氮和脱落酸的信号功能研究[J].安徽农业科学,2011,39(23):13893—13896.
    [63]胡俊杰,张古文,胡齐赞,等.低温胁迫对菜用大豆生长、叶片活性氧及多胺代谢的影响[J].浙江农业学报,2011,23(6):1113-1118.
    [64]梁李宏,梅新,林锋,等.低温胁迫对腰果幼苗叶片组织结构和生理指标的影响[J].生态环境学报,2009,18(1):317-320.
    [65]赵玲玲,宋来庆,刘志,等.低温胁迫下4种苹果砧木叶片多胺的变化[J].果树学报2008,25(2):151-156.
    [66]刘学琴.钙在低温胁迫三尖杉过程中信号转导机制研究[D].福建农林大学硕士论文,2006,4.
    [67]冯军,郑彩霞.植物响应寒冷胁迫的CBF基因表达调控[J].吉林农业,2011,(4):338-341.
    [68]杨佳,杨方,周修理.植物电信号测量方法研究[J].农机化研究,2003(3):128-129.
    [69]黄岚,王忠义,徐志龙,等.多道植物电信号监测系统[J].现代科学仪器,2006(4):45-47.
    [70]李国臣,于海业,李强征,等.植物电位信号采集与处理方法的研究[J].农机化研究,2006,(6).145-148.
    [71]王强,李国臣,王蕊.基于虚拟仪器的植物电信号的测量系统研究[J].中国农机化,2004,(5):30-32.
    [72]孙慧远,黄家健,王玲玲,等.基于RFID技术的植物电信号数据采集系统的探讨[J].安徽农业科学,2010(03):1261-1262,1274.
    [73]赵东杰,王忠义,李军,等.基于模型及实验的植物电信号胞外测量关键问题研究[J].中国科学:信息科学,2010,4(增刊):133-142.
    [74]邓善熙.测试信号分析与处理[M].中国计量出版社,2003,8.
    [75]李海霞.植物微弱电波信号的研究[D].中国计量科学研究院硕士学位论文,2006,5.
    [76]王兰州,李海霞,林敏,等.植物微弱电波信号的时、频域分析[J].中国计量学院学报,2005,16(4):294-295.
    [77]王兰州,李海霞,林敏,等.统计分析方法在植物电波信号研究中的应用[J].吉首大学学报(自然科学版),2006,27(3):67-70.
    [78]张晓辉,余宁梅,习岗,等.基于小波消噪的植物电信号频谱特征分析[J].西安理工大学学报,2011,27(4):411-416.
    [79]李海霞,王兰州,李峤.君子兰叶片电信号的初步研究[J].中国计量学院学报,2005,16(1):62-65.
    [80]李峤,王兰州,李东升,等.三种菊科植物电信号的分析[J].中国计量学院学报,2006,17(4):332-336.
    [81]涂承媛,增衍钧,李树信.心电图信号的频域分析[J].中国工程科学,2002,4(12):66-70.
    [82]杨广映,罗志增.肌电信号的功率谱分析方法[J].传感技术学报,2004,9(3):355-358.
    [83]Chan FHY, Qiu W Lam, Poon PW F, et al. Detection of brainstem auditory evoked potential by adaptive filtering [J]. Medical & Biological Engineering & Computing,1995,33(1):69-75.
    [84]冷强,黄岚,花宝光,等.环境因素引起植物表面电位变化的小波分析[J].生物物理学报,1998,14(1):140-144.
    [85]黄岚,王忠义.植物电信号的解析方法初探(英文)[J].农业工程学报,2002,18(5):39-42.
    [86]Lu J X, Ding W M. Analysis of electric signal of plant based on lifting wavelet and correlation[C], Proceedings of 2011 International Conference on Multimedia and Signal Processing, Guangxi, China,2011:223-227.
    [87]Lu J X, Ding W M. The feature extraction of electrical signal based on wavelet packet and neural network[C].Proceedings of The International Conference on Automatic Control and Artificial Intelligence (ACAI 2012),Xiamen,China,2012:PP.4817-4820
    [88]Nishida S, et al. Automatic detection method of P300 waveform in single sweep records by using a neural network [J]. Med Eng Phys,1994,16:425.
    [89]Xue Q Z, Hu Y H, Tompkins W J. Neural network based adaptive matched filtering for QRS detection[J]. IEEE Trans on BME,1992,39:317-329.
    [90]王忠义,陈端生,黄岚.利用人工神经网络建立植物电信号与环境因子关系[J].农业工程学报,2001,17(3):142-145.
    [91]王兰州,李峤,李东升.菊花微弱电信号的神经网络预测[J].中国计量学院学报,2007,18(1):4448.
    [92]季忠,秦树人,彭丽玲.基于匹配跟踪的脑电睡眠纺锤波的时频分析[J].上海交通大学学报,2003,37(19):1460-1463.
    [93]Comon P. Independent component analysis:a new concept [J]. Signal Processing, 1994,36:287-314.
    [94]许雷,郑筱祥.计算机医用信号处理与分析一基于小波变换的医学瞬变信号去噪新方法[J].计算机应用,998,(6):33-34,38.
    [95]张勇,王介生.基于多分辨率分析的心电图信号去噪算法[J].系统工程与电子技术,2002,24(12):32-34.
    [96]杨基海,周平,章劲松,等.利用小波变换去除针电极肌电信号噪声的实验研究[J].生物医学工程学杂志,2000,17(1):44-46.
    [97]张晓辉,余宁梅,习岗,等.基于小波消噪的植物电信号频谱特征分析[J].西安理工大学学报,2011,27(4):411-41.
    [98]方利民,林敏,柴金朝.受污染金光菊的植物电信号研究[J].中国计量学院学报,2009,20(2):139-143.
    [99]Hashimoto Y, et al. Some speaking plant approach to the synthesis of control system in the greenhouse[J].Acta Hort,1985,174:219-226.
    [100]张德丰.MATLAB小波分析[M].北京:机械工业出版社,2009,1.
    [101]葛哲学,陈仲生MATLAB时频分析技术及其应用[M].北京:人民邮电出版社,2006,1.
    [102]谢中华.MATLAB统计分析与应用:40个案例分析[M].北京:北京航空航天大学出版社,2010,6.
    [103]张德丰MATLAB神经网络应用设计[M].北京:机械工业出版社,2009,1.
    [1]黄岚,王忠义,徐志龙,等.多道植物电信号监测系统[J].现代科学仪器,2006,(4):45-47.
    [2]李国臣,于海业,李强征,等.植物电位信号采集与处理方法的研究[J].农机化研究,2006,(6).145-148.
    [3]赵东杰,王忠义,李军,等,基于模型及实验的植物电信号胞外测量关键问题研究[J].中国科学:信息科学,2010,4(增刊):133-142.
    [4]封建立.膀胱起搏点部位及起搏细胞初探[D].第三军医大学博士学位论文,2008,4
    [5]Yan X F, Wang Z Y, Huang L, et al. Research progress on electrical signals in higher plants[J].Prog Nat Sci,2009,19:531-541.
    [6]杨佳,杨方,周修理.植物电信号测量方法研究[J].农机化研究,2003(3):128-129.
    [7]任小梅.基于临床诊断肌电信号的自动分解算法及研究[D].上海交通大学工学博士学位论文,2006,11.
    [8]Fang, J.G. Agarwal B, Shahani. Decomposition of multiunit electromyographic signals [J]. IEEE Transactions on Biomedical Engineering,1999,46(6):685-97.
    [9]Gut, R.G, Moschytz. High-precision EMG signal decomposition using communication techniques [J]. IEEE Transactions on Signal Processing,2000,48(9):2487-2494.
    [10]Mewett, D.K.Reynolds, H.Nazeran. Reducing power line interference in digitised Electromyogram recordings by spectrum interpolation[J].Medical &Biological Engineering &Computing.2004,42:524-531.
    [11]张智林,皮亦鸣,孙志坚.基于独立分量分析的降噪技术[J].电子科技大学学报,2005,34(3):296-299.
    [12]Slawnych.M.C, Laszlo.C. Hershler. Motor unit estimates obtained using the new "MUESA" method[J].Muscle Nerve,1996,19:626-636.
    [13]Ortolan, R.R. Mori, R.Pereira, et al. Evaluation of Adaptive/ Non adaptive Filtering and Wavelet Transform Techniques for Noise Reduction in EMG Mobile Acquisition Equipment [J]. IEEE Transaction on Neural system and Rehabilitation Engineering.2003,11(1):60-69.
    [14]赵春晖,张朝柱,李刚.自适应信号处理[M].哈尔滨:哈尔滨工程大学出版社,2005
    [15]余英林,谢胜利,蔡汉添,等.信号处理新方法导论[M].北京:清华大学出版社,2004
    [16]许雷,郑筱祥.计算机医用信号处理与分析一基于小波变换的医学瞬变信号去噪新方法[J].计算机应用,1998,(6):33-34.
    [17]张勇,王介生.基于多分辨率分析的心电图信号去噪算法[J].系统工程与电子技术,2002,24(12):32-34.
    [18]杨基海,周平,章劲松,等.利用小波变换去除针电极肌电信号噪声的实验研究[J].生物 医学工程学杂志,2000,17(1):44-46.
    [19]张晓辉,余宁梅,习岗,等.基于小波消噪的植物电信号频谱特征分析[J].西安理工大学学报,2011,27(4):411-416.
    [20]方利民,林敏,柴金朝.受污染金光菊的植物电信号研究[J].中国计量学院学报,2009,20(2):139-143.
    [21]刘春波,王鲜芳,潘丰.基于新阈值函数去噪及SVM的建模方法研究[J].计算机仿真,2010,27(5):84-87.
    [22]ZHANG X P, DESAI M D. Adaptive de-noising based on SURE risk [J]. IEEE Signal Processing Letters,1998,5 (10):265-267.
    [23]曲天书,戴逸松,王树勋.基于SURE无偏估计的自适应小波阈值去噪[J].电子学报,2002,30(2):266-268.
    [24]DONOHO D L. De-noising by soft threshold [J].IEEE Transactions on Information Theory, 1995,41 (3):613 627.
    [25]DONOHO D L, JOHNSTONE I M. Adapting to unknown smoothness via wavelet shrinkage [R]. Journal of the American Statistical Association,1995,90:1200 1224.
    [26]COIFMAN R. R, DONOHO D.L. Translation-invariant de-noising [C]. Wavelets and Statistics, New York:1995,(103):125-150.
    [27]刘守山,杨辰龙,李凌,等.基于自适应小波阈值的超声信号消噪[J].浙江大学学报(工学版),2007,41(9):1557-1560.
    [28]陈益,李书.改进的小波阈值消噪法应用于超声信号处理[J].北京航空航天大学学报,2006,32(4):467-470.
    [1]邓善熙.测试信号分析与处理[M].中国计量出版社,2003,8
    [2]周浩敏,王睿.测试信号处理技术[M].北京:航空航天出版社,2004
    [3]王兰州,李海霞,林敏,等.统计分析方法在植物电波信号研究中的应用[J].吉首大学学报(自然科学版),2006,27(3):67-70
    [4]潘瑞炽.植物生理学[M].北京:高等教育出版社,2008,6:296-297
    [5]玉舒中,吕文玲,杨振德,等.紫外光胁迫对二种朱槿生理生化指标的影响[J].北方园艺,2010,(18):106-109
    [6]娄成后.高等植物生长发育中物质的运输与信息传递(二)[J].生物学通报,1991,12:1.
    [7]任海云,王学臣,娄成后.高等植物体内电信号存在的普遍性及其生理效应(英文)[J].植物生理学报,1993,19(1):97-101
    [8]卢善发,杨世杰.变异电波的传递方向与传递速度[J].植物学通报,1995(增刊):55-56
    [9]卢善发.植物体内的电信号传递[J].植物杂志,1995,4):10-11
    [10]卢善发.植物电信号的传递途径与方式[J].植物学通报,1996,13(4):23-27
    [11]郭金耀,花宝光,娄成后.柳苗中的变异电波传递[J].林业科学,1997,33(1):1-7
    [12]郭金耀,吴玉香,杨晓玲.柳茎木质部中的变异电波传递[J].山西农业大学学报,1996,16(1):36-39
    [13]郭金耀,杨晓玲,吴玉香.柳茎韧皮部的变异电波传递[J].山西农业大学学报,1996,16(3):269-272
    [14]张强.随机信号分析的工程应用[M].北京:国防工业出版社,2009.
    [15]罗志增,杨广映.表面肌电信号的AR参数模型分析方法[J].传感技术学报,2003,12(4):384-387
    [16]沈民奋,孙丽萍,沈凤麟.心音信号的非高斯AR模型双谱分析[J].中国生物医学工程学报,2000,19(1):72-76
    [17]刘璋温.赤池信息量准则AIC及其意义[J].数学的实践与认识,1980(3):66-72
    [18]彭秀艳,王茂,刘长德.AR模型参数自适应估计方法研究及应用[J].哈尔滨工业大学学报,2009,41(9):12-16
    [19]王兰州,李峤,李东升.菊花微弱电信号的神经网络预测[J].中国计量学院学报,2007,18(1):44-48.
    [20]孙健.胡杨响应盐胁迫与离子平衡调控信号网络研究[D].北京林业大学博士论文,2011,6.
    [21]卢琼琼,宋新山,严登华.干旱胁迫对大豆苗期光合生理特性的影响[J].中国农学通报,2012,28(9):42-47.
    [22]刘俊祥,孙振元,韩蕾,等.草坪草对重金属胁迫响应的研究现状[J].中国农学通 报,2009,25(13):142-145.
    [23]李玲,张春雷,张树杰,等.渍水对冬油菜苗期生长及生理的影响[J].中国油料作物学报,2011,33(3):247-251.
    [1]赵子恺.试论植物微弱电信号研究[J].中国计量学院学报,2002,13(3):253-257.
    [2]邓善熙.测试信号分析与处理[M].北京:中国计量出版社,2003,8
    [3]涂承媛,增衍钧,李树信.心电图信号的频域分析[J].中国工程科学,2002,4(12):66-70.
    [4]杨广映,罗志增.肌电信号的功率谱分析方法[J].传感技术学报,2004,9(3):355-358.
    [5]陈明杰.心率变异信号采集及其功率谱分析的研究[D].重庆大学硕士学位论文,2002,8:39-40.
    [6]于晓琳,张建保,王珏.基于功率谱分析的头皮电位和心率变异性关系研究[J].西安交通大学学报,2007,41(8):991-994.
    [7]张晓辉,余宁梅,习岗,等.基于小波消噪的植物电信号频谱特征分析[J].西安理工大学学报,2011,27(4):411-416.
    [8]常洁,张佃中.心肌梗塞患者心电图(ECG)功率谱熵分析[J].中国医学物理学杂志,2008,25(4):768-770.
    [9]Fromm J, Fei H. Electrical signaling and gas exchange in maize plants of drying soil [J]. Sci Plant,1998,132:203-213.
    [10]张晓辉,余宁梅,习岗,等.渗透胁迫诱导的玉米叶片电信号功率谱的变化[J].科学通报,2011,56(33):2827-2834.
    [11]潘瑞炽.植物生理学[M].北京:高等教育出版社,2008,6:296-297.
    [12]武维华.植物生理学(第二版)[M].北京:科学出版社,2008,8.
    [1]季忠,秦树人.时频测试方法在脑电信号分析中的应用[M].重庆大学学报,2003,26(11):1-5.
    [2]刘建平,陶伟忠,郑崇勋.时频分析用于睡眠脑电图的梭形波识别[J].中国生物医学工程学报,1999,18(3):317-324.
    [3]沈民奋,孙丽莎,沈凤麟.基于小波变换的动态脑电节律提取[J].数据采集与处理,1999,14(2):183-186.
    [4]叶继伦,郑崇勋,郭耸峰,等.运动心电信号特征提取的小波变换方法[J].中国医疗器械杂志,1999,23(5):268-271.
    [5]吴效明,岑人经,梁家定,等.心功能参数小波分析原理[J].暨南大学学报(自然科学版),1997,18(增刊):53-57.
    [6]张勇,王介生.基于多分辨率分析的心电图信号去噪算法[J].系统工程与电子技术,2002,24(12):32-34.
    [7]李光林,吕维雪.基于小波变换的心电信号的分析与处理[J].浙江大学学报(自然科学版),1998,32(1):82-87.
    [8]龙胜春,翁剑枫.肌电信号的检测与分析方法[J].国外医学生物医学工程分册,1998,21(2):78-83.
    [9]杨基海,周平,章劲松,等.利用小波变换去除针电极肌电信号噪声的实验研究[J].生物医学工程学杂志,2000,17(1):44-46.
    [10]葛哲学,陈仲生. MATLAB时频分析技术及其应用[M].北京:人民邮电出版社,2006,1.
    [11]李海霞.植物微弱电波信号的研究[D].中国计量科学研究院硕士学位论文,2006,5.
    [12]Zhang X H, Yu N M, Xi G, et al. Changes in the power spectrum of electrical signals in maize leaf induced by osmotic stress[J]. Chinese Sci Bull,2012,57(4):413-420.
    [13]张晓东,毛罕平,左志宇,等.基于多光谱视觉技术的油菜水分胁迫诊断[J].农业工程学报,2011,27(3):152-157.
    [14]冷强,黄岚,花宝光,等.环境因素引起植物表面电位变化的小波分析[J].生物物理学报,1998,14(1):140-144.
    [15]黄岚,王忠义.植物电信号的解析方法初探(英文)[J].农业工程学报,2002,18(5):39-42.
    [16]王忠义,陈端生,黄岚.利用人工神经网络建立植物电信号与环境因子关系[J].农业工程学报,2001,17(3):142-145.
    [17]关海鸥,许少华,谭峰.基于遗传模糊神经网络的植物病斑区域图像分割模型[J].农业机械学报,2010,41(12):163-167.
    [18]黄林,贺鹏,王经民.基于概率神经网络和分形的植物叶片机器识别研究[J].西北农林科 技大学学报(自然科学版),2008,36(9):212-218.
    [19]石君,周美娇,朱正平,等.基于小波包变换的肌电信号特征提取[J].微计算机信息,2010,26(3):224-226.
    [20]张贤达.现代信号处理[M].北京:清华大学出版社,2002,378-380.
    [21]ID Q, PEDRYCZ W, PIZZIN J. Fuzzy wavelet packet based feature extraction method and its application to biomedical signal classification [J]. IEEE transactions on bio-medical engineering,2005,52(6):1132-1139.
    [22]王佩丽,彭敏放,杨易旻.应用模糊最优小波包和LS-SVM的模拟电路诊断[J].仪器仪表学报,2010,31(6):1282-1288.
    [23]于擎,杨基海,陈香,等.基于BP神经网络的手势动作表面肌电信号的模式识别[J].生物医学工程研究,2009,28(1):06-10.
    [24]张德丰.MATLAB神经网络应用设计[M].北京:机械工业出版社,2009:259-277.
    [1]冷强,黄岚,花宝光,等.环境因素引起植物表面电位变化的小波分析[J].生物物理学报,1998,14(1):140-144.
    [2]王忠义,陈端生,黄岚.利用人工神经网络建立植物电信号与环境因子关系[J].农业工程学报,2001,17(3):142-145.
    [3]武维华.植物生理学[M].北京:科学出版社,2008:183-184.
    [4]李新国,孟庆伟,赵世杰.强光胁迫下银杏叶片的光抑制及其防御机制[J].林业科学,2004,40(3):56-59.
    [5]张晓燕,胡禅娜,林霞,等.不同光照强度对槲蕨叶绿素荧光参数·色素含量及抗性生理的影响[J].安徽农业科学,2007,35(34):11006-11008.
    [6]潘瑞炽.植物生理学[M].北京:高等教育出版社,2008,6:290-291.
    [7]李冰,刘宏涛,孙大业,等.植物热激反应的信号转导机理[J].植物生理与分子生物学学报,2002,28(1):1-10.
    [8]陈晓远,高志红,刘晓英,等.植物对土壤水分条件的适应性反应研究进展[J].韶关学院学报(自然科学版),2002,23(12)72-75.
    [9]蒋明义,荆家海.根源ABA与土壤水分亏缺的传感[J].植物生理学通讯,1993,29(3):205-209.
    [10]唐立松,张建龙,李彦,等.植物对土壤水分变化的响应与控制性分根交替灌溉[J].干旱区研究,2005,22(1):90-92.
    [11]王艳芳,李亚灵,温祥珍.高温条件下空气湿度对番茄光合作用及生理性状的影响[J].安徽农业科学,2010,38(8):3967-3968.
    [12]刘建福,倪书邦,贺熙勇,等.空气湿度对澳洲坚果开花座果和果实生长的影响[J].热带农业科技,2003,26(1):1-4.
    [13]Bakker J.C. Effects of day and night humidities on yield and fruit quality of glasshouse tomatoes [J].Jonurnal of Horticultural Science,1990,65(3):323-331.
    [1]徐晋,綦振法.前馈神经网络新型综合算法[J].武汉大学学报(工学版),2004,37(1):113-116.
    [2]史峰,王辉,郁磊,等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2011,7:290-301.
    [3]ZHU Q Y, QIN A K, SUGANTHAN P N, et al. Error Minimized Extreme Learning Machine with Growth of Hidden Modes and Incremental Learning[J].IEEE Transactions on Neural Networks,2009,20(8):1352-1357.
    [4]HUANG G B, ZHU Q Y, AIEW C K. Extreme Learning Machine:Theory and Applications [J]. Neuro-computing,2006,70:489-501.
    [5]HUANG G B, ZHU Q Y, AIEW C K. Extreme Learning Machine:a New Learning Scheme of Feed-ford Neural Networks[C].Proceedings of International Joint Conference on Neural NETWORKS,25-29 July,2004, Budapest, Hungary.
    [6]汪小旵,丁为民,罗卫红,等.利用BP神经网络对江淮地区梅雨季节现代化温室小气候的模拟与分析[J].农业工程学报,2004,20(2):235-238.
    [7]王定成.温室环境的支持向量机回归建模[J].农业机械学报,2004,35(5):106-109.
    [8]李晋,秦琳琳,吴刚,等.基于加权最小二乘支持向量机的温室小气候建模与仿真[J].系统仿真学报,2008,20(16):4232-4236.
    [9]王忠义,陈端生,黄岚.利用人工神经网络建立植物电信号与环境因子关系[J].农业工程学报,2001,17(3):142-145.
    [10]HUANG G B, LIANG N Y, RONG H J, et al. On-Line Sequential Extreme Learning Machine:the IASTED International Conference on Computational Intelligence[C]. Calgary, Canada,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700