用户名: 密码: 验证码:
大豆鲜籽粒蔗糖含量的研究及糖代谢相关基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菜用大豆是指大豆鼓粒末期(R6-R7)籽粒饱满,英色翠绿时采青食用的大豆专用型品种,是一种重要的豆类蔬菜。外观品质和食味品质是菜用大豆两个基础的品质要素,与菜用大豆这两个性状紧密相关的百荚鲜重、百粒鲜重及鲜籽粒蔗糖含量是菜用大豆品质遗传研究的重要性状。依据菜用大豆这些特殊的目标性状,本研究在对我国323份栽培大豆种质资源进行准确评价、鉴定的基础上,通过关联作图和连锁作图方法发掘与大豆百荚鲜重、百粒鲜重及鲜籽粒蔗糖含量相关的QTL或关联位点。同时,通过同源克隆的方法获得大豆蔗糖代谢关键酶转化酶及蔗糖磷酸合成酶的基因,对这些基因进行大豆发育中籽粒及大豆根、茎、叶、花中的表达特性进行分析,并检测了这些组织中相关酶的活性及糖代谢物的含量。进一步将大豆转化酶基因、蔗糖磷酸合成酶基因转化野生型拟南芥,并将大豆转化酶基因转化拟南芥细胞质转化酶基因功能缺失突变体,观测拟南芥转基因株系相应酶的活性,蔗糖、葡萄糖的含量,以及生长发育中幼苗根长、莲座叶直径等性状。以了解这些酶对组织中糖分累积及植物生长发育的影响。本研究主要结果如下:
     1.按照菜用大豆品质要求直接通过表型筛选得到一批优异鲜籽粒性状的种质,并通过关联分析方法鉴定得到与百荚鲜重、百粒鲜重、鲜籽粒蔗糖含量相关的58个(次)标记-性状关联位点,涉及36个SSR标记。在这58个关联位点中,有9个蔗糖-SSR关联点,28个百荚鲜重-SSR关联点,21个百粒鲜重-SSR关联点,这49个荚粒鲜重相关位点共涉及29个SSR标记。进一步对这些显著关联位点进行特异等位变异及载体材料发掘,鉴定出一批优异等位变异位点及其典型载体材料。同时用连锁作图的方法共定位到11个(次)QTL与百荚鲜重(5个)、百粒鲜重(4个)、鲜籽粒蔗糖含量(2个)相关。两种不同作图方法检测QTL的结果中均涉及到的SSR标记有4个,分别为Satt136.Satt208.Satt251及Satt445.
     2.以拟南芥细胞质转化酶基因及蔗糖磷酸合成酶基因序列为探针,分别同源克隆得到两个大豆细胞质转化酶基因GmCInv1和GmCInv2,两个大豆蔗糖磷酸合成酶基因GmSPS1和GmSPS2。 GmCInv1和GmCInv2的开放阅读框分别为2040bp和1665bp,分别编码680个和555个氨基酸残基。推测两蛋白分子量分别为76.96kD和63.30kD,等电点分别为5.94和6.22。GmSPS1和GmSPS2的开放阅读均为3177bp,编码1059个氨基酸残基。推测两蛋白分子量分别为117.97和117.99kD,等电点分别为5.99和6.09。同源性分析发现GmCInv1和GmCInv2与其他植物细胞质转化酶氨基酸序列相似性较高,并与酸性转化酶基因完全分开。GmSPS1与GmSPS2在同源性分析中与拟南芥ATSPS1F及ATSPS2F分到一组,但亲缘关系最近的却是葡萄和茄。
     3.随着大豆籽粒的发育进程,籽粒中蔗糖含量呈先增长后降低的趋势,葡萄糖含量前期降低较快,后期降低较慢。淀粉含量在不同品种中随发育时期变化的趋势不同。在大豆根、茎、叶、花中,蔗糖含量大都低于葡萄糖含量,这与籽粒中情况恰好相反。随着大豆籽粒发育进程,籽粒中细胞质转化酶、液泡转化酶、细胞壁转化酶活性均是逐步下降,且液泡转化酶活性一直高于细胞质转化酶活性高于细胞壁转化酶活性;蔗糖磷酸合成酶活性在不同品种中变化规律不同。非籽粒组织中,一般叶片和花中转化酶活性较高;蔗糖磷酸合成酶活性有的品种是花中最高,有的是根中最高。随着籽粒的发育进程,两个细胞质转化酶基因GmCInv1与GmCInv2的表达模式不同:GmCInv1呈上升趋势,而GmCInv2有下降趋势,对籽粒中转化酶活性具有明显效应的可能是GmCInv2。两细胞质转化酶基因均是在根中表达量高于其他组织。大豆蔗糖磷酸合成酶基因随籽粒发育进程表达量逐步升高,在根中的表达量高于其他非籽粒组织。糖代谢物含量与酶活性、酶活性与酶基因表达量之间均存在一定的影响关系,但没有完全的控制效果。
     4.将GmCInv1及GmCInv2分别转化拟南芥野生型(WT)及拟南芥细胞质转化酶基因功能缺失突变体cinv1,将获得纯合阳性转基因株系分别称作W组转基因株系和M组转基因株系。除GmCInv2的M11株系外,GmCInv1、GmCInv2的其他转基因株系均有目的基因的表达及拟南芥自身转化酶AtCinv1基因的表达,WT没有大豆基因表达,突变体cinv1没有大豆基因的表达且自身AtCinv1基因的表达极低。GmCInv1及GmCInv2的表达,专一性的提高了转基因株系的细胞质转化酶活性,对液泡转化酶、细胞壁转化酶活性没有明显效应。转基因株系的蔗糖含量及其蔗糖含量/葡萄糖含量比被降低,表明转化酶活性的提高促进了蔗糖的分解。与对照相比,转基因株系的生长发育受到影响,基因效应包括:促进幼苗根伸长,促进莲座叶生长,促进莲座叶数目增加,增加抽薹数,增加株高,延长开花期。两转化酶基因在某些功能上具有差异。大豆GmCInv1及GmCInv2的表达对拟南芥突变体cinvl的一些表型具有补偿作用,可以恢复其表型,但不一定能完全恢复至WT水平。
     5.转GmSPS1、GmSPS2的转基因株系均有目的基因的表达,但两基因的6个转基因株系中仅有1个株系Line5的SPS活性与WT有显著性差异。Line5的蔗糖含量明显提高,与WT相比,Line5株高度及幼苗根长得到显著增加。其他5个株系虽然SPS酶活性没有显著提高,但大部分株系仍在所考察的6个生长发育表型中有某一个或两个与WT产生显著性差异。这些结果表明拟南芥中SPS活性的提高能够促进蔗糖的累积,并引起植株生长表型的改变;大豆SPS基因在拟南芥中表达后可能受到其他因素的抑制,以至不能提高拟南芥SPS的活性。
Vegetable soybean is a specialized soybean (Glycine max (L.) Merrill), harvested in the R6-R7growth stage with full seeds and still green pods. Traits of100-pod weight,100-seed weight and sucrose content are the most important factors of appearance and eating quality for vegetable soybean. Based on the goals of vegetable soybean breeding and genetic improvement, we evaluated323cultivated soybean germplasms in China, and identified quantitative trait loci (QTL) related to100-pod weight,100-seed weight and sucrose content in fresh soybean seeds. The key enzyme genes involved sugar accumulation of vegetable soybean were cloned, then the expression pattern of these genes in soybean tissues were analyzed, together with the determination of sugars contents and enzymes activity. These genes were transformed into wild type and cinvl mutant of Arabidopsis thaliana for functional analysis. Main results are as follows:
     1. A number of elite germplasms were identified base on the vegetable breeding objectives. A total of58marker-trait associations related to100-pod weight (28),100-seed weight (21) and sucrose content in fresh seeds (9) were identified by association mapping, involving36different SSR markers, the loci alleles which were significantly associated with the traits were analyzed further. Five, four, and two QTLs were detected relating to100-pod weight,100-seed weight and sucrose content in fresh seeds by linkage mapping, respectively. Four SSRs (Sattl36, Satt208, Satt251and Satt445) were found to be related to the pod and/or seed weights traits using the both mapping methods.
     2. Two soybean cytoplasmic invertase (CInv) genes were homologous cloned and designated GmCInvl and GmCInv2, respectively. GmCInvl contains a2040bp open reading frame (ORF), encoding a680amino acid polypeptide (76.96kD). GmCInv2contains a1665bp ORF, encoding a555amino acid polypeptide (63.30kD). The phylogenetic analysis indicated that GmCInvl and GmCInv2were separated with the acid invertase genes, and all the cytoplasmic invertase genes were clustered together. Two sucrose phosphate synthase genes in soybean were identified, and designated GmSPSl and GmSPS2, respectively. GmSPS1and GmSPS2both contain a3177bp ORF, encoding a680amino acid polypeptide. The phylogenetic analysis indicated that GmSPSl and GmSPS2protein had more closed relationship to Vitis than others.
     3. The sucrose content in the fresh soybean seeds keeps increasing in the early development stage, and decreased in the later stage, while the glucose content gradually decreased during the whole development stage. The starch content change trends of the developing seeds was different in the three evaluated soybean cultivars. The sucrose content was higher than glucose content in the root, stem, leaf and flower. The activity of cytoplasmic invertase (CInv), vacuolar invertase (VInv) and-cell wall invertase (CWInv) all had a decreased trend during the seed growth. The Inv activity in leaves and flowers was higher than that in stem and root. The activity of sucrose phosphate synthase (SPS) have not a stable change mode in developing seed, and the flower or root usually shows a higher SPS activity. GmCInv1and GmCInv2gene were detected in all different tissues, and expressed strongly in roots. The GmCInv1transcription levels were gradually up-regulated with seed development, which were different from GmCInv2, and GmCInv2is more effective for CInv activity in soybean seeds. GmSPS1and GmSPS2have a similar expression pattern to GmCInv1. The expression level of these genes affected the activity of the corresponding enzymes, and changed the sugar contents, but none of the genes or enzymes could regulate the sucrose or glucose level individually.
     4. GmCInv1and GmCInv2were transformed into wild type (WT) and cinvl mutant of Arabidopsis, cinvl, CINV1-deficient plants, had reduced activities of neutral invertase (cytoplasmic invertase). Transcripts of the target genes can be detected in transgenic lines except Line11. The GmCInv1and GmCInv2expression in Arabidopsis have higher CInv activity. The sucrose contents and value of sucrose content/glucose content of GmCInvl and GmCInv2transgenic lines were lower than that of controls. The growth and development of these transgenic lines was effected by GmCInv1and GmCInv2, the root length, plant height, rosettes diameter, rosette leaf number, stem number and flowering time were increased in different transgenic lines. The expression of soybean CInv genes complemented the deficient phenotype of the cinvl mutant in some degree.
     5. Five of the six GmSPSl and GmSPS2transgenic lines have not significant differences in SPS activity compared with WT, though the transcript of GmSPSl and GmSPS2can be detected in corresponding lines. The significant line Line5has a higher sucrose level than WT, the length of seedlings roots and plant height was increased too. There were no significant SPS activity in other five lines may due to the effect of some certain repressors in the Arabidopsis plant.
引文
1. Abdel-latif A. (2007) Response of maize leaf sucrose phosphate synthase to salinity. Research Journal of Agriculture and Biological Sciences 3:930-933.
    2. Agrama H., Eizenga G, Yan W. (2007) Association mapping of yield and its components in rice cultivars. Molecular Breeding 19:341-356.
    3. Ali N. (2001) Potential and scope of vegetable soybean in India. In:Lumpkin T and S Shanmugasundaram (compilers), Proceedings and Conference Information of the Second International Vegetable Soybean Conference.Tacoma, Washington, USA, pp,13-161
    4. Andersen M.N., Asch R, Wu Y., Jensen C.R., Nassted H., Mogensen V.O., Koch K.E. (2002) Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize. Plant Physiology 130:591-604.
    5. Ap Rees T., Wilson P. (1984) Effects of Reduced supply of oxygen on the metabolism of roots of Glyceria maxima and Pisum sativum, Zeitschrift Fur Pflanzenphysiologie 114:493-503.
    6. Areas, J.A.G, Lajolo F. (1981) Starch transformation during banana ripening:Ⅰ—the phosphorylase and phosphatase behavior in Musa acuminata. Journal of Food Biochemistry 5:19-37.
    7. Asthir B., Kaur A., Basra A. (1998) Do phytohormones influence the uptake and metabolism of sucrose in spikelets of wheat? Phyton 38:293-300.
    8. Baroja-Fernandez E., Munoz F.J., Li J., Bahaji A., Almagro G., Montero M., Etxeberria E., Hidalgo M., Sesma M.T., Pozueta-Romero J. (2012) Sucrose synthase activity in the susl/sus2/sus3/sus4 Arabidopsis mutant is sufficient to support normal cellulose and starch production. Proceedings of the National Academy of Sciences 109:321-326.
    9. Barratt D.H.P., Derbyshire P., Findlay K., Pike M., Wellner N., Lunn J., Feil R., Simpson C., Maule A.J., Smith A.M. (2009) Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase. Proceedings of the National Academy of Sciences 106:13124-13129.
    10. Baxter C.J., Foyer C.H., Turner J., Rolfe S.A., Quick W.P. (2003) Elevated sucrose-phosphate synthase activity in transgenic tobacco sustains photosynthesis in older leaves and alters development. Journal of Experimental Botany 54:1813-1820.
    11. Benavidez R., Gosparini C.O., Morandi E.N. (2001) Vegetable soybean in Argentina. In: Proceedings of Second International Vegetable Soybean Conference, Tacoma, Washington, USA. pp. 17-20
    12. Berger S., Papadopoulos M., Schreiber U., Kaiser W., Roitsch T. (2004) Complex regulation of gene expression, photosynthesis and sugar levels by pathogen infection in tomato. Physiologia Plantarum 122:419-428.
    13. Bhatia S., Uppal S., Batta S. (2012) Partial purification and characterization of acid from the fresh and stale sugarcane juice. Sugar Tech 14:148-155.
    14. Bonfig K.B., Berger S., Fatima T., Gonzalez M.C., Roitsch T. (2007) Metabolic control of seedling development by invertases. Functional Plant Biology 34:508-516.
    15. Bosch S., Grof C., Botha F. (2004) Expression of neutral invertase in sugarcane. Plant Science 166:1125-1133.
    16. Bradbury P.J., Zhang Z., Kroon D., Casstevens T., Ramdoss Y., Buckler E. (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635.
    17. Breseghello F., Sorrells M.E. (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165-1177.
    18. Biissis D., Heineke D., Sonnewald U., Willmitzer L., Raschke K., Heldt H.W. (1997) Solute accumulation and decreased photosynthesis in leaves of potato plants expressing yeast-derived invertase either in the apoplast, vacuole or cytosol. Planta 202:126-136.
    19. Casa A.M., Pressoir G., Brown P.J., Mitchell S.E., Rooney W.L., Tuinstra M.R., Franks CD., Kresovich S. (2008) Community resources and strategies for association mapping in sorghum. Crop Science 48:30-40.
    20. Castleden C.K., Aoki N., Gillespie V.J., MacRae E.A., Quick W.P., Buchner P., Foyer C.H., Furbank R.T., Lunn J.E. (2004) Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiology 135:1753-1764.
    21. Cheikh N., Brenner M.L., Huber J.L., Huber S.C. (1992) Regulation of sucrose phosphate synthase by gibberellins in soybean and spinach plants. Plant Physiology 100:1238-1242.
    22. Chen J., Black C. (1992) Biochemical and immunological properties of alkaline invertase isolated from sprouting soybean hypocotyls. Archives of Biochemistry and Biophysics 295:61-69.
    23. Chen S., Hajirezaei M., Bornke F. (2005) Differential expression of sucrose-phosphate synthase isoenzymes in tobacco reflects their functional specialization during dark-governed starch mobilization in source leaves. Plant Physiology 139:1163-1174.
    24. Cheng S. H. (1991) Vegetable soybean area, production, foreign and domestic trade in Taiwan. In: Shanmugasundaram, S.(ed.) Proceedings of vegetable Soybean-Research Needs for Prodution and Quality Improvement Workshop. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan, pp.17-21.
    25. Cheng W.H., Im K.H., Chourey P.S. (1996) Sucrose phosphate synthase expression at the cell and tissue level is coordinated with sucrose sink-to-source transitions in maize leaf. Plant Physiology 111:1021-1029.
    26. Choudhury S.R., Roy S., Das R., Sengupta D.N. (2008) Differential transcriptional regulation of banana sucrose phosphate synthase gene in response to ethylene, auxin, wounding, low temperature and different photoperiods during fruit ripening and functional analysis of banana SPS gene promoter. Planta 229:207-223.
    27. Choudhury S.R., Roy S., Sengupta D.N. (2009) A comparative study of cultivar differences in sucrose phosphate synthase gene expression and sucrose formation during banana fruit ripening. Postharvest Biology and Technology 54:15-24.
    28. Cordenunsi B.R., Lajolo F.M. (1995) Starch breakdown during banana ripening:sucrose synthase and sucrose phosphate synthase. Journal of Agricultural and Food Chemistry 43:347-351.
    29. Correia M.J., Fonseca F., Azedo-Silva J., Dias C, David M.M., Barrote I., Osorio M.L., Os6rio J. (2005) Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes. Physiologia Plantarum 124:61-70.
    30. Dali N., Michaud D., Yelle S. (1992) Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose-accumulating tomato fruits. Plant Physiology 99:434-438.
    31. Davies C., Robinson S.P. (1996) Sugar accumulation in grape berries (cloning of two putative vacuolar invertase cDNAs and their expression in grapevine tissues. Plant Physiology 111:275-283.
    32. Doehlert D.C., Huber S.C. (1983) Regulation of spinach leaf sucrose phosphate synthase by glucose-6-phosphate, inorganic phosphate, and pH. Plant Physiology 73:989-994.
    33. Doehlert D.C., Huber S.C. (1984) Phosphate inhibition of spinach leaf sucrose phosphate synthase as affected by glucose-6-phosphate and phosphoglucoisomerase. Plant Physiology 76:250-253.
    34. Dorion S., Lalonde S., Saini H.S. (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiology 111:137-145.
    35. Doyle J.J.,1990:Isolation of plant DNA from fresh tissue. Focus.12,13-15
    36. Ehness R., Ecker M., Godt D.E., Roitsch T. (1997) Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving. protein phosphorylation. The Plant Cell 9:1825-1841.
    37. Fahrendorf T., Beck E. (1990) Cytosolic and cell-wall-bound acid invertases from leaves of Urtica dioica L.:a comparison. Planta 180:237-244.
    38. Farrar J., Pollock C., Gallagher J. (2000) Sucrose and the integration of metabolism in vascular plants. Plant Science 154:1-11.
    39. Faye L., Mouatassim B., Ghorbel A. (1986) Cell wall and cytoplasmic isozymes of radish P-fructosidase have different N-linked oligosaccharides. Plant Physiology 80:27-33.
    40. Ferrario-Mery S., Valadier M.H., Foyer C.H. (1998) Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA. Plant physiology 117:293-302.
    41. Fieuw S., Willenbrink J. (1987) Sucrose Synthase and Sucrose Phosphate Synthase in Sugar Beet Plants (Beta vulgaris L. ssp altissimd). Journal of Plant Physiology 131:153-162.
    42. Flint-Garcia S.A., Thornsberry J.M., IV B. (2003) Structure of Linkage Disequilibrium in Plants. Annual Review of Plant Biology 54:357-374.
    43. Foyer C. (1987) The basis for source-sink interaction in leaves. Plant Physiology and Biochemistry 25:649-657.
    44. Foyer C.H., Valadier M.H., Migge A., Becker T.W. (1998) Drought-induced effects on nitrate reductase activity and mRNA and on the coordination of nitrogen and carbon metabolism in maize leaves. Plant Physiology 117:283-292.
    45. Fresneau C., Ghashghaie J., Cornic G (2007) Drought effect on nitrate reductase and sucrose-phosphate synthase activities in wheat (Jriticum durum L.):role of leaf internal CO2. Journal of Experimental Botany 58:2983-2992.
    46. Gai J.Y., Guo W.T. (2001) History of Maodou product ion in China. In Lumpkin T and S Shanmugasundaram (compilers), Proceedings and Conference Information of the Second Internat ional Vegetable Soybean Conf erence, Tacoma, Washington, USA,2001,41-47
    47. Gallagher J.A., Pollock C.J. (1998) Isolation and characterization of a cDNA clone from Lolium temulentum L. encoding for a sucrose hydrolytic enzyme which shows alkaline/neutral invertase activity. Journal of Experimental Botany 49:789-795.
    48. Galtier N., Foyer C.H., Huber J., Voelker T.A., Huber S.C. (1993) Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning, and growth in tomato (Lycopersicon epsculentum var UC82B). Plant Physiology 101:535-543.
    49. Godt D.E., Roitsch T. (1997) Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiology 115:273-282.
    50. Grof C., So C, Perroux J., Bonnett G., Forrester R. (2006) Research Note:The five families of sucrose-phosphate synthase genes in Saccharum spp. are differentially expressed in leaves and stem. Functional Plant Biology 33:605-610.
    51. Haigler C., Cai W., Martin L., Tummala J., Anconetani R., Gannaway J., Jividen G, Holaday A. (2000a) Mechanisms by which fiber quality and fiber and seed weight can be improved in transgenic cotton growing under cool night temperatures..National Cotton Council,1:483-484.
    52. Haigler C., Holaday A., Wu C., Wyatt B., Jividen G., Gannaway J., Cai W., Hequet E., Jaradat T., Krieg D. (2000b) Transgenic cotton over-expressing sucrose phosphate synthase produces higher quality fibers with increased cellulose content and has enhanced seedcotton yield. Proceedings of Plant Biology July 15-19, San Diego, CaliforniaAm. Soc. of Plant Physiol, Rockville (2000)
    53. Haigler C.H., Singh B., Zhang D., Hwang S., Wu C., Cai W.X., Hozain M., Kang W., Kiedaisch B., Strauss R.E. (2007) Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions. Plant Molecular Biology 63:815-832.
    54. Hao D., Cheng H., Yin Z., Cui S., Zhang D., Wang H., Yu D. (2012) Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theoretical and Applied Genetics 124:447-458.
    55. Harbron S., Foyer C., Walker D. (1981) The purification and properties of sucrose-phosphate' synthetase from spinach leaves:the involvement of this enzyme and fructose bisphosphatase in the regulation of sucrose biosynthesis. Archives of Biochemistry and Biophysics 212:237-246.
    56. Hedley P.E., Machray G.C., Davies H.V., Burch L., Waugh R. (1994) Potato (Solanum tuberosum) invertase-encoding cDNAs and their differential expression. Gene 145:211-214.
    57. Hesse H., Sonnewald U., Willmitzer L. (1995) Cloning and expression analysis of sucrose-phosphate synthase from sugar beet (Beta vulgaris L.). Molecular and General Genetics 247:515-520.
    58. Hubbard N.L., Huber S.C., Pharr D.M. (1989) Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon (Cucumis melo L.) fruits. Plant Physiology 91:1527-1534.
    59. Hubbard N.L., Pharr D.M., Huber S.C. (1990) Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric. Plant Physiology 94:201-208.
    60. Huber S.C. (1989) Biochemical mechanism for regulation of sucrose accumulation in leaves during photosynthesis. Plant Physiology 91:656-662.
    61. Huber S.C., Huber J.L. (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annual Review of Plant Biology 47:431-444.
    62. Huber S.C., Israel D.W. (1982) Biochemical basis for partitioning of photosynthetically fixed carbon between starch and sucrose in soybean (Glycine max (L.) Merr.) leaves. Plant Physiology 69:691-696.
    63. Isla M.I., Vattuone M.A., Ord6fiez R.M., Sampietro A.R. (1999) Invertase activity associated with the walls of Solarium tuberosum tubers. Phytochemistry 50:525-534.
    64. Isla M.I., Vattuone M.A., Sampietro A.R. (1998) Essential groups at the activesite of Trapaeolum invertase. Phytochemistry 47:1189-1193.
    65. Ji X., Raveendran M., Oane R., Ismail A., Lafitte R., Bruskiewich R., Cheng S., Bennett J. (2005) Tissue-specific expression and drought responsiveness of cell-wall invertase genes of rice at flowering. Plant Molecular Biology 59:945-964.
    66. Jin Y., Ni D.A., Ruan Y.L. (2009) Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. The Plant Cell 21:2072-2089.
    67. Johnson S.L., Fehr W.R., Welke GA., Cianzio S.R. (2001) Genetic variability for seed size of two-and three-parent soybean populations. Crop Science 41:1029-1033.
    68. Jun T.H., Van K., Kim M.Y., Lee S.H., Walker D.R. (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162:179-191.
    69. Keller F., Ludlow M. (1993) Carbohydrate metabolism in drought-stressed leaves of pigeonpea (Cajanus cajan). Journal of Experimental Botany 44:1351-1359.
    70. Kim H.K., Kang S.T., Cho J.H., Choung M.G., Suh D.Y. (2005) Quantitative trait loci associated with oligosaccharide and sucrose contents in soybean (Glycine max L.). Journal of Plant Biology 48:106-112.
    71. King S.P, Lunn J. E.,.Furbank R. T. (1997) Carbohydrate content and enzyme metabolism in developing canola siliques. Plant Physiology 114:153-160
    72. Kingston-Smith A.H., Walker R.P., Pollock C.J. (1999) Invertase in leaves:Conundrum or control point? Journal of Experimental Botany 50:735-743.
    73.73. Klein R.R., Crafts-Brandner S.J., Salvucci M.E. (1993) Cloning and developmental expression of the sucrose-phosphate-synthase gene from spinach. Planta 190:498-510.
    74. Komatsu A., Takanokura Y, Akihama T., Omura M. (1996) Cloning and molecular analysis of cDNAs encoding three sucrose phosphate synthase isoforms from a citrus fruit (Citrus unshiu Marc.). Molecular and General Genetics 252:346-351.
    75. Komatsu A., Takanokura Y., Moriguchi T., Omura M., Akihama T. (1999a) Differential expression of threesucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits{Citrus unshiu Marc.). Plant Science 140:169-178.
    76. Komatsu A., Takanokura Y., Moriguchi T., Omura M., Akihama T. (1999b) Differential expression of three sucrose-phosphate synthase isoforms during sucrose accumulation in citrus fruits (Citrus unshiuMarc.). Plant Science 140:169-178.
    77. Konno Y., Vedvick T., Fitzmaurice L., Mirkov T.E. (1993) Purification, characterization, and subcellular localization of soluble invertase from tomato fruit. Journal of Plant Physiology 141:385-392.
    78. Langenkamper G., Fung R.W.M., Newcomb R.D., Atkinson R.G, Gardner R.C., MacRae E.A. (2002) Sucrose phosphate synthase genes in plants belong to three different families. Journal of Molecular Evolution 54:322-332.
    79. Langenkamper G., McHale R., Gardner R.C., MacRae E. (1998) Sucrose-phosphate synthase steady-state mRNA increases in ripening kiwifruit. Plant molecular biology 36:857-869.
    80. Lee M.H., Yang C.C., Su J.C., Lee P.D. (2005) Biochemical characterization,, of rice sucrose phosphate synthase under illumination and osmotic stress. Botanical Bulletin of Academia Sinica 46:43-52
    81. Lester GE., Arias L.S., Gomez-Lim M. (2001) Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptide profiles during growth and maturation. Journal of the American Society for Horticultural Science 126:33-36.
    82. Lin C.C. (2001) Frozen edamame:Global market conditions. In:Proceedings of Second International Vegetable Soybean Conference. Washington State University, Tacoma, WA, USA, pp. 93-96
    83. Lin F.H. and Cheng S.T.(2001) Vegetable soybean development for export to Japan-a historical and technical perspective. In:Proceeding of second International Vegetable Soybean Conference Washington State University, Tacoma, WA, USA, pp.87-91.
    84. Lunn J.E., Hatch M.D. (1995) Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C4 plants. Planta 197:385-391
    85. Lorenz K., Lienhard S., Sturm A. (1995) Structural organization and differential expression of carrot P-fructofuranosidase genes:identification of a gene coding for a flower bud-specific isozyme. Plant Molecular Biology 28:189-194.
    86. Lshimaru K, Hirotsu N, Kashiwagi T, et al. (2008) Overexpression of a maize SPS gene improves yield characters of potato under field conditions. Plant Production Science.11:104-107
    87. Lshimaru K, Ono K, Kashiwagi T. (2004) Identification of a new gene controlling plant height in rice using the candidate gene strategy. Planta.218:388-395
    88. Lunn J.E., Ashton A.R., Hatch M.D., Heldt H.W. (2000) Purification, molecular cloning, and sequence analysis of sucrose-6F-phosphate phosphohydrolase from plants. Proceedings of the National Academy of Sciences 97:12914-12919.
    89. Lunn J.E., Furbank R.T. (1997) Localisation of sucrose-phosphate synthase and starch in leaves of C 4 plants. Planta 202:106-111.
    90. Lunn J.E., Gillespie V.J., Furbank R.T. (2003) Expression of a cyanobacterial sucrose-phosphate synthase from Synechocystis sp. PCC 6803 in transgenic plants. Journal of Experimental Botany 54:223-237.
    91. Lutfiyya L.L., Nanfei X., D'ordine R.L., Morrell J.A., Miller P.W., Duff S.M.G. (2007) Phylogenetic and expression analysis of sucrose phosphate synthase isozymes in plants. Journal of Plant Physiology 164:923-933.
    92. MacRae E., Quick W.P., Benker C., Stitt M. (1992) Carbohydrate metabolism during postharvest ripening in kiwifruit. Planta 188:314-323.
    93. Malosetti M., van der Linden C.G., Vosman B., van Eeuwijk F.A. (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175:879-889.
    94. Mansur L., Lark K., Kross H., Oliveira A. (1993) Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean (Glycine max L.). Theoretical and Applied Genetics 86:907-913.
    95. Masuda R. (1991) Quality requirement and improvement of vegetable soybean. In:S. Shanmugasundaram (ed.), Vegetable Soybean:Research Needs for Production and Quality Improvement, Asian Vegetable Research Development Center, Taiwan, pp.92-102
    96. Maughan P., Maroof M.A.S., Buss G. (2000) Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max). Molecular Breeding 6:105-111.
    97. Mckenzie M.J., Chen R.K.Y., Harris J.C., Ashworth M.J., Brummell D.A. (2012) Post-translational regulation of acid invertase activity by vacuolar invertase inhibitor affects resistance to cold-induced sweetening of potato tubers. Plant, Cell & Environment. (Article first published online)
    98. Mebrahtu T., Devine T. (2009) Diallel analysis of sugar composition of 10 vegetable soybean lines. Plant Breeding 128:249-252.
    99. Mebrahtu, T. Devine.T. E. Donald, P. A. Abney, T. S. (2007) Registration of'Owens'vegetable soybean. Journal of Plant Registrations 1:95-96.
    100. Mgarulis L., Sgana D. (2003) Aequiring genmoes:the theory of the origins of the species Basic Books, New York, pp.240
    101. Miller R., Kling M. (2000) The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant and Soil 226:295-309.
    102. Michelle B.V., Haigler C.H. (2001) Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems. Plant Physiology 127:1234-1242
    103. Miron D., Schaffer A.A. (1991) Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill, and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl. Plant Physiology 95:623-627.
    104. Morris D.A., Arthur E.D. (1984) Invertase and auxin-induced elongation in internodal segments of Phaseolus vulgaris. Phytochemistry 23:2163-2167.
    105. Mozzoni L.A., Morawicki R.O., Chen P. (2009) Canning of vegetable soybean:procedures and quality evaluations. International Journal of Food Science& Technology 44:1125-1130.
    106. Murayama S., Handa H. (2007) Genes for alkaline/neutral invertase in rice:alkaline/neutral invertases are located in plant mitochondria and also in plastids. Planta 225:1193-1203.
    107. Ni D.A. (2012) Role of vacuolar invertase in regulating Arabidopsis stomatal opening. Acta Physiologiae Plantarum. (On line)
    108. Niedzwiedz-Siegien I., Bogatek-Leszczynska R., Come D., Corbineau F. (2004) Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Science 167:879-888.
    109. Nielsen H., Engelbrecht J.s Brunak S., Von Heijne G. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein engineering 10:1-6.
    110. Pan Y.Q., Luo H.L., Li Y.R. (2009) Soluble acid invertase and sucrose phosphate synthase:Key enzymes in regulating sucrose accumulation in sugarcane stalk. Sugar Tech 11:28-33.
    111. Park J.Y., Canam T., Kang K.Y., Ellis D.D., Mansfield S.D. (2008) Over-expression of an arabidopsis family A sucrose phosphate synthase (SPS) gene alters plant growth and fibre development. Transgenic Research 17:181-192.
    112. Park J.Y., Canam T., Kang K.Y., Unda F., Mansfield S.D. (2009) Sucrose phosphate synthase expression influences poplar phenology. Tree Physiology 29:937-946.
    113. Pressey R., Avants J.K. (1980) Invertases in oat seedlings separation, properties, and changes in activities in seedling segments. Plant Physiology 65:136-140.
    114. Qi X., Wu Z., Li J., Mo X., Wu S., Chu J., Wu P. (2007) AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Molecular Biology 64:575-587.
    115. Quick P., Siegl G., Neuhaus E., Feil R., Stitt M. (1989) Short-term water stress leads to a stimulation of sucrose synthesis by activating sucrose-phosphate synthase. Planta 177:535-546.
    116. Ranwala A.P., Suematsu C., Masuda H. (1992) Soluble and wall-bound invertases in strawberry fruit. Plant Science 84:59-64.
    117. Reddy A., Maley F. (1996) Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. Journal of Biological Chemistry 271:13953-13957
    118. Reimholz R., Geiger M., Haake V., Deiting U., Krause K.P., Sonnewald U., Stitt M. (2008) Potato plants contain multiple forms of sucrose phosphate synthase, which differ in their tissue distributions, their levels during development, and their responses to low temperature. Plant, Cell& Environment 20:291-305.
    119. Roitsch T., Ehneβ R., Goetz M., Hause B., Hofmann M., Sinha A.K. (2000) Regulation and function of extracellular invertase from higher plants in relation to assimilate partitioning, stress responses and sugar signalling. Functional Plant Biology 27:815-825.
    120. Roitsch T., Gonzalez M.C. (2004) Function and regulation of plant invertases:sweet sensations. Trends in Plant Science 9:606-613.
    121.Rossouw D., Bosch S., Kossmann J., Botha F.C., Groenewald J.H. (2007) Downregulation of neutral invertase activity in sugarcane cell suspension cultures leads to a reduction in respiration and growth and an increase in sucrose accumulation. Functional Plant Biology 34:490-498.
    122. Saldivar X., Wang Y.J., Chen P., Mauromoustakos A. (2010) Effects of blanching and storage conditions on soluble sugar contents in vegetable soybean. LWT-Food Science and Technology 43:1368-1372.
    123. Schafer W.E., Rohwer J.M., Botha F.C. (2005) Partial purification and characterisation of sucrose synthase in sugarcane. Journal of Plant Physiology 162:11-20.
    124. Sergeeva L.I., Keurentjes J.J.B., Bentsink L., Vonk J., van der Plas L.H.W., Koornneef M., Vreugdenhil D. (2006) Vacuolar invertase regulates elongation of Arabidopsis thaliana roots as revealed by QTL and mutant analysis. Proceedings of the National Academy of Sciences of the United States of America 103:2994-2999.
    125. Shanmugasundaram S. (2001) Global extension and diversification of fresh and frozen vegetable soybean. In Lumpkin T and S Shanmugasundaram (compilers), Proceedings and Conference Information of the Second International Vegetable Soybean Conference, Tacoma, Washington, USA, pp.161-1651
    126. Shanmugasundaram, Yan M. R.. (2010) Vegetable soybean. In:Guriqbal S. The soybean botany, prodution and uses. CABI, pp.427-460
    127.Sinha A.K., Hofmann M.G, Romer U., K6ckenberger W., Elling L., Roitsch T. (2002) Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiology 128:1480-1489.
    128. Smith A.M., Stitt M. (2007) Coordination of carbon supply and plant growth. Plant, Cell& Environment 30:1126-1149.
    129. Sreenivasulu N., Altschmied L., Radchuk V., Gubatz S., Wobus U., Weschke W. (2004) Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. The Plant Journal 37:539-553.
    130. Strand A., Foyer C., Gustafsson P., GardestrSm P., Hurry V. (2003) Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance. Plant, Cell & Environment 26:523-535.
    131. Strand A., Zrenner R., Trevanion S., Stitt M., Gustafsson P., Gardestrom P. (2001) Decreased, expression of two key enzymes in the sucrose biosynthesis pathway, cytosolic fructose-1, 6-bisphosphatase and sucrose phosphate synthase, has remarkably different consequences for photosynthetic carbon metabolism in transgenic Arabidopsis thaliana. The Plant Journal 23:759-770.
    132. Sturm A. (1996) Molecular characterization and functional analysis of sucrose-cleaving enzymes in carrot (Daucus carota L.). Journal of Experimental Botany 47:1187-1192
    133. Sturm A., Chrispeels M.J. (1990) cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. The Plant Cell 2:1107-1119.
    134. Sturm A., Sebkova V., Lorenz K., Hardegger M., Lienhard S., Unger C. (1995) Development-and organ-specific expression of the genes for sucrose synthase and three isoenzymes of acid β-fructofuranosidase in carrot. Planta 195:601-610.
    135. Szalma S., Buckler E.S., Snook M., McMullen M. (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theoretical and Applied Genetics 110:1324-1333.
    136. Tague B.W., Dickinson C.D., Chrispeels M.J. (1990) A short domain of the plant vacuolar protein phytohemagglutinin targets invertase to the yeast vacuole. The Plant Cell 2:533-546.
    137. Takahashi N. (1991) Vegetable soybean varietal improvement in Japan-past, present and future. Vegetable Soybean:Research Needs for Production and Quality Improvement. Asian Vegetable Research and Development Center, Taiwan:26-29.
    138. Tarpley L., Vietor D.M. (2007) Compartmentation of sucrose during radial transfer in mature sorghum culm. BMC Plant Biology 7:33.
    139. Tian H., Ma L., Zhao C., Hao H., Gong B., Yu X., Wang X. (2010) Antisense repression of sucrose phosphate synthase in transgenic muskmelon alters plant growth and fruit development. Biochemical and Biophysical Research Communications 393:365-370.
    140. Tomlinson K.L., McHugh S., Labbe H., Grainger J.L., James L.E., Pomeroy K.M., Mullin J.W., Miller S.S., Dennis D.T., Miki B.L.A. (2004) Evidence that the hexose-to-sucrose ratio does not control the switch to storage product accumulation in oilseeds:analysis of tobacco seed development and effects of overexpressing apoplastic invertase. Journal of Experimental Botany 55:2291-2303.
    141.Toroser D., Athwal GS., Huber S.C. (1998) Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins. FEBS Letters 435:110-114.
    142. Toroser D., Huber S.C. (1997) Protein phosphorylation as a mechanism for osmotic-stress activation of sucrose-phosphate synthase in spinach leaves. Plant Physiology 114:947-955.
    143. Toroser D., McMichael R., Krause K., Kurreck J., Sonnewald U., Stitt M., Huber S. (1999) Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation. The Plant Journal:for Cell and Molecular Biology 17:407-413.
    144. Tsou, S., and T. Hong,1991:Research on vegetable soybean quality in Taiwan. In:S. Shanmugasundaram (ed.), Vegetable Soybean:Research Needs for Production and Quality Improvement, Asian Vegetable Research Development Center, Taiwan, pp.103-108.
    145. Tymowska-Lalanne Z., Kreis M. (1998) Expression of the Arabidopsis thaliana invertase gene family. Planta 207:259-265.
    146. Tymowska-Lalanne Z., Kreis M. (1998) Expression of the Arabidopsis thaliana invertase gene family. Planta 207:259-265.
    147. Valdez-Alarcon J.J., Ferrando M., Salerno G, Jimenez-Moraila B., Herrera-Estrella L. (1996) Characterization of a rice sucrose-phosphate synthase-encoding gene. Gene 170:217-222.
    148. Vargas W., Cumino A., Salerno G.L. (2003) Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis in the plant cytosol? Planta 216:951-960.
    149. Varshney R., Paulo M., Grando S., van Eeuwijk F., Keizer L., Guo P., Ceccarelli S., Kilian A., Baum M., Graner A. (2012) Genome wide association analyses for drought tolerance related traits in barley (Hordeum vulgare L). Field Crops Research 126:171-180.
    150. Vassey T.L., Sharkey T.D. (1989) Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity. Plant Physiology 89:1066-1070.
    151. Verma A., Solomon S., Verma P., Singh A., Singh S. (2010) Relationship between invertase(s) activity and sucrose metabolism in the leaves of high and low sugar cultivars of sugarcane (Saccharum officinarum L.). Guangxi Agricultural Sciences 41:313-318.
    152. Voegele R.T., Wirsel S., Moll U., Lechner M., Mendgen K. (2006) Cloning and characterization of a novel invertase from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection. Molecular Plant-microbe Interactions 19:625-634.
    153. Wang J., McClean P.E., Lee R., Goos R.J., Helms T. (2008) Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theoretical and Applied Genetics 116:777-787.
    154. Wang L., Ruan Y.L. (2012) New insights into roles of cell wall invertase in early seed development revealed by comprehensive spatial and temporal expression patterns of GhCWINl in cotton. Plant Physiology. (Article first published online)
    155.Warchol M., Perrin S., Grill J. P., Schneider F. (2002) Characterization of apurified beta-fiructofuranosidase from Bifidobacterium in fantis ATCC 15697. Letters in Applied Microbiology 35:462-467
    156. Weber H.5 Borisjuk L., Wobus U. (1997) Sugar import and metabolism during seed development. Trends in Plant Science 2:169-174.
    157. Weber, C.R. (1956) New and better vegetable soybeans. Farm Science 10,1314
    158. Welham T, Pike J., Horst I., Flemetakis E., Katinakis P., Kaneko T., Sato S., Tabata S., Perry J., Parniske M. (2009) A cytosolic invertase is required for normal growth and cell development in the model legume, Lotus japonicus. Journal of Experimental Botany 60:3353-3365.
    159. Weschke W., Panitz R., Gubatz S., Wang Q., Radchuk R., Weber H., Wobus U. (2003) The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. The Plant Journal 33:395-411.
    160. Wobus U., Weber H. (1999) Sugars as signal molecules in plant seed development. Biological Chemistry 380:937-944.
    161. Worrell A.C., Bruneau J.M., Summerfelt K., Boersig M., Voelker T.A. (1991) Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. The Plant Cell 3:1121-1130.
    162. Wu L.L., Mitchell J.P., Cohn N.S., Kaufinan P.B. (1993) Gibberellin (GA 3) enhances cell wall invertase activity and mRNA levels in elongating dwarf pea (Pisum sativum) shoots. International Journal of Plant Sciences:280-289.
    163. Wu T.L. (2004) Production and researches on vegetable soybeans [Glycine max(L.)Merrill] in Southern China. In:Moscardi, F., Hoffmann-Compo, C.B., Saraiva, O.F., Galerani, P.R., Krzyzanowski, F. C. and Carrao-Panizzi, M. C. (eds) ProceedingⅦ World Soybean Research Conference andVI International Soybean Processing and Utilization Conference. Foz do lguassu, Brazil, pp.942-949
    164. Yang J., Zhang J., Wang Z., Zhu Q., Liu L. (2002) Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta 215:645-652.
    165. Yelle S., Chetelat R.T., Dorais M., DeVerna J.W., Bennett A.B. (1991) Sink metabolism in tomato fruit Ⅳ. Genetic and biochemical analysis of sucrose accumulation. Plant Physiology 95:1026-1035.
    166. Young G, Mebrahtu T., Johnson J. (2000) Acceptability of green soybeans as a vegetable entity. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum) 55:323-333.
    167. Yu J., Holland J.B., McMullen M.D., Buckler E.S. (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539-551.
    168. Yu J., Pressoir G, Briggs W.H., Bi I.V., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B.S., Nielsen D.M., Holland J.B. (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics 38:203-208.
    169. Zeng Y, Wu Y, Avigne W.T., Koch K.E. (1999) Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival. Plant Physiology 121:599-608.
    170. Zhang D., Lu Y., Wang Y, Duan C., Yan H. (2001) Acid invertase is predominantly localized to cell walls of both the practically symplasmically isolated sieve element/companion cell complex and parenchyma cells in developing apple fruits. Plant, Cell & Environment 24:691-702.
    171. Zhang L., Cohn N.S., Mitchell J.P. (1996) Induction of a pea cell-wall invertase gene by wounding and its localized expression in phloem. Plant Physiology 112:1111-1117.
    172. Zhang X., Du L., Xie J., Dou M.a., Sun G. (2010) Cloning and expression of pineapple sucrose-phosphate synthase gene during fruit development. African Journal of Biotechnology 9:8296-8303.
    173. Zhang X.M., Wang W, Du L.Q., Xie J.H., Yao Y.L., Sun G.M. (2012) Expression patterns, activities . and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development.and ripening. International Journal of Molecular Sciences 13:9460-9477
    174. Zrenner R., Stitt M. (2006) Comparison of the effect of rapidly and gradually developing water-stress on carbohydrate metabolism in spinach leaves. Plant, Cell & Environment 14:939-946.
    175.蔡恩兴.(2009)吡虫啉在菜用大豆上残留动态及安全使用技术研究.福建农业学报24:241-245.
    176.陈丽萍,郭建辉,杨淑娟,施通华.(2008)百菌清在菜用大豆上残留动态及安全使用技术研究.大豆通报3:19-21.
    177.陈学珍,谢皓,李婷婷,郑晓宇,于同泉,李树臣.(2004)我国菜用大豆研究进展与生产利用现状.北京农学院学报18:311-315.
    178.成善汉,宋波涛,谢从华,李竞才,柳俊.(2007)烟草液泡转化酶抑制子基因调控马铃薯块茎低温还原糖累积的研究.中国农业科学40:140-146.
    179.郭建辉.(2009)哒螨酮在菜用大豆上残留动态及安全使用技术研究.中国生态农业学报17:105-109.
    180.盖钧镒,汪越胜.(2001)中国大豆品种生态区域划分的研究.中国农业科学34:139-145.
    181.韩立德,黄正来.(2006)菜用大豆品质研究进展.种子25:51-53.
    182.韩天富,盖钧镒.(2002)世界菜用大豆生产,贸易和研究的进展.大豆科学21:278-284.
    183.洪雪娟,侯金锋,丁卉,李永春,盖钧镒,邢邯.(2012)大豆异地衍生重组自交系群体遗传图谱的构建及比较.作物学报38:614-623
    184.何永枝.(1995)菜用大豆的产量特点及经济效益分析.大豆通报6:23-24.
    185.黄中文,赵团结,喻德跃,陈受宜,盖钧镒.(2009)大豆产量有关性状QTL的检测.中国农业科学42:4155-4165.
    186.贾荣荣.(2011)蔗糖磷酸合成酶SPS的克隆及对棉花的遗传转化研究.陕西师范大学硕士学位论文.
    187.纪雪梅(2005)水稻转化酶基因家族的进化及其在干旱胁迫下的表达调控.中国农业科学院博士学位论文.
    188.李莹,刘宝辉,张中男,程大友,鲁兆新.(2005)玉米蔗糖磷酸合成酶(SPS)基因的克隆及表达载体的构建.生物信息学3:66-68.
    189.李永庚,于振文.(2001)冬小麦旗叶蔗糖和籽粒淀粉合成动态及与其有关的酶活性的研究.作物学报27:658-664.
    190.刘晓雯.(2002)小肠蔗糖酶的分离纯化及部分性质.四川大学硕士学位论文.
    191.吕美琴,叶玉珍.(2002)菜用大豆的研究现状及展望.福建农业科技3:26-28.
    192.吕英民,张大鹏.(2000)苹果果实韧皮部及其周围薄壁细胞的超微结构观察和功能分析.植物学报(英文版)42:32-42.
    193.马丽萍,张彩英,张丽娟.(2001)菜用大豆的研究进展.河北农业科学5:53-57.
    194.倪照君.(2010)青种枇杷果实糖积累和相关酶研究,南京农业大学硕士学位论文.
    195.潘秋红.(2003)果实酸性转化酶研究.中国农业大学博士学位论文.
    196.司丽珍,储成才.(2003)植物蔗糖合成的分子机制.中国生物工程杂志23:11-16.
    197.王丹英,汪自强,方勇,徐律平.(2002)菜用大豆食味品质及其与内含物关系研究.金华职业技术学院学报2:15-17.
    198.王宁宁,朱建新,王淑芳,朱亮基.(2000)苦参碱对小麦旗叶中蔗糖磷酸合成酶活性的调节.南开大学学报(自然科学版)33:19-22.
    199.王永军,吴晓雷,喻德跃,章元明,陈受宜,盖钧镒.(2004)重组自交系群体的检测调整方法及其在大豆NJRIKY群体的应用.作物学报30:413-418.
    200.王永章,王小芳.(2001)苹果果实转化曲酶的种类和特性研究.中国农业大学学报6:9-14.
    201.文自翔,赵团结,郑永战,刘顺湖,王春娥,王芳,盖钧镒.(2008)中国栽培和野生大豆农艺及品质性状与SSR标记的关联分析Ⅱ.优异等位变异的发掘.作物学报34:1339-1349.
    202.吴晓雷,王永军.(2001)大豆重要农艺性状的QTL分析.遗传学报28:947-955.
    203.吴勇,苏丽英,於新建,夏叔芳.(1989)菠菜叶片蔗糖磷酸合成酶的纯化.植物生理学报15:185-189
    204.吴正景.(2007)番茄酸性转化酶cDNA克隆及胞壁转化酶在植株抗寒反应中功能研究.西北农林科技大学博士学位论文.
    205.熊福生,高煜珠.(1994)植物叶片蔗糖,淀粉积累与其降解酶活性关系研究.作物学报20:52-58.
    206.徐兆生,王素.(1995)菜用大豆种质资源营养品质分析.作物品种资源3:40-41.
    207.杨小红,严建兵,郑艳萍,余建明,李建生.(2007)植物数量性状关联分析研究进展.作物学报33:523-530.
    208.于喜艳,樊继德,何启伟.(2007)甜瓜果实蔗糖磷酸合成酶基因cDNA片段的克隆及表达分析.园艺学报34:205-220.
    209.张国栋.(1994)青毛豆.大豆通报6:29.
    210.张军,赵团结,盖钧镒.(2009)大豆育成品种农艺性状QTL与SSR标记的关联分析.作物学报34:2059-2069.
    211.张玉梅.(2006)菜用大豆营养品质性状的遗传变异.南京农业大学硕士学位论文.
    212.赵晋铭.(2007)菜用大豆主要品质性状的遗传与基因定位研究.南京农业大学博士学位论文.
    213.张志良,瞿伟菁.(2003)植物生理学实验指导(第三版).高等教育出版社,北京.pp 128-129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700