用户名: 密码: 验证码:
山新杨高效遗传转化体系的建立及蒙古柳FOX山新杨抗性植株的获得
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杨树是木本植物的模式植物,其遗传转化机理、转化方法和转化范围已有深入研究,并取得了较大的发展,同时也获得了不同品种的转基因植株,但在杨树遗传转化过程中,实际上是在进行大量的重复实验后,而得到了的少数几个转化子。FOX-Hunting System技术,即Full-length cDNA Over-eXpressor gene Hunting System(全长cDNA高效表达功能基因探索系统),该方法通过把全长cDNA高效率地导入植物中,使其基因过量表达并导致表型发生变化,达到明确基因功能的目的。本文为将FOX hunting system技术应用在木本植物杨树中,建立高效率的杨树遗传转化体系具有现实意义。成功的植物基因转化首先需要依赖一个良好的再生体系的建立,而理想受体系统的建立则与植物的组织培养分不开。本文以山新杨(Populus davidiana Dode X Populus bollena Lauche)叶片为实验材料,建立了高效的山新杨再生体系,在此基础上,建立了一个高效的遗传转化体系。使用建立的山新杨高效的遗传转化体系,将已构建的蒙古柳cDNA农杆菌表达文库,转入山新杨中,获得了大量的蒙古柳FOX山新杨抗性植株,并对获得的大量的抗性植株进行耐盐碱性的初步筛选,获得了较为耐盐碱的转基因品种,为在木本植物中利用FOX hunting system技术筛选功能基因打下基础。具体实验结果如下:
     建立了一个高效的山新杨再生体系,为山新杨的遗传转化奠定基础。(1)以2%的NaCIO作为消毒剂,消毒不同的时间,筛选较好的消毒时间,结果显示使用2%的NaCIO作为消毒剂,消毒15min可以达到较好的消毒效果。(2)使用6-BA(0.1,0.3,0.5mg/L)和NAA (0.01,0.03,0.05,0.08,0.1mg/L)两种激素进行不同浓度的组合,筛选出具有较高分化率的山新杨叶片分化培养基,结果显示,山新杨叶片在1/2MS+6-BA0.3mg/L+NAA0.08mg/L分化培养基上,具有最高的分化率,分化率达到90%以上。(3)将分化出丛生芽的叶片外植体接种于含有6-BA (0.3,0.5,0.8mg/L)和NAA(0.05,0.1,0.15mg/L)两种激素进行不同浓度组合的壮苗培养基上进行壮苗,以提高生根率,筛选得到较优的壮苗培养基。实验结果表明最佳壮苗培养基为1/2MS+6-BA0.05mg/L+NAA0.1mg/L。(4)我们将分化出的丛生芽分成单芽,接种于含有不同浓度的NAA (0.1,0.2,0.25,0.3,0.4mg/L)培养基中,筛选较优的生根培养基,结果显示,山新杨芽在1/2MS+NAA0.25mg/L培养基中生根,生根率为100%,且根系粗细适中,分根多且根系长势快。(5)将在培养基中生根长大的山新杨组培苗进行炼苗和移栽,获得盆栽山新杨植株,移栽成活率达到90%以上。
     以高效的山新杨再生体系为基础,建立了一个高效的山新杨遗传转化体系,为获得大量的cDNA文库转基因植株提供成熟的技术。(1)卡那霉素(Kan)作为遗传转化过程中的筛选标记,对Kan的不同浓度进行筛选,选择较适合的浓度应用于遗传转化中。实验结果表明,30mg/L作为筛选培养山新杨叶片分化的筛选压较为合适;40mg/L作为山新杨生根筛选的适宜浓度。头孢噻亏钠(Cef)作为遗传转化中的抑菌剂,可以抑制根癌农杆菌的生长,但也影响植物的正常生长发育,实验结果表明选用200mg/L的Cef作为筛选山新杨抗性苗的抑菌剂浓度较为合适。(2)对不同菌液浓度(OD600=0.6,0.8,1.0,1.2)和侵染时间(10min,20min30min,40min)对山新杨进行遗传转化的影响进行了实验,并对实验样品表面的农杆菌的附着情况进行了扫描电镜的观察,实验结果表明在遗传转化过程中菌液浓度选定在0.8-1.0之间,侵染时间在20-30min为适宜。(3)对乙酰丁香酮(AS)在共培养培养基中所起的效果做了研究,结果显示在遗传转化过程中,共培养培养基中添加AS对遗传转化效率存在一定的影响,但效果不明显。(4)在上述(1)一(3)中筛选的最优条件处理下,研究了不同叶龄(30d,60d,90d)的山新杨叶片对遗传转化效率的影响,并对实验样品表面农杆菌的附着情况和内部农杆菌的侵入情况进行了扫描电镜和透射电镜的观察,筛选出了适合于杨树遗传转化的叶片外植体年龄。实验结果表明30d大小的叶片作为遗传转化的外植体可明显提高山新杨的遗传转化效率。扫描电镜实验结果观察到30d大小的叶片表面在遗传转化过程中所附着的农杆菌的量较60d,90d的叶片外植体多。透射电镜的进一步实验结果表明30d大小的叶片作为外植体时,叶片内部侵入的农杆菌的数量均多于60d和90d的叶片外植体。实验结果表明使用30d大小的山新杨叶片作为遗传转化的外植体,可提高遗传转化效率。综上优化因素,遗传转化效率高达30%以上。本部分实验使用pBI-121-MD-GFP基因作为植物遗传转化的指示报告基因,进行遗传转化,分化出的芽可在荧光显微镜下进行观察,激发出荧光。并选择部分转基因植物进行Southern Blot和Northern Blot实验,进一步验证该基因转入了山新杨中并得到了表达。
     实验使用建立的高效的遗传转化方法,将已构建得到的蒙古柳(Salix linearistioularis Hao) cDNA农杆菌文库转入到山新杨中,获得了218株蒙古柳FOX山新杨抗性植株。同时将抗性植株进行耐盐碱性的初步筛选,初步获得了2个抗NaCl,2个抗NaHCO3的山新杨抗性品种。并将具有抗性的植株进行移栽,以备后续实验的进行。
Poplar is the most useful model plants. Transgenic poplar genetic transformation mechanism, methods and the scope of transformation have been studied, and made a great progress, and also received many different varieties poplar transgenic plants. In fact, in the process of the experiment of poplar genetic transformation, only a few of transgenic poplar was obtained according to repeated experiments. FOX-Hunding System, namely the Full-length cDNA_Over-eXpressor gene Hunding System (full-length cDNA efficient expression of functional genes discovery System). The full length cDNA was transfer into plants efficiently. The phenotype was changed according to the gene expression and achieve the gene function. In this part the FOX hunting system technology was applied in the woody plants of poplar, and a efficient poplar genetic transformation method was established. Success of plant genetic transformation was based on a efficient plant regeneration system. The establishment of the transformation system and the regeneration system is inseparable. The Populus davidiana Dode×Populus bollena Lauche leaf as the experiment material, efficient regeneration system was established. Based on the efficient regeneration system, the efficient genetic transformation system was established. Poplar as a woody-plant model can be used in mutant library construction and FOX hunting system, improve the transformation frequency is significant. The salix cDNA Agrobacterium library has been built, and the library was transfer into populus using the efficient genetic transformation system. A great many of salix FOX populus was obtained. The resistance plants were treated by NaCl and NaHC03, and the salt-stress populus was generated. It was the foundation of screening functional genes using the FOX hunting system technology. The main research was as follows:
     A efficient regeneration system was established, and lay a foundation for the genetic transformation.(1) At2%NaCIO for sterilization, different time was used for screening sterilization time, the results showed that using2%NaCIO,15min for sterilization of populus can achieve a good effect.(2) Different concentration of6-BA (0.1,0.3,0.5mg/L) and NAA (0.01,0.03,0.05,0.08,0.1mg/L) were studied in the process of shoot differentiation. The results showed that the highest frequency of shoot regeneration (90%) from leaf was obtained on1/2MS medium supplemented with0.3mg/L6-BA and0.08mg/L NAA.(3) For elongation and proliferation of the differentiation shoot, the shoot explants were put on the medium containing6-BA (0.3,0.5,0.8mg/L) and NAA (0.05,0.1,0.15mg/L), the result showed that1/2MS+6-BA0.05mg/L+NAA O.lmg/L was the most suitable for elongation and proliferation.(4) Effect of NAA on rooting capacity was investigated. The medium containing NAA (0.1,0.2,0.25,0.3,0.4mg/L) was used for rooting. The result showed that NAA at0.25mg/L was most effective for root regeneration(100%), and the growth status of roots were length and polyrhizal.(5) The plants of the populus in the medium was transplanted after hardening, and the potted seedlings was obtained. The survival rate was upto90%.
     On the basis of the efficient regeneration system, a efficient genetic transformation system was established for obtaining a great many of cDNA transgenic plants.(1) Kan as a selection marker in genetic transformation. Screening a suitable concentration was important in the genetic transformation. Experimental result showed that30mg/L Kan was suitable for differentiation selection,40mg/L Kan was appropriate for rooting. Cef as bacteriostatic in the genetic transformation. Cef can restrain the growth of the Agrobacterium, but also affected the normal growth and development of plants. Experimental result showed that200mg/L Cef for bacteriostatic was suitable.(2) The different bacteria concentration (OD600=0.6,0.8,1.0,1.2) and infection time (10min,20min,30min,40min) were carried on the experiment. The experimental samples were observated by scanning electron microscopy (SEM). The experimental result showed that in the process of genetic transformation bacteria concentration between OD600=0.8-1.0, and the infection time20-30min were suitable for transformation.(3) The effect of AS on the transformation was studied, the result showed that in the process of genetic transformation, adding AS in the cocultivation medium was no effect on the genetic transformation efficiency.(4) Based on above (1)-(3) of the optimal conditions, the effect of different leaf age (30days,60days,90days) on transformation efficiency was studied. The experimental sample was observated by the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for selecting the suitable leaf explant for poplar genetic transformation. The experimental result showed that30-day-old leaf as explant for genetic transformation improved the genetic transformation efficiency obviously. The status of Agrobacterium attachment to leaf surface was observed by scanning electron microscopy. The result showed that Agrobacterium attachment gradually reduced with increasing leaf age of explants. The30-day-old leaf surface showed substantial Agrobacterium attachment. There were fewer Agrobacterium cells attached to leaf surfaces of60-day-old and90-day-old. According to transmission electron microscopy observations, there were more Agrobacterium invasions in the30-day-old leaf explants than60-day-old and90-day-old explants. Our result suggested that younger leaves had higher transformation efficiency (-30%) than older leaves (10%).Using the green fluorescent protein (GFP) marker, the expression of pBI121-MD-GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode x P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants.
     In this section, Salix linearistioularis Hao as the research object. The. Agrobacterium cDNAs library of Salix was transformated into the populus and obtained the218Salix FOX Populus resistance plants. The resistance plants was treated by NaCl and NaHCO3.2resistance plants stress to NaCl and NaHCO3respectivly. It is a foundation for using FOX hunting system technology screening functional genes in woody plants
引文
[1]Bradshaw H, Ceulemans R, Davis J, Stettler R. Emerging model systems in plant biology: poplar (Populus) as a model forest tree[J]. Journal of Plant Growth Regulation,2000,19:306-313.
    [2]Brunner AM, Busov VB, Strauss SH. Poplar genome sequence:functional genomics in an ecologically dominant plant species[J]. Trends in plant science,2004,9:49-56.
    [3]Chalupa V. Control of root and shoot formation and production of trees from poplar callus[J]. Biologia Plantarum,1974,16:316-320.
    [4]贾士荣,曹冬孙.转基因植物[J].植物学通报,1992,9:3-15.
    [5]Coleman GD, Ernst SG. In vitro shoot regeneration of Populus deltoides:effect of cytokinin and genotype[J]. Plant cell reports,1989,8:459-462.
    [6]Haissig BE, Nelson ND, Kidd GH. Trends in the use of tissue culture in forest improvement [J]. Nature Biotechnology,1987,5:52-59.
    [7]Harry I, Thorpe T, Vasil I. In vitro culture of forest trees[J]. Plant cell and tissue culture, 1994,539-560.
    [8]Huang D, Dai W. Direct regeneration from in vitro leaf and petiole tissues of Populus tremula'Erecta'[J]. Plant Cell Tiss Organ Cult,2011,107:169-174.
    [9]Gupta PK. Tissue culture of forestry trees[J]. Clonal multipulication of Tectlna grands L(Teak) by tissue culture,1980,17:335-358.
    [10]Whitehead HCM, Giles KL. Ripid propagation of populus through tissue culture[J]. Newzealand forest science,1977,7:40-43.
    [11]Kang BG, Osburn L, Kopsell D, Tuskan GA, Cheng ZM. Micropropagation of Populus trichocarpa 'Nisqually-1':the genotype deriving the Populus reference genome[J]. Plant Cell Tiss Organ Cult,2009,99:251-257.
    [12]Son S, Hall R. Multiple shoot regeneration from root organ cultures of Populus alba×P. grandidentata[J]. Plant Cell Tiss Organ Cult,1990,20:53-57.
    [13]Wolter KE. Root and shoot initiation in aspen callus cultures[J]. Nature,1968,219:509- 510.
    [14]Winton L. Notes:Tissue culture propagation of European aspen[J]. Forest Science,1971, 17:348-350.
    [15]Christie C. Rapid propagation of aspens and silver poplars using tissue culture techniques [Populus alba, Populus tremula, Populus tremuloides]. Combined Proceedings International Plant Propagators' Society,1978,28.
    [16]Riou A. Development of complete plant from free cells of populus callus[J]. CR Acad Sci Ser D,1975,280:2657-2660.
    [17]Berbee FM, Berbee JG, Hidebrandt AC. Induction of callus and tree from stem tip cultures of hybrid poplar[J]. Vitro,1972,7(1):269.
    [18]Ahuja MR. Somatic cell differentiation and rapid clonal propagation of aspen[J]. Silvae Genet,1983,32:131-135.
    [19]Ahuja MR. Micropropagation of woody plants:Springer,1992.
    [20]Gozukirmizi N, Bajrovic K, Ipekci Z. Genotype differencies in direct plant regeneration from stem explants of Populus tremula in Turkey[J]. J For Res,1998,3:123-126.
    [21]Noel N, Leple JC, Pilate G. Optimization of in vitro micropropagation and regeneration for Populus×interamericana and Populus x euramericana hybrids (P. deltoides, P. trichocarpa, and P. nigra)[J]. Plant cell reports,2002,20:1150-1155.
    [22]Park YG, Son SH. In vitro organogenesis and somatic embryogenesis from punctured leaf of Populus nigra×P. maximowiczii[J]. Plant Cell Tiss Organ Cult,1988,15:95-105.
    [23]De Block M. Factors influencing the tissue culture and the Agrobacterium tumefaciens-Mediated transformation of hybrid aspen and poplar clones[J]. Plant physiology,1990,93: 1110-1116.
    [24]Tsai CJ, Podila GK, Chiang VL. Agrobacterium-mediated transformation of quaking aspen (Populus tremuloides) and regeneration of transgenic plants[J]. Plant cell reports,1994, 14:94-97.
    [25]Thakur A, Sharma S, Srivastava D. Plant regeneration and genetic transformation studies in petiole tissue of Himalayan poplar (Populus ciliata Wall.)[J]. Current science Bangalore, 2005,89(4):664-668.
    [26]Yadav R, Arora P, Kumar D, Katyal D, Dilbaghi N, Chaudhury A. High frequency direct plant regeneration from leaf, internode, and root segments of Eastern Cottonwood(Populus deltoides)[J]. Plant Biotechnology Reports,2009,3:175-182.
    [27]徐妙珍,吴克贤,解奇明.杨树组织离体培养育苗初获成功[J].林业科技通讯,1978,12:1-2.
    [28]李文钿,李江山.杨树杂种胚珠的离体培养[J].林业科学,1985,4:339-346,445-448.
    [29]董雁,别婉丽,赵继梅.三倍体山杨组培繁育技术的研究[J].辽宁林业科技,1999,6:11-5.
    [30]郑琼.欧美杨组培体系的建立和Trx基因的遗传转化.东北林业大学硕士论文.2007.
    [31]李成浩,李俊秀,杨静莉.影响小黑杨花药培养中花粉愈伤组织诱导与不定芽分化的几个生理因素[J].植物生理学通讯,2008,247:491-494.
    [32]杨林娜,樊军锋,高建社,周永学.白杨新杂种I-101 x84K杨组培快繁技术研究[J].西北林学院学报,2010,25(105):68-72.
    [33]Ahuja MR. Gene transfer in forest trees[J].1988.
    [34]Ahuja MR. Gene transfer in genetic manipulation of woody plants[J]. New York plenum press,1988:25-41.
    [35]Dai W, Cheng ZM, Sargent W. Plant regeneration and Agrobacterium-mediated transformation of two elite aspen hybrid clones from in vitro leaf tissues [J]. In Vitro Cellular & Developmental Biology-Plant,2003,39:6-11.
    [36]Horsch R, Fry J, Hoffmann N, Eichholtz D, Rogers S, Fraley R. A simple and general method for transferring genes into plants[J]. Science,1985,227:1229-1231.
    [37]Delledonne M, Allegro G, Belenghi B. Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance[J]. Molecular Breeding,2001,7:35-42.
    [38]Han KH, Meilan R, Ma C, Strauss S. An Agrobacterium tumefaciens transformation protocol effective on a variety of cottonwood hybrids (genus Populus)[J]. Plant cell reports, 2000,19,315-320.
    [39]Ma C, Strauss S, Meilan R. Agrobacterium-mediated transformation of the genome-sequenced poplar clone, Nisqually-1 (Populus trichocarpa)[J]. Plant Molecular Biology Reporter,2004,22(3),1-9.
    [40]毕影东,杨传平.生物技术在林木遗传育种中的应用[J].世界林业研究,2007,6:23-28.
    [41]Parsons TJ, Sinkar VP, Stettler RF, Nester EW, Gordon MP. Transformation of poplar by Agrobacterium tumefaciens[J]. Nature Biotechnology,1986,4,533-536.
    [42]Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L. Agrobacterium mediated transformation and regeneration of Populus[J]. Molecular and General Genetics MGG,1987, 206:192-199.
    [43]Confalonieri M, Balestrazzi A, Bisoffi S. Genetic transformation of Populus nigra by Agrobacterium tumefaciens[J].Plant cell reports,1994,13:256-261.
    [44]Han KH, Gordon MP, Strauss SH. High-frequency transformation of cottonwoods (genus Populus) by Agrobacterium rhizogenes[J]. Canadian Journal of Forest Research,1997,27: 464-470.
    [45]Charest PJ, Devantier Y, Ward C, Jones C, Schaffer U, Klimaszewska KK. Transient expression of foreign chimeric genes in the gymnosperm hybrid larch following electroporation[J]. Canadian Journal of Botany,1991,69:1731-1736.
    [46]Chupeau MC, Pautot V, Chupeau Y. Recovery of transgenic trees after electroporation of poplar protoplasts [J]. Transgenic research,1994,3:13-19.
    [47]Devantier YA, Moffatt B, Jones C, Charest PJ. Microprojectile-mediated DNA delivery to the Salicaceae family[J]. Canadian Journal of Botany,1993; 71:1458-1466.
    [48]王善平,许农,许智宏,黄敏仁,卫志明.利用PEG法对GUS基因在几种杨树原生质体中瞬间表达的研究[J].实验生物学报,1991,1:71-74.
    [49]McCown B, McCabe D, Russell D, Robison D, Barton K, Raffa K. Stable transformation of Populus and incorporation of pest resistance by electric discharge particle acceleration[J]. Plant cell reports,1991,9:590-594.
    [50]刘斌,李红双,王其会,崔德才.反义磷脂酶Dγ基因转化毛白杨的研究[J].遗传,2002,1:40-44.
    [51]孟亮,李红双,金德敏,崔德才,王斌.转几丁质酶基因黑杨的获得[J].生物技术通报,2004,3:48-51.
    [52]韩琳娜,周春江,崔德才,王斌.转BG2基因黑杨植株的获得[J].山东农业大学学报(自然科学版),2004,3:375-378,382.
    [53]Brasileiro ACM, Tourneur C, Leple JC, Combes V, Jouanin L. Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants[J]. Transgenic Research,1992,1:133-141.
    [54]Confalonieri M, Balestrazzi A, Bisoffi S, Cella R. Factors affecting Agrobacterium tumefaciens-mediated transformation in several black poplar clones[J]. Plant Cell Tiss Organ Cult,1995,43:215-222.
    [55]Confalonieri M, Balestrazzi A, Cella R. Genetic transformation of Populus deltoides and P.x euramericana clones using Agrobacterium tumefaciens[J]. Plant Cell Tiss Organ Cult,1997, 48:53-61.
    [56]Mohri T, Mukai Y, Shinohara K. Agrobacterium tumefaciens-mediated transformation of Japanese white birch (Betula platyphylla var. japonica)[J]. Plant Science,1997,127:53-60.
    [57]Igasaki T, Ishida Y, Mohri T, Ichikawa H, Shinohara K. Transformation of Populus alba and direct selection of transformants with the herbicide bialaphos[J]. Bulletin of FFPRI,2002, 1(4):9-15.
    [58]Sunilkumar G, Vijayachandra K, Veluthambi K. Preincubation of cut tobacco leaf explants promotes Agrobacterium-mediated transformation by increasing vir gene induction[J]. Plant Science,1999,141:51-58.
    [59]Tzfira T, Jensen CS, Vainstein A, Altman A. Transformation and regeneration of transgenic aspen plants via shoot formation from stem explants[J]. Physiologia Plantarum, 1997,99:554-561.
    [60]Okumura S, Sawada M, Park YW. Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts[J]. Transgenic research,2006,15:637-646.
    [61]Nishiguchi M, Yoshida K, Mohri T, Igasaki T, Shinohara K. An improved transformation system for Lombardy poplar (Populus nigra var. italica)[J]. J For Res,2006,11:175-180.
    [62]Riemenschneider DE. Susceptibility of intra-and inter-specific hybrid poplars to Agrobacterium tumefaciens strain C58[J]. DIO,1990,511(512):2.
    [63]张冰玉,苏晓华,李义良.转抗鞘翅目害虫基因银腺杨的获得及其抗虫性的初步研究[J].北京林业大学学报,2006,2:102-105.
    [64]樊军锋,韩一凡,李玲,彭学贤,李嘉瑞.84K杨树耐盐基因转化研究[J].西北林学院学报,2002,4:33-37.
    [65]徐晨曦,姜静,李俊涛,李艳霞,马辉,姜传明.几种抗生素对山新杨离体叶片不定芽再生的影响[J].东北林业大学学报,2007,1:28-30.
    [66]惠楠.单倍体小黑杨抗生素敏感试验[J].林业科技,2004,4:7-9.
    [67]李慧,陈晓阳,李云,李伟,丁霞.银白杨遗传转化中抗生素浓度优化的研究[J].北京林业大学学报,2005,5:118-121.
    [68]李伟,陈晓阳,丁霞,李慧.胡杨遗传转化体系的建立及抗生素浓度的优化(英文)[J].广西植物,2007,118:622-626.
    [69]李玲,韩一凡.杨树对卡那霉素(Kanamycin)敏感性的测定[J].林业科学,1992,1:95-96.
    [70]吴建慧.碱茅(Puccinellia tenuifolra)超氧化物歧化酶基因功能解析及对杨树(Populus×euramericana "Guariento")遗传转化研究.东北林业大学博士论文,2008.
    [71]Confalonieri M, Belenghi B, Balestrazzi A. Transformation of elite white poplar(Populus alba L.) cv.'Villafranca' and evaluation of herbicide resistance[J]. Plant cell reports,2000,19: 978-982.
    [72]王树耀,田宗城,王云,周芳.OsNHX1基因转化84K杨的研究[J].湖南文理学院学报(自然科学版),2005,1:60-63.
    [73]Leple JC, Pilate G, Jouanin L. Transgenic Poplar Trees(Populus Species). Transgenic Trees.2000. pp.221-244.
    [74]饶红宇,陈英,黄敏仁,王明庥,伍宁丰,范云六.杨树NL-80106转Bt基因植株的获得及抗虫性[J].植物资源与环境学报,2000,2:1-5.
    [75]Gallardo F, Fu J, Canton FR, Garcia-Gutierrez A, Canovas FM, Kirby EG. Expression of a conifer glutamine synthetase gene in transgenic poplar[J]. Planta,1999,210:19-26.
    [76]Yang CL, Zu GC, Zhao SM. Constuction of Agrobaterium mediated high frequency transformation system for populus tometosa[J]. Development and Reproductive Biology,2001, 10:61-68.
    [77]郝贵霞,朱祯,朱之悌.毛白杨遗传转化系统优化的研究[J].植物学报,1999,9:936-940.
    [78]Lin JJ, Assad GN, Kuo J. Plant hormone effect of antibiotics on the transformation efficiency of plant tissues by Agrobacterium tumefaciens cells[J]. Plant Science,1995,109(2): 171-177.
    [79]郝贵霞,朱祯,朱之悌.杨树基因工程进展[J].生物工程进展,2000,4:6-10.
    [80]饶红宇,黄敏仁.杨树基因工程研究的现状及展望[J].林业科技开发,1999,4:3-6.
    [81]赵鑫,詹立平,刘桂丰.杨树基因工程抗性育种研究进展[J].东北林业大学学报,2004,6:76-78,102.
    [82]Diatchenko L, Lau YF, Campbell AP. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J]. Proceedings of the National Academy of Sciences,1996,93(12):6025-6030.
    [83]林凡云.糜子干旱复水的基因表达谱分析及相关基因克隆.西北农林科技大学博士论文,2006.
    [84]岳桂东,胡孝瑞,庄云龙,张举仁.干旱胁迫下开花期玉米消减文库的构建及分析[J].山东大学学报(理学版),2006,4:168一172.
    [85]汤华,郑用琏,贺立源,李建生.玉米耐铝毒基因的分离[J].植物生理与分子生物学学报,2005,5:507-514.
    [86]刘春燕,王伟权,陈庆山.大豆花叶病毒胁迫诱导的消减文库构建及初步分析[J].生物工程学报,2005,2:320-322.
    [87]Zouari N, Saad RB, Legavre T. Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis[J]. Gene,2007,404(1):61-69.
    [88]张雷,杨志攀,刘一鸣,黄美娟,吴乃虎.cDNA文库的差异筛选与抑制性减数杂交相结合分离胡萝卜体细胞胚根发育相关基因[J].自然科学进展,2002,3:39-43.
    [89]Adams MD, Kelley JM, Gocayne JD. Complementary DNA sequencing:expressed sequence tags and human genome project[J]. Science,1991,252(5013):1651-1656.
    [90]Zouari N, Saad RB, Legavre T. Identification and sequencing of ESTs from the halophyte grass Aeluropus littoralis[J]. Gene,2007,404(1):61-69.
    [91]Mahalingam R, Gomez BA, Eckardt N. Characterizing the stress/defense transcriptome of Arabidopsis[J]. Genome Biol,2003,4(3):11-20.
    [92]Zhang L, Ma XL, Zhang Q. Expressed sequence tags from a NaCl-treated Suaeda salsla cDNA library[J]. Gene,2001,267(2):193-200.
    [93]杨传平,王玉成,刘桂丰,姜静,张国栋.基因芯片技术研究柽柳NaHCO3胁迫下基因的表达[J].生物工程学报,2005,2:220-226.
    [94]Edwards NJ. Novel peptide identification from tandem mass spectra using ESTs and sequence database compression[J]. Molecular Systems Biology,2007,3(1):1-7.
    [95]Plomion C, Lalanne C, Claverol S. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins[J]. Proteomics,2006,6(24):6509-6527.
    [96]Jorge I, Navarro RM, Lenz C, Ariza D, Jorrin J. Variation in the holm oak leaf proteome at different plant developmental stages, between provenances and in response to drought stress[J]. Proteomics,2006,6(1):207-214.
    [97]Liu GF, Chu YG, Wang YC. Study of expression profiles of Puccinellia tenuifolra genes under NaHCO3 stress by means of the cDNA micr o array [J]. Acta botanica boreali-occidentalia sinica,2005,25(5):887-892.
    [98]Taji T, Seki M, Satou M. Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray[J]. Plant physiology, 2004,135(3):1697-1709.
    [99]Seki M, Ishida J, Narusaka M. Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray[J]. Functional & integrative genomics,2002,2(6):282-291.
    [100]Wong C, Li Y, Whitty B. Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap[J]. Plant molecular biology,2005,58(4):561-574.
    [101]Wong CE, Li Y, Labbe A. Transcriptional profiling implicates novel interactions between abiotic stress and hormonal responses in Thellungiella, a close relative of Arabidopsis[J]. Plant physiology,2006,140(4):1437-1450.
    [102]赵宝存,赵芊,葛荣朝,沈银柱,黄占景.利用基因芯片研究小麦耐盐突变体盐胁迫条件下基因的表达图谱[J].中国农业科学,2007,10:2355-2360.
    [103]张晓婷,谢荔岩,林奇英,吴祖建,谢联辉.水稻条纹病毒胁迫下的水稻全基因组表达谱[J].激光生物学报,2008,81(5):620-629.
    [104]李永春,孟凡荣,王潇,陈雷,任红萍,牛洪斌,李磊,尹钧.水分胁迫条件下“洛旱2号”小麦根系的基因表达谱[J].作物学报,2008,34(12):2126-2133.
    [105]Ichikawa T, Nakazawa M, Kawashima M. The FOX hunting system:an alternative gain-of-function gene hunting technique[J]. The Plant Journal,2006,48(6):974-985.
    [106]耿微,高野哲夫,柳参奎.FOX Hunting System一种新的功能基因筛选技术[J].分子植物育种,2010,8(4):810-817.
    [107]Kondou Y, Higuchi M, Takahashi S. Systematic approaches to using the FOX hunting system to identify useful rice genes[J]. The Plant Journal,2009,57(5):883-894.
    [108]Nakamura H, Hakata M, Amano K. A genome-wide gain-of-function analysis of rice genes using the FOX-hunting system[J]. Plant molecular biology,2007,65(4):357-371.
    [109]Fujita M, Mizukado S, Fujita Y. Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system[J]. Biochemical and Biophysical Research Communications,2007,364(2):250-257.
    [110]Yokotani N, Ichikawa T, Kondou Y. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis[J]. Planta, 2008,227(5):957-967.
    [111]Yokotani N, Ichikawa T, Kondou Y. Tolerance to various environmental stresses conferred by the salt-responsive rice gene ONAC063 in transgenic Arabidopsis[J]. Planta, 2009,229(5):1065-1075.
    [112]Yokotani N, Ichikawa T, Kondou Y. Overexpression of a rice gene encoding a small C2 domain protein OsSMCPl increases tolerance to abiotic and biotic stresses in transgenic Arabidopsis[J]. Plant molecular biology,2009,71(4):391-402.
    [113]Smith AT, Santama N, Dacey S. Expression of a synthetic gene for horseradish peroxidase C in Escherichia coli and folding and activation of the recombinant enzyme with Ca2+ and heme[J]. Journal of Biological Chemistry,1990,265(22):13335-13343.
    [114]Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures[J]. Physiologia Plantarum,1962,15(3):473-497.
    [115]Zhan XC, Kawai S, Katayama Y, Morohoshi N. A new approach based on the leaf disc method for Agrobacterium mediated transformation and regeneration of aspen[J]. Plant Science, 1997,123(1):105-112.
    [116]Ferreira S, Batista D, Serrazina S, Pais MS. Morphogenesis induction and organogenic nodule differentiation in Populus euphratica Oliv. leaf explants[J]. Plant Cell Tiss Organ Cult, 2009,96(1):35-43.
    [117]Thakur AK, Srivastava DK. High-efficiency plant regeneration from leaf explants of male himalayan poplar(Populus ciliata Wall.)[J]. In Vitro Cellular & Developmental Biology-Plant,2006,42(2):144-147.
    [118]程贵兰,姜静,蔡智军.中黑防杨(美洲黑杨×青杨)的组织培养与植株再生[J].植物生理学通讯,2004,5:585.
    [119]Porebski S, Bailey LG, Baum BR. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[J]. Plant Molecular Biology Reporter,1997,15(1):8-15.
    [120]詹立平,姜静,赵鑫,程贵兰,李淑娟,惠楠,刘桂丰.农杆菌抑菌剂的抑菌效果及其对小黑杨叶片不定芽产生率的影响[J].植物生理学通讯,2004,6:689-692.
    [121]李洪清,李美茹.影响农杆菌介导植物基因转化的因素问题[J].植物生理学通讯,1999,2:145-151.
    [122]Godwin I, Todd Q Ford LB, Newbury HJ. The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species[J]. Plant Cell Reports, 1991,9(12):671-675.
    [123]Graves AE, Goldman SL, Banks SW, Graves AC. Scanning electron microscope studies of Agrobacterium tumefaciens attachment to Zea mays, Gladiolus sp., and Triticum aestivum[J]. Journal of Bacteriology,1988,170(5):2395-2400.
    [124]Cseke LJ, Cseke SB, Podila GK. High efficiency poplar transformation[J]. Plant Cell Reports,2007,26(9):1529-1538.
    [125]Yevtushenko DP, Misra S. Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L.x P. maximowiczii A. Henry[J]. Plant Cell Reports, 2010,29(3):211-221.
    [126]傅荣昭,刘敏,梁红健,张纯花,薛淮,孙勇如.通过根瘤农杆菌介导法获得菊花转基因植株[J].植物生理学报,1998,1:72-76.
    [127]程贵兰,蔡智军,姜静.中黑防杨叶片不定芽再生体系的研究[J].安徽农业科学,2010,38(301):6138-6139.
    [128]丁霞.胡杨再生体系的建立及rolB-pttGA20ox基因的遗传转化研究.北京林业大学博士论文,2006.
    [129]郭海,陈晓阳,李云,李慧,高琼.毛白杨根萌芽建立无菌组培体系的研究.第二届全国植物组织培养、脱毒快繁及工厂化生产学术研讨会.中国福建武夷山.2004,pp.8.
    [130]杨传平,郑琼,马旭俊,姜静,刘桂丰,董京祥.欧美杨“山地1号”组织培养再生系统的建立[J].分子植物育种,2006,4:579-582.
    [131]白爽,张瑞萍,刘桂丰,王雷,祝泽兵,穆怀志,王玉成,姜静.转lea基因小黑杨的获得及其耐盐性分析.第二届中国林业学术大会——S2功能基因组时代的林木遗传与改良.中国广西南宁.2009,pp.7.
    [132]毕毓芳.杨树SnRK基因克隆及遗传转化研究.南京林业大学博士论文,2009.
    [133]卜学贤,林忠平,陈维伦.农杆菌对毛白杨的转化及完整转化植株的获得[J].Journal of Integrative Plant Biology,1991,3:206-213,259.
    [134]Howe GT, Goldfarb B, Strauss SH. Agrobacterium-mediated transformation of hybrid poplar suspension cultures and regeneration of transformed plants [J]. Plant Cell Tiss Organ Cult,1994,36(1):59-71.
    [135]朱大保.国外杨树组培微繁技术的进展[J].北京林业大学学报,1990,12(1):84-91.
    [136]Smith MAL, McCown BH. A comparison of source tissue for protoplast isolation from three woody plant species[J]. Plant Science Letters,1983,28:376-381.
    [137]Civinova B, Sladky Z. Stimulation of the regeneration capacity of tree shoot segment explantsin vitro [J]. Biologia Plantarum,1990,32(6):407-413.
    [138]Du J, Huang YP, Xi J. Functional gene-mining for salt-tolerance genes with the power of Arabidopsis[J]. The Plant Journal,2008,56(4):653-664.
    [139]Liu GF, Chu YG, Wang YC. Constuction of cDNA library and cloning of metallothionein (MT-1) gene from puccinellia tenuifolra[J]. Plant Physiology Communications,2005, 41(4):424-428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700