用户名: 密码: 验证码:
农田减缓气候变化潜力的统计计量与模型模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业革命以来人类活动引起的温室气体排放量的急剧增加是引起全球气候变化的主要原因,对各领域的温室气体减排是全球减缓气候变化的主要途径。据估计,全球农业源温室气体排放量占人为温室气体排放总量的10%-12%,而农业温室气体技术减排潜力占全球减排潜力的20%。2005年中国农业共排放温室气体约8.2亿吨二氧化碳当量,占全国温室气体总排放的11%,同时约占全球农业源温室气体排放的13%-16%。所以,农业在中国乃至全球的应对气候变化行动中应当发挥重要的作用。因此,中国农田温室气体排放与减排潜力的计量与评价成为中国农业减缓气候变化的重要课题。本论文从构建中国农田生产及温室气体数据库出发,采用数学统计与模型相结合的研究方法,研究中国农田温室气体排放及其减排潜力的统计计量与模型模拟,进而探讨农田温室气体减排的总体潜力及技术途径,为建立农田温室气体排放计量方法及定量表征,并为国家农田温室气体减排政策及技术选择提供科学依据。主要结果如下:
     1.本文是基于中国农作物生产数据库、国家耕地监测点有机碳数据库和农田长期试验数据库进行研究的。中国农作物生产数据库是通过对中国农村统计年鉴、中国农业生产成本收益资料汇编、中国水利统计年鉴中数据进行搜集而建立的,主要包括各种农作物播种面积、产量、化肥投入量、农药投入量、农膜使用量、机械燃油用量和灌溉量,该数据库用来计算农作物生产碳足迹。国家耕地监测点有机碳数据库包含299个国家级耕地监测点近20余年的有机碳数据,这些耕地监测点分布在全国各个区域,有着不同的种植制度,该数据库用来分析中国农田表土有机碳近20余年的变化情况,还用来估算农田表土固碳潜力。农田长期试验数据库是通过搜集已发表文献中长期试验数据搜集而建立的,该数据库包括试验点地理信息、种植制度、管理模式、农田投入等农田基础信息,还包括有机碳含量(试验开始前和结束时)、氧化亚氮和甲烷排放量、作物产量等数据。该数据库主要用来估算农田表土固碳潜力、开发DAYCENT甲烷子模型以及验证DAYCENT模型。
     2.基于299个国家级耕地监测点20余年有机碳数据库,分析了中国农田表土有机碳近20年的变化情况,从而评价了农业发展中土壤固碳趋势。结果表明,全国约80%的监测点有机碳年均相对变化幅度在-1.5%-7.5%之间。整体上,中国农田呈固碳趋势;其中,华北、华东和西南地区农田表土固碳明显。对旱地和稻田两种管理模式下农田有机碳数据分析结果显示,稻田和旱地有机碳含量均呈现显著的增加,而稻田有机碳含量增加的监测点数目占监测点总数的比例高于旱地。证实了我们对中国农田近20多年来的土壤固碳趋势以及稻田固碳明显强于旱地的认识。同时,基于中国农田表土有机碳数据库,本研究计算和比较了中国不同区域、不同类型的农田土壤有机碳储量。中国农田表土有机碳储量为36.44tha-1,其中,西南地区农田有机碳储量最高,为42.96tha-1,而西北地区最低,为25.18tha-1。旱地有机碳平均密度为29.14tha-1,远低于稻田(43.73tha-1)。西南地区和东北地区旱地有机碳储量最高,分别为38.45tha-1和36.43tha-1,而华南地区稻田的有机碳密度最高,为55.97tha-1。
     3.农作物生产的碳足迹是指在某个作物生长过程中由人为投入的生产资料或者器械使用所带来的总的温室气体排放量,并以碳当量(carbon equivalent, CE)来表示。本研究采用生命周期评价-碳足迹分析研究方法,基于中国农作物生产数据库,分析了农作物生产的碳足迹及其构成的变化趋势。中国农作物生产单位面积的平均碳足迹为0.78±0.08t CE ha-1yr-1,单位产量农作物的平均碳足迹为0.11±0.01t CE t-1yr-1。由肥料施用引起的温室气体排放占总碳足迹的60%,而氮肥施用量的变化可以解释15年来碳足迹变化的97%。1993-2007年15年间,单位面积的碳足迹增加了49%,单位产量的碳足迹下降了21%。尽管作物产量与碳足迹呈极显著的正相关关系,但2003-2007年单位碳投入的作物产量(碳利用效率)呈下降趋势。该结果揭示了中国农作物生产碳成本较高,而有着巨大的减排空间。中国水稻、小麦、玉米和大豆生产单位面积的平均碳足迹分别为2472、794、781和222kg CE ha-1,单位产量的碳足迹分别为0.37、0.14、0.12和0.1kg CE kg-1。旱作作物如小麦、玉米和大豆生产78%的碳足迹来自氮肥施用,氮肥施用引起的温室气体排放包括氮肥生产的间接温室气体排放和氧化亚氮的农田直接排放:水稻生产的碳足迹主要来自甲烷排放的贡献(69%)。不同区域间旱作作物碳足迹的差异主要是由于氮肥施用量的差异,而甲烷排放可以解释85%的区域间水稻碳足迹变异。减少这些作物化学氮肥施用量30%,可以产生每年60Mt CO2-eq.(二氧化碳当量,CO2-eq.,下同)的减排量,证实提高氮肥利用率是减少粮食生产碳足迹的重要途径。
     4.固碳减排计量是进行减缓气候变化的碳交易机制的基础工作,而适合项目计量的计量方法学是实现交易的基础工具。本研究以测土配方施肥项目为例,从边界和基准线的设定、碳库和关键排放源的选取、固碳减排的计量方法等方面探讨了基于碳交易的固碳减排计量方法学的编制问题,提出了以常规施肥下温室气体排放量为基准线,施肥下作物生长田块为边界,以有效氮施用带来的氧化亚氮排放、稻田甲烷排放和施肥器械的排放为边界内关键排放源,确定肥料配方过程中的温室气体排放为泄漏,选择农田土壤有机碳库作为计量碳库的一整套方法学理论框架,并提出了三种计量方法作为参考。
     5.采用有机碳饱和极限法和生态恢复法估算了农田生物物理(自然)固碳潜力,并采用情景法预测了国家规划或工程建设计划下农田土壤固碳技术可达潜力。通过有机碳储量现状与有机碳饱和容量或未开垦土壤有机碳储量进行对比得到农田生物物理固碳潜力,而技术可达潜力则通过计算不同良好农田管理模式下有机碳积累速率来实现。饱和极限法估算的中国农田表土生物物理固碳潜力为2.21Pg,恢复法估算的生物物理潜力为2.95Pg。预测实施保护性耕作20年中国农田固碳可达0.62Pg,实施配方施肥项目20年的固碳潜力为0.98Pg,两项措施的综合固碳潜力相当于中国2007年温室气体总排放的40%到60%。因此,农业发展计划下农田固碳在中国减缓气候变化中扮演着非常重要的角色。
     6.稻田甲烷排放在农业温室气体排放中占较大比例,因此,对稻田甲烷排放的准确预测是稻田温室气体减排的重要依据。本文探讨了生态系统模型DAYCENT用于预测稻田的甲烷排放,根据土壤有机质、温室气体排放数据库的实例数据,本研究开发验证了稻田甲烷排放子模型。该模型通过模拟土壤水热状况、水稻植株生长、土壤有机质分解和甲烷由土壤向大气的排放过程来模拟稻田甲烷化过程。使用97个中国稻田试验点对模型进行了开发和验证,其中25个试验点(91个观测值)被用来进行模型参数化,72个试验点(204个观测值)被用来对模型进行验证。通过对比甲烷排放的模拟值与实测值,表明开发的DAYCENT甲烷子模型可以很好地模拟中国稻田甲烷排放(线性回归的决定系数(R2)高达0.83)。模型灵敏度分析结果表明,该模型对与产甲烷基质数量相关的参数最为敏感。
     7.运用DAYCENT模型及开发的DAYCENT甲烷子模型,模拟预测了中国农田系统不同管理模式下温室气体减排潜力。首先采用350个农田点位的产量、有机碳和温室气体排放数据对模型进行了验证。模拟值与实测值有很好的线性相关关系(R2值在0.71到0.85之间)。模拟效率最高的是作物产量(0.83),有机碳变化的模拟效率最低(0.65)。继之,用DAYCENT模型对不同管理模式下旱作系统和稻作系统的产量和温室气体排放进行了模拟,并采用单位产量的温室气体排放量对不同管理模式的温室气体减排潜力进行了评价。旱作系统在减少化学氮肥施用、施用有机肥和少耕配合秸秆还田的管理模式比常规管理模式温室气体排放显著的减少,在该模式下的不同轮作系统减排潜力为0.31-0.83Mg CO2-eq.Mg-1。而稻作系统减排潜力最高的管理模式为减少化学氮肥施用配合间歇淹水管理,潜力为0.08-0.36Mg CO2-eq.Mg-1.
     本论文从数据库构建,到计量和模拟方法的开发和应用,完善了用于评价农田温室气体排放及预测减排潜力的数据库-计量方法-模型预测方法,发展了农业碳计量方法学,构建了农业生产碳足迹计量评价分析框架,并提出了中国农业生产高碳投入与低碳效率特征,揭示了农田生产的温室气体减排潜力及技术途径,为中国农业生产固碳减排提供了科学依据和技术支撑。
Anthropogenic greenhouse gas (GHG) emissions have increased rapidly since pre-industrial times, which is a major factor contributing to climate change. Reducing emissions of carbon dioxide (CO2) and other greenhouse gases (GHGs) to earth's atmosphere and sequestrating soil organic carbon (SOC) in terrestrial ecosystems are identified as two of the most pressing modern-day environmental issues. Agriculture accounted for10-12%of total global anthropogenic emissions of greenhouse gases, and20%of global GHG mitigation potential could be achived from agriculture, which indicates the importance of agriculture in global climate change mitigation. China's GHG emissions in the agriculture sector in2005were estimated to be820Mt CO2-eq., contributing11%to the nation's total emissions, and also contributing13%-16%to global GHG emissions in agriculture. Therefore, China's agriculture plays an important role in global climate change mitigation. Assessment of the SOC dynamics and GHGs emissions accurately in the cropland is important for police makers. The objective of this study was to account and simulate GHG emissions and the mitigation potentials for China's cropland using various approaches, and then discussed the realization of the GHG mitigation potential. The main results obtained were as follows:
     (1) Four datasets, included Chinese crop production dataset, national monitoring network dataset and long-term cropland experiments dataset, were built to do the following researches. Chinese crop production dataset includes planting area, crop yield and various agricultural inputs. National monitoring network dataset includes the SOC contents from299sites in the last20years. Long-term cropland experiments dataset were collected from the scientific field studies that reported SOC changes and GHG emissions in Chinese cropping systems under various management practices.
     (2) Data of topsoil SOC contents from the national monitoring network was used to analyze the SOC dynamics and the sequestration status in China's croplands. The data set comprises299observations across mainland China. The relative annual SOC changes of80%of monitoring sites were distributed between-1.5%and7.5%. Topsoil SOC of China's cropland was in a general trend of accumulation with a frequency of79.1%, which were mainly distributed in the North, East and Southwest China's croplands. The difference of land use effect on soil carbon sequestration was significantly, the SOC content of rice paddy was significantly higher than that of dry croplands, and the frequency of increasing SOC content was also greater than that of dry cropland. The topsoil SOC datasets of China's cropland were used to calculate the SOC densities in different regions and cropland types. The current average SOC density of China's cropland was estimated as36.44t ha-1. The greatest SOC density of42.96t ha-1was found in southwest China, and the least was in northwest of China (25.18t ha-1). There was a significant difference in present SOC density between dry cropland and rice paddies, with the latter being greater by almost10t ha-1than the former. The greatest SOC density for dry cropland was in south west (38.45t ha"1) and North-East of China (36.43t ha-1), and for rice paddies in south China (55.97t ha-1).
     (3) Life cycle analysis-carbon footprint (CF) calculation approach was employed to analyze the changes of CFs in China's crop production and identify the contributions of various agricultural inputs to total CFs. The mean overall CF of China's crop production was estimated to be0.78±0.08t CE ha-1yr-1and0.11±0.01t CE t-1yr-1,for land use and bulk production respectively. For the duration the data covered, the carbon intensity under cultivation land use was seen to increase since1993. Among the total, fertilizer induced emissions exerted the largest contribution of-60%. Compared to the UK, the estimated overall CF of China's crop production was higher in terms of cultivation land use. While there was a significant positive correlation of carbon intensity with total production, carbon efficiency was shown in a decreasing trend during2003-2007. Therefore, low carbon agriculture should be pursued, and the priority should be given to improving fertilizer use efficiency in agriculture of China. Then data of cultivation area, grain yield, application rates of fertilizer, pesticide, diesel, plastic film, irrigated water, etc., for the major grain crops in China were collected from the national statistical archive and CF of direct and indirect carbon emissions associated or caused for these agricultural input was assessed with published emission factors. In general, paddy rice, wheat, corn and soybean in China had the mean CFs with2472,794,781and222kg carbon equivalent (CE) ha-1 in area, and0.37,0.14,0.12and0.1kg CE kg-1yield in grain yield, respectively. For dry crops,78%of the total CFs was contributed by N fertilizer use, with which direct soil N2O emission and indirect emissions from N fertilizer manufacture. For flooded rice paddy, direct CH4emission contributed69%to the total CFs. Moreover, the variations in CFs of dry crops among different provinces could be mostly explained by the difference in N fertilizer application rates while CH4emissions could explain85%of the variation in the CF across provinces for paddy rice. When a reduction in N fertilization by30%is considered, a potential of GHGs reduction of60Mt CO2-eq from production of these crops could be projected. This work highlighted opportunities to gain GHG mitigations in grain crops production associated with good management practices in China.
     (4) Carbon trading has been developed rapidly in recent years under the context of climate change mitigation, and quantifying carbon sequestration and GHGs emission reduction in the projects is the basis for carbon trading. Therefore, it is vital to develop the methodologies for quantifying the projects. Recommended fertilization use fertilizers rationally to increase production, and also reduce greenhouse gas emissions and improve soil carbon storage at the same time. The methodology on quantifying carbon sequestration and GHGs emission reduction was discussed from the aspects of the setting of the boundary and baseline, the selections of carbon pool and key GHGs emission sources and measurement methods, with the purpose of preparing for the recommended fertilization methodology in future. A methodology framework was identified to quantify the GHG emission reduction in recommended fertilization. The GHG emissions in conventional fertilization was set as a baseline and the boundary was scaled in field plot. In this framework, the key GHG sources include N fertilizer induced N2O emissions, CH4emission from rice paddy and the GHG emissions involved in fertilization equipment, and the soil carbon pool was selected to be quantified. GHG emissions during the process of fertilizer formula determination was regared as a leakage.
     (5) To assess the topsoil carbon sequestration potential (CSP) of China's cropland, two different estimates were made:a) a biophysical potential (BP) using a saturation limit approach based on SOC accumulation dynamics, and a storage restoration approach from the cultivation-induced SOC loss, and b) a technically attainable potential (TAP) with a scenario estimation approach using SOC increases under best management practices (BMPs) in agriculture. Thus, the BP is projected to be the gap in recent SOC storage to either the saturation capacity or to the SOC storage of uncultivated soil, while the TAP is the overall increase over the current SOC storage that could be achieved with the extension of BMPs. The recent mean SOC density of China's cropland was estimated to be36.44t ha-1, with a BP estimate of2.21Pg C by a saturation approach, and2.95Pg C by the storage restoration method. An overall TAP of0.62Pg C and0.98Pg C was predicted for conservation tillage plus straw return, and recommended fertilizer applications, respectively. This TAP is comparable to40%-60%of total CO2emissions from Chinese energy production in2007. Therefore, carbon sequestration in China's cropland is recommended for enhancing China's mitigation capacity for climate change. However, priority should be given to the vast dry cropland areas of China, as the CSP of China is based predominantly on the dry cropland.
     (6) The prediction of CH4emissions from rice paddies could play a key role in GHG mitigation efforts associated with agriculture. We describe a methanogenesis sub-model that has been developed in the DAYCENT ecosystem model for estimating CH4emissions and assessing mitigation potentials for rice paddies. Methanogenesis is modeled based on the simulation of soil hydrology and thermal regimes, rice plant growth, SOM decomposition, and CH4transport from the soil to atmosphere. A total of97sites from China's rice paddies were used to develop and evaluate the model, in which25sites (91observations) were used for parameterization and72sites (204observations) were used for model evaluation. Comparison of modeled results with measurements demonstrated that CH4emissions in rice paddies of China can be successfully simulated by the model with an overall R2of0.83, and included an evaluation of CH4emissions for a range of climates and agricultural management practices. The model was most sensitive to parameters influencing the amount of labile C available for methanogenesis
     (7) We uses the DAYCENT ecosystem model to predict GHG mitigation potentials associated with soil management in Chinese cropland systems. DAYCENT was evaluated with data from350experiments in China's cropland, including measurements of N2O, CH4emissions and SOC stock changes. In general, the model was reasonably accurate with R2values for model predictions versus observations ranging from0.71to0.85. Modeling efficiency varied from0.65for SOC stock changes to0.83for crop yields. Mitigation potentials were estimated on a yield basis (Mg CO2-eq. Mg-1Yield). The results demonstrate that the largest decrease in GHG emissions in rainfed systems are associated with combined effect of reducing mineral N fertilization, organic matter amendments and reduced-till coupled with straw return, estimated at0.31to0.83Mg CO2-eq. Mg-1yield. A mitigation potential of0.08to0.36Mg CO1-eq. Mg-1yield is possible by reducing N chemical fertilizer rates, along with intermittent flooding in paddy rice cropping systems.
     In this thesis, a database was built to develop and apply the accounting and simulating methods, and both of soil carbon sequestration and greenhouse gas emissions were considered. This thesis improved the approach for evaluating and predicting of GHG emissions reduction potential in the cropland, developed an agricultural carbon accounting methodology, and constructed an analysis framework for assessing carbon footprint of crop production. The characteristic of high carbon input and low carbon efficiency in Chinese agricultural production was proposed, and the GHG emission reduction potential and its technical approach were revealed. This thesis provide a solid scientific basis and technical support for carbon sequestration and GHG mitigation in Chinese agricultural production.
引文
Adler, R.A., Del Grosso, S.J., Parton, W.J. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems [J]. Ecological Applications,2007,17:666-691.
    Antle, J.M., Capalbo, S.M., Mooney, S., Elliott, E.T., Paustian K. Economic analysis of agricultural soil carbon sequestration:an integrated assessment approach [J]. Journal of Agricultural and Resource Economics,2001,26:344-367.
    Batjes, N.H. Carbon and nitrogen in the soils of the world [J]. European Journal of Soil Science,1996,47: 151-163.
    Baker, J.M., Ochsner, T.E., Venterea, R.T.,& Griffis, T.J. Tillage and soil carbon sequestration-what do we really know [J]? Agriculture, Ecosystems & Environment,2007,118:1-5.
    Bodegom, P. M., Wassmann, R., Metra-Corton, T. M. A process based model for methane emission predictions from flooded rice paddies [J]. Global Biogeochemical Cycles,2001,15:247-263.
    Bouwman, A.F. Agronomic aspects of wetland rice cultivation and associated methane emissions [J]. Biogeochemistry,1991,15:65-88.
    Bouwman, A.F. Direct emission of nitrous oxide from agricultural soils [J]. Nutrient Cycling in Agroecosystems,1996,46:53-70.
    Bouwman, A.F. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. In: Soils and the Greenhouse Effect (ed. Bouwman AF). Wiley, Chichester, UK,1990,61-127.
    BP China. Calculator of carbon emission [DB/OL].2007. http://www.bp.com/ sectiongenericarticle.do?categoryId=9011336&contented=7025421.
    BP. What is a Carbon Footprint? [DB/OL] 2007. http://www.bp.com/liveassets/bp_internet/ globalbp/STAGING/global_assets/downloads/A/ABP_ADV_what_on_earth_is_a_carbon_footprint .pdf.
    Bremner, J.M., Blackmer, A.M. Terrestrial nitrification as a source of atmospheric nitrous oxide [M]. In: Denitrification, Nitrification, and Nitrous Oxide (ed. Delwiche CC). Wiley, New York, USA,1981, 151-170.
    Burney, J.A., Davis, S.J., Lobell, D.B. Greenhouse gas mitigation by agricultural intensification [J]. PNAS, 2010,107:12052-12057.
    Buyannvsky, G.A., Wagner G.H. Carbon transfer in a winter wheat (Triticum aestivum) ecosystem [J]. Biology and fertility of soils,1987,5:76-82.
    Byrnes, B.H., Austin, E.R., Tays, B.K. Methane emissions from flooded rice soils and plants under controlled conditions [J]. Soil Biology and Biochemistry,1995,27:331-339.
    Cai, Z., Sawamoto, T., Li, C., Kang, G., Boonjawat, J., Mosier, A., Wassmann, R., Tsuruta, H. Field validation of the DNDC model for greenhouse gas emissions in East Asian cropping systems [J]. Global Biogeochemical Cycles,2003,17 (4), doi:10.1029/2003GB002046.
    Cai, Z., Xing, G., Yan, X., Xu, H., Tsuruta, H., Yagi, K., Minami, K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilisers and water management [J]. Plant and Soil, 1997,196:7-14.
    Cai, Z., Xu, H., Zhang, H., et al. Estimate of methane emission from rice paddy fields in Taihu region, China [J]. Pedosphere,1994,4 (4):297-306.
    Cai, Z. A category for estimate of CH4 emission from rice paddy fields in China [J]. Nutrient Cycling in Agroecosystems,1997,49:171-179.
    Cai, Z., Shan, Y.H., Xu, H. Effects of nitrogen fertilization on CH4 emissions from rice fields [J]. Soil Science and Plant Nutrition,2007,53:353-361.
    Cao, M.K., Dent, J.B., Heal, O.W. Modeling methane emission from rice paddies [J]. Global Biogeochemical Cycles,1995,9,183-195.
    Chen, G.Q., Zhang, B. Greenhouse gas emissions in China 2007:inventory and input-output analysis [J]. Energy Policy,2010,38:6180-6193.
    Chen, G.Q., Zhang, B. Greenhouse gas emissions in China 2007:Inventory and input-output analysis [J]. Energy Policy,2010,38:6180-6193.
    Cheng, C., Shi, Y., Wen, T. The real cost of nitrogen fertilizer [DB/OL].2010 http://www.greenpeace.org/china/zh/publications/reports/food-agriculture/2010/cf-n-rpt/[Accessed: June 2012].
    Cheng, K., Pan, G., Smith, P., Luo, T., Li, L., Zheng, J., Zhang, X., Han, X., Yan, M. Carbon footprint of China's crop production-An estimation using agro-statistics data over 1993-2007 [J]. Agriculture, Ecosystems and Environment,2011,142:231-237.
    Chimner R.A., Cooper D.J., Parton W.J. Modeling carbon accumulation in rocky mountain fens [J]. Wetlands,2002,22:100-110.
    Cicerone, R.J., Shetter J.D. Sources of atmospheric methane:Measurements in rice paddies, a discussion [J]. Journal of Geophysical Research,1981,86:7203-7209.
    Coleman, K., Jenkinson, D.S. ROTHC-26.3 A model for the turnover of carbon in soil, Model description and windows users guide [M]. IACR-Rothamsted, Harpenden,1999. (Available at: http://www.rothamsted.bbsrc.ac.uk/aen/carbon/rothc.htm); accessed 20/11/2009.
    Conrad R. Control of methane production in terrestrial ecosystems. In:Exchange of trace gases between terrestrial ecosystems and the atmosphere [M] [Andreae M.O., Schimel D.S. (eds)],1989,39-58. Wiley, Chichester.
    Curtis, P.S. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide [J]. Plant, Cell & Environment,1996,19:127-137.
    De Bont, J.A.M., Lee, K.K., Bouldin, D.F. Bacterial oxidation of methane in a rice paddy [J]. Ecological Bulletins,1978,26:91-96.
    De Gryze, S., Lee, J., Ogle, S.M., Paustion, K., Six, J. Assessing the potential for greenhouse gas mitigation in intensively managed annual cropping systems at the regional scale [J]. Agricultural, Ecosystems and Environment,2011,144:150-158.
    De Gryze, S., Wolf, A., Kaffka, S.R., Mitchell, J., Rolston, D.E., Temple, S.R., Lee, J., Six, J. Simulating greenhouse gas budgets of four California cropping systems under conventional and alternative management [J]. Ecological Applications,2010,20:1805-1819.
    Del Grosso, S., Ogle, S.M., Parton, W.J., Breidt, F.J. Estimating uncertainty in N2O emissions from US cropland soils [J]. Global Biogeochemical Cycles,2010,24, doi:10.1029/2009GB003544.
    Del Grosso, S.J., Halvorson, A.D., Parton, W.J. Testing DAYCENT model simulations of corn yields and nitrous oxide emissions in irrigated tillage systems in Colorado [J]. Journal of Environmental Quality, 2008,37:1383-1389.
    Del Grosso, S.J., Mosier, A.R., Parton, W.J., Ojima, D.S. DAYCENT model analysis of past and contemporary soil N2O and net greenhouse gas flux for major crops in the USA [J]. Soil Tillage Research,2005,83:9-24.
    Del Grosso, S.J., Ojima, D.S., Parton, W.J., Stehfest, E., Heistemann, M., De Angelo, B., Rose, S. Global scale DAYCENT model analysis of greenhouse gas emissions and mitigation strategies for cropped soils [J]. Global and Planetary Change,2009,67:44-50.
    Del Grosso, S.J., Parton, W.J., Mosier, A.R., Ojima, D.S., Kulmala, A.E., Phongpan, S. General model for N2O and N2 emissions from soils due to denitrification [J]. Global Biogeochemical Cycles,2000,14: 1045-1060.
    Del Grosso, S.J., Parton,WJ., Mosier,A.R., Hartman,M.D., Brenner, J., Ojima,D.S., Schimel,D.S. Simulated interaction of carbon dynamics and nitrogen trace gas fluxes using the DAYCENT model [M]. In:Modeling Carbon and Nitrogen Dynamics for Soil Management. [Schaffer, M., Ma, L. Hansen, S. (Eds.)]. CRC Press, Boca Raton, Florida,2001,303-332.
    Ding, A. J., Wang, M.X. Model for methane emission from rice fields and its application in Southern China [J]. Advance in Atmospheric Sciences,1996,13:159-168.
    Dobermann, A. Nitrogen use efficiency-state of the art [C]. Paper of the IFA International Workshop on Enhanced-Efficiency Fertilizers. Frankfurt, Germany,2005.
    Dormer, A., Finn, D.P., Ward, P., Cullen, J. Carbon footprint analysis in plastics manufacturing [J]. Journal of Cleaner Production,2013,51:133-141.
    Druckman, A., Jacksona, T. The carbon footprint of UK households 1990-2004:A socio-economically disaggregated, quasi-multi-regional input-output model [J]. Ecological Economics,2009,68:2066-2077.
    Dubey, A., Lal, R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA [J]. Journal of Crop Improvement,2009,23:332-350.
    FAO. FAOSTAT Database, URL:http://faostat.fao.org [Accessed:June 2013],2012.
    FAO. FAOSTAT Database, URL:http://faostat.fao.org [Accessed:June 2012],2010.
    Feng, S., Tan, S., Zhang, A., Zhang, Q., Pan, G., Qu, F., Smith, P., Li, L.& Zhang, X. Effect of household land management on cropland topsoil organic carbon storage at plot scale in a red earth soil area of South China [J]. Journal of Agricultural Science,2011,149:557-566.
    Finkbeiner, M. Carbon footprinting-opportunities and threats [J]. The International Journal of Life Cycle Assessment,2009,14:91-94.
    Fisher, B.S., N. Nakicenovic, K. Alfsen, J. Corfee Morlot, F. de la Chesnaye, J.-Ch. Hourcade, K. Jiang, M. Kainuma, E. La Rovere, A. Matysek, A. Rana, K. Riahi, R. Richels, S. Rose, D. van Vuuren, R. Warren Issues related to mitigation in the long term context, In Climate Change 2007:Mitigation [M]. Contribution of Working Group III to the Fourth Assessment Report of the Inter-governmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge,2007.
    Fumoto, T., Kobayashi, K., Li, C.S., Yagi, K., Hasegawa, T. Revising a process-based biogeochemistry model (DNDC) to simulate methane emission from rice paddy fields under various residue management and fertilizer regimes [J]. Global Change Biology,2008,14:382-402.
    Gan, Y., Liang, C., Campbell, C.A., Zentner, R.P., Lemke, R.L., Wang, H. Carbon footprint of spring wheat in response to fallow frequency and soil carbon changes over 25 years on the semiarid Canadian prairie [J]. European Journal of Agronomy,2012,43:175-184.
    Gilbert, B., Frenzel, P. Methanotrophic bacteria in the rhizosphere of rice microcosms and their effect on porewater methane concentration and methane emission [J]. Biology and Fertility of Soils,1995,20: 93-100.
    Grace, J., Rayment, M. Respiration in the balance [J]. Nature,2000,404:819-820
    Guo, J., Liu, X., Zhang, Y., Shen, J., Han, W., Zhang, W., Christie, P., Goulding, K.W.T., Vitousek, P., Zhang, F. Significant acidification in major Chinese croplands [J]. Science,2010,327:1008-1010.
    Guo, L.B., Gifford, R.M. Soil carbon stocks and land use change:a meta-analysis [J]. Global Change Biology,2002,8:345-360
    Hassink, J. The capacity of soils to preserve organic C and N by their association with clay and silt particles [J]. Plant and Soil,1997,191:77-87.
    Hertwich, E.G., Peters, G. P. Carbon footprint of nations:A global, trade-linked analysis [J]. Environmental Science & Technology,2009,43:6414-6420.
    Hillier, J., Brentrup, F., Wattenbach, M., Walter, C., Garcia-Suarez, T., Mila-I-Canals, L., Smith, P. Which cropland greenhouse gas mitigation options give the greatest benefits in different world regions? Climate and soil-specific predictions from integrated empirical models [J]. Global Change Biology, 2012,18:1880-1894.
    Hillier, J., Hawes, C., Squire, G., Hilton, A., Wale, S., Smith, P. The carbon footprints of food crop production [J]. International Journal of Agricultural Sustainability,2009,7:107-118.
    Holzapfel-Pschorn, A., Conrad, R., Seiler, W. Effects of vegetation on the emission of methane by submerged paddy soil [J]. Plant and Soil,1986,92:223-233.
    Holzapfel-Pschorn, A., Conrad, R., Seiler, W. Production, oxidation and emission of methane in rice paddies [J]. FEMS Microbiology Letters,1985,31:343-351.
    Huang, Y, Sass R. L., Fisher F. M. Methane emission from Texas rice paddy soils:1. Quantitative multi-year dependence of CH4 emission on soil, cultivar and grain [J]. Global Change Biology,1997,3: 479-489.
    Huang, Y, Sass R. L., Fisher F. M. A semi-empirical model of methane emission from flooded rice paddy soils [J]. Global Change Biology,1998,4:247-268.
    Huang, Y., Zhang W., Zheng X., Li J., Yu, Y. Modeling methane emission from rice paddies with various agricultural practices [J]. Journal of Geophysical Research,2004,109:1-12.
    Intergovernmental Panel on Climate Change (IPCC). Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories [M]. IGES, Japan,2000.
    International Rice Research Institute (IRRI). IRRI Rice Almanac,2nd ed. Int. Rice Res. Inst., Manila, 1997,18.
    International Rice Research Institute (IRRI). IRRI toward 2000 and beyond. IRRI, Manila, Philippines, 1989.
    IPCC. Climate Change 2007:Synthesis Report. Contribution of Working Groups Ⅰ,Ⅱ and Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, (ed. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007,95-212.
    IPCC. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. (eds). Published:IGES, Japan.2006.
    Janzen, H.H. Carbon cycling in earth systems-a soil science perspective [J]. Agriculture, Ecosystems & Environment,2004,104:399-417.
    Jastrow, J.D., Miller, R.M., Matamala, R., et al. Elevated atmospheric carbon dioxide increases soil carbon [J]. Global Change Biology,2005,11:2057-2064.
    Ju, X., Xing, G., Chen, X., Zhang, S., Zhang, L., Liu, X., Cui, Z., Yin, B., Christie, P., Zhu, Z., Zhang, F. Reducing environmental risk by improving N management in intensive Chinese agricultural systems [J]. PNAS,2009,106:3041-3046.
    Kahrl, F., Li, Y. J., Su, Y. F., Tennigkeit, T., Wilkes, A., Xu, J. C. Greenhouse gas emissions from nitrogen fertilizer use in China [J]. Environment Science and Policy,2010,13:688-694.
    Keith, H., Oades J.M., Martin J.K. Input of carbon to the soil from wheat plants [J]. Soil Biology and Biochemistry,1986,18:445-449.
    Kenny, T., Gray, N.F. Comparative performance of six carbon footprint models for use in Ireland [J]. Environmental Impact Assessment Review,2009,29:1-6.
    Khalil, M.A.K., Rasmussen, R.A., Wang, M., Ren, L. Methane emissions from rice fields in China [J]. Environmental Science & Technology,1991,25:979-981.
    Klepper, O. Multivariate aspects of model uncertainty analysis:tools for sensitivity analysis and calibration [J]. Ecological Modelling,1997,101:1-13.
    Kludze, H.K., Delanne, R.D. Straw application effects on methane and oxygen exchange and growth in rice [J]. Soil Science Society of America Journal,1995,59:824-830.
    Kros, J., De Vries, W, Janssen, P., et al. The uncertainty in forecasting trends of forest soil acidification [J]. Water, Air, and Soil Pollution,1993,66,29-58.
    Lai, R. Carbon emission from farm operations [J]. Environment international,2004,30,981-990.
    Lai, R. Offsetting China's CO2 emissions by soil carbon sequestration [J]. Climate Change,2004,65:263-275.
    Lal, R. Soil C sequestration in China through agricultural intensification and restoration of degraded and desertified soil [J]. Land Degradation Development,2002,13:469-478.
    Lambers, H. Growth, respiration, exudation and symbiotic association:The fate of carbon translocated to the roots, in Root Development and Function [Gregory P.J., Lake J.V., Rose D.A (eds)]. Cambridge University Press, New York,1987,125-146.
    Lehuger, S., Gabrielle, B., Cellier, P., Loubet, B., Roche, R., Beziat, P., Ceschia, E., Wattenbach, M. Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model [J]. Agriculture, Ecosystems and Environment,2010,139:384-395.
    Lewandrowski, J., Peters, M., Jones, C., House, R., Sperow, M., Eve, M.& Paustian, K.2004. Economics of sequestering carbon in the U.S. agricultural sector. U.S. Department of Agriculture, Economic Research Service US. http://www.ers.usda.gov/publications/tb1909/
    Li, C. Modeling trace gas emission from agricultural ecosystems [J]. Nutrient Cycling in Agroecosystems, 2000,58:259-276.
    Li, C., Frolking, S., Xiao, X.M., et al. Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions:A case study for water management of rice agriculture of China [J]. Global biogeochemical cycles,2005,19:1-10.
    Li, C., Salas, W., De Angelo, B., Rose, S. Assessing, alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next twenty years [J]. Journal of Environmental Quality,2006,35:1554-1565.
    Li, C., Zhuang, Y., Frolking, S., Galloway, J., Harriss, R., Moore III, B., Schimel, D., Wang, X. Modeling soil organic carbon change in croplands of China [J]. Ecological Applications,2003,13:327-336.
    Li, H., Qiu, J., Wang, L., Tang, H., Li, C., Van Ranst, E. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China [J]. Agricultural, Ecosystems and Environment,2010,135:24-33.
    Li, J. Model for methane emission from rice paddies and the related reducing techniques [D]. Ph.D. thesis, LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing,1999.
    Lloyd, J., Taylor, J.A. On the temperature dependence of soil respiration [J]. Functional Ecology,1994,8: 315-323.
    Loveland, P., Webb J. Is there a critical level of organic matter in the agricultural soils of temperate regions: a review [J]. Soil and Tillage Research,2003,70:1-18.
    Lu, C., Tian, H. Net greenhouse gas balance in response to nitrogen enrichment:perspectives from a coupled biogeochemical model [J]. Global Change Biology,2013,19:571-588.
    Lu, F., Wang, X., Han, B., Ouyang, Z., Duan, X., Zheng, H. Net mitigation potential of straw return to Chinese cropland:estimation with a full greenhouse gas budget model [J]. Ecological Applications, 2010,20:634-647.
    Lu, Y., Huang, Y., Zou, J., Zheng, X. An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission [J]. Chemosphere,2006,65:1915-1924.
    Ludwig, B., Hu, K., Niu, L., Liu, X. Modelling the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model-initialization and calculation of C inputs [J]. Plant and Soil,2010,332:193-206.
    Lynas, M. Carbon counter [M]. Glasgow:Harper Collins Publishers, UK.2007.
    Ma, K., Qiu, Q.F., Lu, Y.H. Microbial mechanism for rice variety control on methane emission from rice field soil [J]. Global Change Biology,2010,16:3085-3095.
    Ma, J., Ma, E., Xu, H., Yagi, K., Cai, Z. Wheat straw management affects CH4 and N2O emissions from rice fields [J]. Soil Biology and Biochemistry,2009,41:1022-1028.
    Mannering, J.V.& Fenster, C.R. What is conservation tillage? [J] Journal of Soil and Water Conservation, 1983,38,140-143.
    Martin, J.K., Kemp J.R. The measurement of C transfers within the rhizosphere of wheat grown in field plots [J]. Soil Biology and Biochemistry,1986,177:261-269.
    Matthews, R. B., Wassmann R., Arah J. Using a crop/soil simulation model and GIS techniques to assess methane emission from rice fields in Asia. I. Model development [J]. Nutrient Cycling in Agroecosystems,2000,58:141-159.
    Meehl, G.A., T.F. Stocker, W.D. Collins, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy, A. Noda, S.C.B. Raper, I.G. Watterson, A.J. Weaver and Z.-C. Zhao. Global Climate Projections [M]. In:Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)].Cambridge University Press, Cambridge, United States,2007.
    Merckx, R., den Hartog A., Van Veen J.A. Turnover of root-derived material and related microbial biomass formation in soil from wheat plants [J]. Soil Biology and Biochemistry,1985,18:445-449.
    Metherell, A.K., Harding, L.A., Cole, C.V., Parton, W.J. CENTURY:SOM model environment [M]. USDA-ARS, Fort Collins, Colorado,1993.
    Niles, J.O., Brown, S., Pretty, J., Ball A.S.& Fay, J. Potential carbon mitigation and income in developing countries from changes in use and management of agricultural and forest lands [J]. Philosophical Transactions of the Royal Society,2002,360:1621-1639.
    Nouchi, I. Mechanisms of methane transport through rice plants [M]. In CH4 and N2O:Global Emission and Controls from Rice Fields and Other Agricultural and Industrial Sources [Minami K., Mosier A., Sass R. (eds)]. Yokendo, Tokyo, Japan,1994,87-104.
    Ogle, S.M., Breidt, F., Eve, M.D., et al. Uncertainty in estimating land use and management impacts on soil organic carbon storage for US agricultural lands between 1982 and 1997 [J]. Global Change Biology,2003,9(11):1521-1542.
    Ogle, S.M., Breidt, F. J., Easter, M., Williams, S., Killian, K., Paustian, K. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model [J]. Global Change Biology,2010,16:810-820.
    Ogle, S.M., Swan, A., Paustion, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration [J]. Agriculture, Ecosystems and Environment,2012,149:37-49.
    Pan, G., Li, L., Wu, L., Zhang, X. Storage and sequestration potential of topsoil organic carbon in China's paddy soils [J]. Global Change Biology,2004,10:79-92.
    Pan, G., Smith, P., Pan, W. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China [J]. Agriculture, Ecosystems and Environment,2009a,129:344-348.
    Pan, G., Xu, X., Smith, P., Pan, W., Lal, R. An increase in topsoil SOC stock of China's cropland between 1985 and 2006 revealed by soil monitoring [J]. Agriculture, Ecosystems and Environment,2010,136: 133-138.
    Pan, G., Zhou, P., Li Z., Smith, P., Li, L., Qiu, D., Zhang, X., Xu, X., Shen, S., Chen, X. Combined inorganic/organic fertilization enhances N efficiency and increases rice productivity through organic carbon accumulation in a rice paddy from the Taihu Lake region, China [J]. Agriculture, Ecosystems and Environment,2009b,131:274-280.
    Parton, W.J., Hartman, M.D., Ojima, D.S., Schimel, D.S. DAYCENT:its land surface submodel: description and testing [J]. Global and Planetary Change,1998,19,35-48.
    Parton, W.J., Mosier, A.R., Ojima, D.S., Valentine, D.W., Schimel, D.S., Weier, K., Kulmala, A.E. Generalized model for N2 and N2O production from nitrification and denitrification [J]. Global Biogeochemical Cycles,1996,10:401-412.
    Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands [J]. Soil Science Society of America Journal,1987,51:1173-1179.
    Pathak, H., Jain, N., Bhatia, A., Patel, J., Aggarwal, P.K. Carbon footprints of Indian food items [J]. Agriculture, Ecosystems and Environment,2010,139,66-73.
    Paul, B.K., Vanlauwe, B., Ayuke, F., Gassner, A., Hoogmoed, M., Hurisso TT, Koalab S, Lelei D, Ndabamenye T, Six, J., Pulleman, M.M. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity [J]. Agriculture, Ecosystems and Environment,2013,164:14-22.
    Paustian, K. Agriculture, farmers and GHG mitigation:a new social network [J]? Carbon Management, 2012,3,253-257.
    Paustian, K., Six, J., Elliott, E.T., Hunt, H.W. Management options for reducing CO2 emissions from agricultural soils [J]. Biogeochemistry,2000,48,147-163.
    Peng, S., Buresh, R.J., Huang, J., Yang, J., Zou, Y, Zhong, X., Wang, G., Zhang, F. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China [J]. Field Crops Research,2006,96:37-47.
    Perry, S., Klemes, J., Bulatov, I. Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors [J]. Energy,2008,33:1489-1497.
    Ponsioen, T.C., Blonk, T.J. Calculating land use change in carbon footprints of agricultural products as an impact of current land use [J]. Journal of Cleaner Production,2012,28:120-126.
    Post, W.M.& Kwon, K.C. Soil carbon sequestration and land-use change:processes and potential [J]. Global Change Biology,2000,6:317-328.
    Post, W.M., Izaurralde, R.C., West, T.O., Liebig, M.A., King, A.W. Management opportunities for enhancing terrestrial carbon dioxide sinks [J]. Frontiers in Ecology and the Environment,2012,10: 554-561.
    Powlson, D.S., Bhogal, A., Chambers, B.J., Coleman, K., Macdonald, A.J., Goulding, K.W.T., Whitmore, A.P. The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales:A case study [J]. Agriculture, Ecosystems and Environment,2012,146:23-33.
    Qiu, J., Li, C., Wang, L., Tang, H., Li., Van Ranst, E. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China [J]. Global Biogeochemical Cycles,2009, 23,doi:10.1029/2008GB003180.
    Raich, J.W., Parton, W.J., Russell, A.E., Sanford, R.L., Vitousek, P.M. Vegetation and soil respiration: correlations and controls [J]. Biogeochemistry,2000,51:161-191.
    Rowe, R. L., Street, N.R., Taylor, G. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK [J]. Renewable and Sustainable Energy Reviews, 2009,13:271-290.
    Sass, R. L., Fisher F. M., Wang Y. B., Turner F. T., Jund M. F. Methane emission from rice paddies:The effect of floodwater management [J]. Global Biogeochemical Cycles,1992,6:249-262.
    Schimel, J. Rice, microbes and methane [J]. Nature,2000,403:375-377.
    Schlesinger, W.H.& Andrews, J.A. Soil respiration and the global carbon cycle [J]. Biogeochemistry, 2000,48:7-20.
    Schutz, H., Seiler, W., Conrad, R. Processes involved in formation and emission of methane in rice paddies [J]. Biogeochemistry,1989,7:33-53.
    Seiler, W, Holzapfel-Pschorn, A., Conrad, R., Scharffe, D. Methane emission from rice paddies [J]. Journal of Atmospheric Chemistry,1984,1:241-268.
    Shirley, R., Jones, C., Kammen, D. A household carbon footprint calculator for islands:Case study of the United States Virgin Islands [J]. Ecological Economics,2012,80:8-14.
    Smith, P. Agricultural greenhouse gas mitigation potential globally, in Europe and in the UK:what have we learned in the last 20 years [J]? Global Change Biology,2012,18:35-43.
    Smith, P. Carbon sequestration in croplands:the potential in Europe and the global context [J]. European Journal of Agronomy,2004b,20:229-236.
    Smith, P. Engineered biological sinks on land. In The global carbon cycle. Integrating humans, climate, and the natural world (eds C. B. Field & M. R. Raupach) [M]. Washington, DC:Island Press,2004, 479-491.
    Smith, P. Soils as carbon sinks:the global context [J]. Soil Use and Management,2004a,20,212-218.
    Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O'Mara, C. Rice, B. Scholes, O. Sirotenko. Agriculture. In Climate Change 2007:Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007.
    Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, B., Sirotenko, O. Agriculture. In:Climate Change 2007:Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds B. Metz, O.R. Davidson, P.R. Bosch, R. Dave & L.A. Meyer). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,2007,499-508.
    Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H.H., Kumar, P., McCarl, B., Ogle, S., O'Mara, F., Rice, C., Scholes, R.J., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V, Schneider, U., Towprayoon, S., Wattenbach, M. & Smith, J.U. Greenhouse gas mitigation in agriculture [J]. Philosophical Transactions of the Royal Society Series B,2008,363:789-813.
    Smith, P., Powlson, D.S., Smith, J.U., Falloon, P. Coleman, K. Meeting Europe's climate change commitments:quantitative estimates of the potential for carbon mitigation by agriculture [J]. Global Change Biology,2000,6:525-539.
    Smith, P., Smith, J.U., Powlson, D.S., McGill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-Gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E., Mueller, T., Parton, W.J., Thornley, J.H.M., Whitmore, A.P. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma,1997,81:153-225.
    Smith, W.N., Grant, B.B., Campbell, C.A., McConkey, B.G., Desjardins, R.L., Krobel, R., Malhi, S.S. Crop residue removal effects on soil carbon:measured and inter-model comparisons [J]. Agricultural, Ecosystems and Environment,2012,161:27-38.
    Sohi, S., Krull, E., Lopez-Capel, E., Bol, R. A review of biochar and its use and function in soil [J]. Advances in Agronomy,2010,105:47-82.
    Sohi, S.P. Carbon storage with benefits [J]. Science,2012,338:1034.
    Song, G., Li, L., Pan, G. Topsoil organic carbon storage of China and its loss by cultivation [J]. Biogeochemistry,2005,74:47-62.
    Song, X., Li, L., Zheng, J., Pan, G., Zhang, X., Zheng, J., Hussain, Q., Han, X., Yu X. Sequestration of maize crop straw C in different soils:Role of oxyhydrates in chemical binding and stabilization as recalcitrance [J]. Chemosphere,2012,87:649-654.
    Stehfest, E., Heistermann, M., Priess, J.A., Ojima, D.S., Alcamo, J. Simulation of global crop production with the ecosystem model DAYCENT [J]. Ecological Modelling,2009,209:203-219.
    Sun, W., Huang, Y., Zhang, W., Yu, Y.Q. Carbon sequestration and its potential in agricultural soils of China [J]. Global Biogeochemical Cycles,2010,24:1302-1307.
    Towprayoon, S., Smakgahn, K., Poonkaew, S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields [J]. Chemosphere,2005,59:1547-1556.
    UK-China Project on "Improved Nutrient Management in Agriculture-a Key Contribution to the Low Carbon Economy" [EB/OL]. Beijing, SAIN project,2010. http://www.sainonline.org/SAIN-website (English)/pages/Projects/lowcarbon.html
    van Denier der Gon, H.A.C., Neue, H.U. Influence of organic matter incorporation on methane emission from a wetland rice field [J]. Global Biogeochemical Cycles,1995,9:11-22.
    Venterea, R.T., Halvorson, A.D., Kitchen, N., Liebig, M.A., Cavigelli, M.A., Del Grosso, SJ., Motavalli, P.P., Nelson, K.A., Spokas, K.A., Pal Singh, B., Stewart, C.E., Ranaivoson, A., Strock, J., Collins, H. Challenges and opportunities for mitigating nitrous oxide emissions from fertilized cropping systems [J]. Frontiers in Ecology and the Environment,2012,10:562-570.
    Virtanen, Y., Kurppa, S., Saarinen, M., Katajajuuri, J.M., Usva, K., Maenpaa,I., Makela, J., Gronroos, J., Nissinen, A. Carbon footprint of food-approaches from national input-output statistics and a LCA of a food portion [J]. Journal of Cleaner Production,2011,19:1849-1856.
    Wang, B., Xu,Y, Wang, Z., Li, Z., Guo, Y, Shao, K., Chen, Z. Methane emissions from rice fields as affected by organic amendment, water regime, crop establishment, and rice cultivar [J]. Environmental Monitoring and Assessment,1999,57:213-228.
    Wang, C., Pan, G., Tian, Y, Li, L., Zhang, X., Han, X. Changes in cropland topsoil organic carbon with different fertilizations under long-term agro-ecosystem experiments across mainland China [J]. Science China Life Science,2010,53:858-867.
    Wang, J., Lu, C., Xu, M., Zhu, P., Huang, S., Zhang, W., Peng, C., Chen, X., Wu, L. Soil organic carbon sequestration under different fertilizer regimes in north and northeast China:RothC simulation [J]. Soil Use and Management,2013,29:182-190.
    Wang, J., Rothausen, S.G.S.A., Conway, D., Zhang, L., Xiong, W., Holman, I.P., Li, Y. China's water-energy nexus:greenhouse-gas emissions from groundwater use for agriculture [J]. Environmental Research Letters,2012,7, doi:10.1088/1748-9326/7/1/014035.
    Wassmann, R., Neue H. U., Alberto M.C.R., Lantin R.S., Bueno C., Llenaresas D., Arah J.R.M., Papen H., Seiler W., Rennenberg H. Fluxes and pools of methane in wetland rice soil with varying organic inputs [J]. Environmental Monitoring and Assessment,1996,42:163-173.
    Wassmann, R., Neue, H.U., Bueno, C, Lantin, R.S., Alberto, M.C.R., Buendia, L.V., Bronson, K., Papen, H., Rennenberg, H. Methane production capacities of different rice soils derived from inherent and exogenous substrates [J]. Plant and Soil,1998,203:227-237.
    Watanabe, I., Roger P. A. Ecology of flooded rice fields, in Wetland Soils:Characterization, Classification, and Utilization [M]. International Rice Research Institute, Los Banos, Philippines,1985,229-243.
    Wattenbach, M., Sus, O., Vuichard, N., et al. The carbon balance of European croplands:A cross-site comparison of simulation models [J]. Agriculture, Ecosystems and Environment,2010,139:419-453.
    West, T.O. Marland, G. Net carbon flux from agricultural ecosystems:methodology for full carbon cycle analyses [J]. Environmental Pollution,2002b.116,439-444.
    West, T.O., Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture:comparing tillage practices in the United States [J]. Agriculture, Ecosystems and Environment,2002a,91,217-232.
    West, T.O., Marland, G.,2002. Net carbon flux from agricultural ecosystems:methodology for full carbon cycle analyses [J]. Environmental Pollution,116,439-444.
    Wiedema, B.P., Thrane, M., Christensen, P., et al. Carbon footprint:A catalyst for life cycle assessment? [J] Journal of Industrial Ecology,2008,12:3-6.
    Wiedmann, T., Minx, J. A definition of carbon footprint [M]. In:Pertsova, C.C. (Ed.) Ecological Economics Research Trends:Chapter 1,1-11, Nova Science Publishers, Hauppauge NY, USA,2008.
    Wu, T.Y., Schoenau, J.J., Li, F.M., Qian, P.Y., Malhi, S.S., Shi, Y.C., Xue, F.L. Influence of cultivation and fertilization on total organic carbon and carbon fractions in soils from the Loess Plateau of China [J]. Soil & Tillage Research,2004,77:59-68.
    Xie, B., Zheng, X., Zhou, Z., Gu, J., Zhu, B., Chen, X., Shi, Y, Wang, Y, Zhao, Z., Liu, C., Yao, Z., Zhu, J. Effects of nitrogen fertilizer on CH4 emission from rice fields:multi-site field observations [J]. Plant and Soil,2010,326:393-401.
    Yan, H., Cao, M., Liu, J., Tao, B. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China [J]. Agriculture, Ecosystems and Environment,2007,121: 325-335.
    Yan, X., Yagi, K., Akiyama, H., et al. Statistical analysis of the major variables controlling methane emission from rice fields [J]. Global Change Biology,2005,11:1131-1141.
    Yan, X., Cai, Z., Ohara, T., Akemoto, H. Methane emission from rice fields in mainland China:Amount and seasonal and spatial distribution [J]. Journal of Geophysical Research,2003,108:1-10.
    Yang, X., Zhang, X., Fang, H., Zhu, P., Ren, J., Wang, L. Long-term effects of fertilization on soil organic carbon changes in continuous corn of Northeast China:RothC model simulations [J]. Environmental Management,2003,32,459-465.
    Yao, H., Conrad, R., Wassmann, R., Neue, H.U. Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy [J]. Biogeochemistry,1999,47:269-295.
    Zhang, Y, Li, C., Trettin, C.C., Li, H., Sun, G. An integrated model of soil, hydrology, and vegetation for carbon dynamics in wetland ecosystems [J]. Global Biogeochemical Cycles,2002,16:1-17.
    Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X., Han, X., Yu, X. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy:A field study of 2 consecutive rice growing cycles [J]. Field Crops Research,2012,127: 153-160.
    Zhang, A., Pan, G., Cui, L., et al. Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China [J]. Agriculture, Ecosystems & Environment, 2010,139:469-475.
    Zheng, J., Cheng, K., Pan G., Smith P., Li, L., Zhang, X., Zheng, J., Han, X., Du, Y. Perspectives on studies on soil carbon stocks and the carbon sequestration potential of China [J]. Chinese Science Bulletin, 2011,56:1-11.
    Zhou, P., Song, G., Pan, G., Li, L., Zhang, X. Role of chemical protection by binding to oxyhydrates in SOC sequestration in three typical paddy soils under long-term agro-ecosystem experiments from South China [J]. Geoderma,2009,153:52-60.
    Zhu Z., Chen D. Nitrogen fertilizer use in China-Contributions to food production, impacts on the environment and best management strategies [J]. Nutrient Cycling in Agroecosystems,2002,63: 117-127.
    Zou, J., Huang, Y., Jiang, J. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:Effects of water regime, crop residue, and fertilizer application [J]. Global Biogeochemical Cycles,2005,19, doi:10.1029/2004GB002401.
    Zou, J., Huang, Y, Zheng, X., et al. Quantifying direct N2O emissions in paddy fields during rice growing season in mainland China:Dependence on water regime [J]. Atmospheric Environment,2007,41, 8030-8042.
    Zou, J., Lu, Y., Huang, Y. Estimates of synthetic fertilizer N-induced direct nitrous oxide emission from Chinese croplands during 1980-2000 [J]. Environment Pollution.2010,158 (2):631-635.
    《第二次气候变化国家评估报告》编写委员会.第二次气候变化国家评估报告[M].北京:科学出版社,2011.
    程琨,潘根兴,田有国,李恋卿.中国农田表土有机碳含量变化特征—基于国家耕地土壤监测数据[J].农业环境科学学报.2009,28(12):2476-2481.
    戴伟娣.清洁发展机制简介(Ⅱ)—清洁发展机制方法学理论基础[J].生物质化学工程,2006,40(2):50-52.
    董红敏,李玉娥,朱志平,等.农村户用沼气CDM项目温室气体减排潜力[J].农业工程学报,2009,25(11):293-296.
    高鲁鹏,梁文举,姜勇,等.利用CENTURY模型研究东北黑土有机碳的动态变化[J].应用生态学报,2004,15(5):36-40.
    龚子同.中国土壤系统分类[M].北京:中国科学出版社,1999:5-215.
    国家发展和改革委员会.我委解振华副主任等出席十一届全国人大三次会议记者会,就节能减排和应对气候变化问题答问[DB/OL],2010. http://xwzx.ndrc.gov.cn/wszb/t20100310_334122.htm.
    国家发展和改革委员会.中华人民共和国气候变化第二次国家信息通报[M],2012. URL: http://nc.ccchina.gov.cn/WebSite/NationalCCC/UpFile/Filel 15.pdf.
    国家发展和改革委员会价格司.中国农业生产成本收益资料汇编[M].北京:中国统计出版社,2011.
    国家统计局农村社会经济调查司.中国农村统计年鉴[M].北京:中国统计出版社,2008.
    国家统计局农村社会经济调查司.中国农村统计年鉴[M].北京:中国统计出版社,2010.
    国家统计局农村社会经济调查司.中国农村统计年鉴[M].北京:中国统计出版社,2011.
    韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,21(4):6-11.
    黄耀,刘世梁,沈其荣,等.农田土壤有机碳动态模拟模型的建立[J].中国农业科学,2001,34(5):465-568.
    嵇洪军,徐昆,王伟.水稻不同施肥方式应用效果试验[J].现代化农业,2010,9:15.
    李洁静,潘根兴,李恋卿,张旭辉.红壤丘陵双季稻稻田农田生态系统不同施肥下碳汇效应及收益评估[J].农业环境科学学报,2009(a),28(12):2520-2525.
    李洁静,潘根兴,张旭辉,等.太湖地区长期施肥条件下水稻-油菜轮作生态系统净碳汇效应及收益评估[J].应用生态学报,2009b,20(7):1664-1670.
    李玉娥,董红敏,万运帆,等.规模化猪场沼气工程CDM项目的减排及经济效益分析[J].农业环境科学学报,2009,28(12):2580-2583.
    刘世梁,黄耀,沈其荣等.农田土壤有机碳动态模拟模型的检验与应用[J].中国农业科学,2001,34(6):644-648.
    鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,1999
    逯非,王效科,韩冰,欧阳志云,段晓男,郑华.中国农田施用化学氮肥的固碳潜力及其有效性评价[J].应用生态学报,2008,19(10),2239-2250.
    马静,徐华,蔡祖聪.施肥对稻田甲烷排放的影响[J].土壤,2010,42(2):153-163.
    农业部种植业管理司,全国农业技术推广服务中心.测土配方施肥技术问答[M].北京:中国农业出版社,2005:1-4.
    潘根兴,李恋卿,郑聚锋,等.土壤碳循环研究及中国稻田土壤固碳研究的进展与问题[J].土壤学报,2008,45(5):901-914.
    潘根兴,赵其国.我国农田壤碳库演变研究:全球变化和国家粮食安全[J].地球科学进展,2005,20:384-392.
    潘根兴.气候变化对中国农业生产的影响与应对的主要问题.气候变化对中国农业生产的影响:分析与评估[M].北京:中国农业出版社,2010,1-21.
    潘根兴.中国土壤有机碳库及其演变与应对气候变化[J].气候变化研究进展,2008,4(5):282-289.
    彭华,纪雄辉,刘昭兵,石丽红,田发祥,李洪顺.洞庭湖地区长期施肥条件下双季稻田生态系统净碳汇效应及收益评估[J].农业环境科学学报,2009,28(12):2526-2532.
    钱梅林,付文杰,李淑芳,李光祥.河北南网排灌用电调查[J].电力需求侧管理.2007,9(4):77-78.
    邱建军,王立刚,唐华俊.东北三省耕地土壤有机碳储量变化的模拟研究[J].中国农业科学,2004,37(8):1166-1171.
    全国农业区划委员会.中国农业自然资源和农业区划[M].北京:中国农业出版社,1991.
    王成己,潘根兴,田有国.保护性耕作下农田表土有机碳含量变化特征分析—基于中国农业生态系统长期试验资料[J].农业环境科学学报,2009,28:2464-2475.
    王金州,卢昌艾,张金涛等.RothC模型模拟华北潮土区的土壤有机碳动态[J].中国土壤与肥料,2010,(6):16-21.
    王明星.中国稻田甲烷排放[M].北京:科学出版社,2001.19-31.
    王亚静,毕于运,高春雨.中国秸秆资源可收集利用量及其适宜性评价[J].中国农业科学,2010,43:1852-1859.
    王勇,赵勤瑞.江苏秸秆利用现状及对策[J].江苏农村经济,2011,310:66-67.
    王跃思.大气中痕量化学成分的分析方法研究及实际应用[D].北京:中国科学院大气物理研究所,1998.
    武曙红.我国CDM造林和再造林项目方法学及案例研究[D].北京林业大学,2006:1-223.
    新罕布什尔大学地球海洋与空间研究所.DNDC模型使用手册[M].北京:中国农业科学技术出版社,2010.
    许信旺,潘根兴,汪艳林等.中国农田耕层土壤有机碳变化特征及控制因素[J].地理研究,2009,28(3):601-612.
    于永强,黄耀,张稳.华东地区农田土壤有机碳动态模拟研究—模型的验证与灵敏度分析[J].地理与地理信息科学,2006,22(6):83-93.
    张福锁,王激清,张卫峰,崔振岭,马文奇,陈新平,江荣风.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    张广斌,马静,徐华,蔡祖聪.中国稻田CH4排放量估算研究综述[J].土壤学报,2009,46,907-916.
    张稳,黄耀,郑循华,等.稻田甲烷排放模型研究—模型的验证[J].生态学报,2004,24(12):2679-2685.
    张稳,黄耀,郑循华,等.稻田甲烷排放模型研究-模型及其修正[J].生态学报,2004,24(11):2347-2352.
    郑景云,尹云鹤,李炳元.中国气候区划新方案[J].地理学报,2010,65,3-12.
    中国农业部,国家发展和改革委员会.保护性耕作工程建设规划(2009—2015年)[DB/OL],2009.http://www.moa.gov.cn/zwllm/zcfg/nybgz/200908/t20090828_1340481.htm
    中国农业部.2010年全国测土配方施肥工作方案[DB/OL],2010. http://www.moa.gov.cn/ ztzl/ctpfsf/gzdt/201002/t20100221_1433222.htm.
    中国农业部.2011年全国测土配方施肥工作方案[DB/OL],2011. http://www.moa.gov.cn/ zwllm/tzgg/tz/201103/t20110310_1869341.htm.
    中国农业部.测土配方施肥今年实现县级区域全覆盖[DB/OL],2009. http://www.moa.gov.cn/ztzl/ctpfsf/gzdt/200910/t20091009_1361972.htm
    中国水利部.中国水利统计年鉴[M].北京:中国水利水电出版社,2011.
    周萍,潘根兴,Alessandro Piccolo等.南方典型水稻土长期试验下有机碳积累机制研究Ⅳ.颗粒有机质热裂解-气相-质谱法分子结构初步表征[J].土壤学报,2011,48(1):112-124.
    周萍,宋国菡,潘根兴等.三种南方典型水稻土长期试验下有机碳积累机制研究Ⅱ.团聚体内有机碳的化学结合机制[J].土壤学报,2009,46(2):263-273.
    邹建文,黄耀,宗良纲,等.不同种类有机肥施用对稻田CH4和N2O排放的综合影响[J].环境科学,2003,24(4):7-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700