用户名: 密码: 验证码:
TiO_2催化分解汽车尾气沥青路面材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车尾气是造成大气环境污染的重要因素之一,开展TiO2催化分解汽车尾气沥青路面材料的试验方法、评价指标、材料设计等方面的研究,具有重要的环保意义及社会意义。
     本文首先对TiO2催化分解汽车尾气路面催化性能测试系统进行了研发,确定了系统的主要组成元件及功能,确定了试验基本参数,建立了尾气累计分解率公式,确定了了试验时间,给出了测试系统的校准公式,制定了TiO2催化分解汽车尾气路面材料催化性能测试系统的操作规程;提出了TiO2催化分解汽车尾气路面的类型,建立了HMA式及表面涂层式催化分解尾气沥青路面材料技术指标体系,分析了TiO2催化分解汽车尾气原理,对HMA式及表面涂层式催化分解尾气路面催化性能的影响因素进行了分析,推荐了HMA式催化分解尾气路面的材料及结构,提出了表面涂层式路面材料的制备方法,从HMA式及表面涂层式催化分解尾气路面催化性能衰减的角度,对连续反应次数、冲洗数次、污染指数、压密作用等因素展开了分析与研究。
     研究结果表明:TiO2掺量、混合料空隙率、紫外光辐照度、混合料温度等影响因素对HMA式催化分解尾气路面的催化性能影响显著,纳米TiO2含量、表面喷涂量、紫外光辐照度、温度等影响因素对表面涂层式催化分解尾气路面催化性能影响显著,TiO2对TPS髙粘沥青针入度、135℃粘度基本无影响,但TPS髙粘沥青的延度随着TiO2掺量的增大而不断降低,TPS髙粘沥青的抗紫外线老化性能随着TiO2掺量的增大而增强,TiO2掺量对于PAC-13髙粘沥青混合料的残留稳定度、冻融劈裂残留强度比、低温抗弯拉强度、弯曲劲度模量影响不大,但混合料的动稳定度随着TiO2掺量的增大而迅速减小,采用锐钛矿型普通纳米二氧化钛、TPS含量为12%的髙粘改性沥青、PAC-13结构、2.75%二氧化钛掺量,可制备出催化分解汽车尾气性能相对优良、路用性能满足行车要求的HMA式催化分解尾气路面,采用亲油锐钛矿型25nmTiO2、(NaPO3)6、盐酸、乳化剂、NH4CL、Cacl2、SBS改性剂可以制备出催化性能及路用性能相对优良的催化浆料,冲洗次数对TiO2催化分解尾气路面催化性能无影响,污染指数对催化性能影响显著,压密作用是造成HMA式催化分解尾气路面的催化性能衰减的因素之一。
Automobile exhaust pollution has become a big problem, how to reduce it’s harm whileenjoying the convenience puzzled the environmental protection department. As the carrier ofmoving vehicle, the contaction with automobile exhaust directly. It is effective to reduce harmif road has the functiona of degrade automobile exhaust. The study on automobile exhaustphotocatalytic degradationly asphalt pavement is not systemic, and the equipment is simpleand crude, unscientific, and lack of demonstration in test methods and conditions. It is lack ofphysical meaning to describe the objective law of density loss in regression mathematicalmodel. There is no assessment indicator system of automobile exhaust photocatalyticdegradationly asphalt pavement. The study on the influence factor of photocatalyticperformance is not systemic, and there is not have a well-developed theories in the attenuationlaw of photocatalytic performance.
     Firstly the test system of photocatalytic performance to automobile exhaust wasresearched and development. The major components and functions were researched, and thebasic parameters were confirmed, include irradiance and gas concentration. Accumulativetotal resolution ratio model, testing time and calibrat formula was set up, and the operatinginstruction of test system of photocatalytic performance to automobile exhaust wasformulated. The form of automobile exhaust photocatalytic degradationly asphalt pavementwas divided into HMA automobile exhaust photocatalytic degradationly asphalt pavement,surface loaded automobile exhaust photocatalytic degradationly asphalt pavement, seal coatautomobile exhaust photocatalytic degradationly asphalt pavement. The evaluating index ofphotocatalytic performance and materials design index system of HMA and surface loadedautomobile exhaust photocatalytic degradationly asphalt pavement was set up. Mechanism ofautomobile exhaust photocatalytic degradationly asphalt pavement was analysed. Influencefactors of photocatalytic performance were analysed, and the photocatalytic performanceprediction models of HMA and surface loaded automobile exhaust photocatalyticdegradationly asphalt pavement was established. Both sides include photocatalytic andpavement performances were considered to the design of materials and structures. The relationship between with the attenuation law of photocatalytic performance and reactiontimes, washing times, pollution index, compaction effect was analysised and researched.
     The results show that, hole-electron pair is generated while TiO2receive theUV-irradiation, and then OH is generated which could resolve CO、NOx、HC to be CO2、H2O、 NO3-. The photocatalytic performance prediction model of HMA automobile exhaustphotocatalytic degradationly asphalt pavement according to TiO2mixing amount, voidfraction, irradiance and temperature, and The photocatalytic performance prediction model ofsurface loaded automobile exhaust photocatalytic degradationly asphalt pavement accordingto TiO2mixing amount, load quality, irradiance and temperature had high accuracy. HMAautomobile exhaust photocatalytic degradationly asphalt pavement with excellentphotocatalytic and road performance could be prepared by PAC-13,2.75%anatase TiO2, highviscosity asphalt with12%TPS. Surface loaded automobile exhaust photocatalyticdegradationly asphalt pavement with excellent photocatalytic and road performance could beprepared by7.7%anatase25nm TiO2,(NaPO3)6, HCl, emulgator, NH4CL, Cacl2, SBS.Reaction times, pollution index and compaction effect have the interrelate with attenuationlaw of photocatalytic performance, There is not a strong link washing times and attenuationlaw of photocatalytic performance.
引文
[1]程平,储焰南,张为俊等.选择离子流动管质谱对汽车尾气成分的分析[J].分析化学,2004,32(1):113-118
    [2]张建华.汽车尾气等离子净化器及其控制系统的设计与研究[D].济南:山东大学,2012
    [3] Okubo, M., Yamamoto, T., Kuroki, T., Fukumoto, H.. Electric Air Cleaner Composed ofNonthermal Plasma Reactor and Electrostatic Precipitator [J]. IEEE Transactions onindustry applications,2011,37(5).
    [4] Ravi V, Young Sun Mokb, Rajanikanth B.S,et al. Temperature effect onhydrocarbonenhanced nitric oxide conversion using a dielectric barrier dischargereactor[J]. Fuel Processing Technology,2003.81:187-199.
    [5]程义斌,金银龙,刘迎春.汽车尾气对人体健康的危害[J].卫生研究,2003,32(5):504-507
    [6] Gauderman WJ, Gilliland GF, Vora H, et al. Association between air pollution and lungfunction growth in southern California Children: results from a second cohort. Am JRespir Crit Care Med,2002,166(1),76:84
    [7]宗芳.我国汽车尾气污染防治政策研究[D].天津:天津师范大学,2012
    [8]绍文燕.汽车尾气污染及治理技术[J].科技情报开发与经济,2009,19(16):167-169
    [9]宋波.汽车尾气处理技术及展望[J].科技信息,2012,25:408-409
    [10]孙凤英,石惠.纳米材料在汽车尾气机外净化中的应用研究[J].森林工程,2008,(4):48-53
    [11] Akawat Airisuk. Photocatalytic oxidation of enthylene over thin films of titanium dioxidesupported on glass rings[D]. A dissertation for Doctor degree. University ofWisconsin-Madison,1999
    [12] Bamwenda G R, et al. Thephotocatalytic oxidation of water to O2over pure CeO2,WO3and TiO2using Fe3+and Ce4+as electron acceptors [J]. Applied Catalysis A: General,2001,205:117-121
    [13] Spanhel L, Weller H, Henglein A. Electron injection from illuminated CdS into attachedTiO2and ZnO particles [J]. J Am Chem Soc,1987,109:6632-6638.
    [14] Asahi R, Morikawa T, Ohwaki T, et al. Visible-Light photocatalysis in nitrogen-dopedtitanium oxides [J]. Science,2001,20(3):301-307.
    [15] Beata Zielinska, Antoni Waldemar Moraawski. TiO2photocatalysts promoted by alkalimetals [J]. Applied Catalysis B: environmental,2005,55:221-226.
    [16] Choi W, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sizedTiO2:Correlation between photoreactivity and charge carried recombination dynamics [J].J Phys Chem,1994,98(5):13669-13679.
    [17] Serpone N, Texier I, Emeline A V, et al. Post-irradiation effect and reductivedechlorination of chlorophenols at oxygen-free TiO2/Water interfaces in the presence ofprominent holscavengers [J]. J Photochen Photobiol A,2000,136(3):145-152
    [18]付贤智.环境催化基础与研究新进展[C].全国太阳能光化学与催化学术会议会议论文集,2004
    [19]郝晓刚,李一兵,樊彩梅等.TiO2光电催化水处理技术研究进展[J].化学通报,2003,19(8):873-878
    [20]王传义,刘春艳,沈涛.半导体催化剂的表面修饰[J].高等学校化学学报,1998,19(12):2013-2019
    [21]王振领,李敏,刘天学等.TiO2膜的光敏化及灭菌活性研究[J].陕西师范大学学报(自然科学版),2002,3(30):87-89
    [22] PENG Zifei, YU Xiafei. The treatment of environmental pollutions by using nanomaterials [R]. Website of Shui Mu Tsinghua,2002.
    [23]都雪静.汽车尾气降解材料测试室研究设计[D].沈阳:东北大学,2005
    [24]魏鹏.可降解汽车尾气的沥青混合料路面研究[D].哈尔滨:哈尔滨工业大学,2008
    [25]谭忆秋,魏鹏,周纯秀.用于测试新材料降解尾气性能的试验装置.中国:200710144672. X,2008
    [26]谭忆秋,李洛克,魏鹏等.可降解汽车尾气材料在沥青路面中的应用性能评价[J].中国公路学报:2010,23(6):21-27.
    [27]孙立军,徐海铭,李剑飞等.纳米二氧化钛处治汽车尾气效果与应用方法的研究[J].公路交通科技:2011,28(4):153-158.
    [28]李剑飞,刘黎萍,孙立军.纳米二氧化钛对汽车尾气中碳氢化合物HC分解效果研究[J].公路工程,2010,35(2):151-155.
    [29] NAKAMURAR,TANAKAT,NAKATOY. Mechanism for Visible Light Responsesin Anodic Photocurrents at N-doped TiO2Film Electrons[J]. The Journal of PhysicalChemistry B,2004,108(30):10617-10620.
    [30] PENGT,ZHAO D,DAI K.Synthesis of Titanium Dioxide Nanoparticles withMesoporous Anatase Wall and High Photocatalytic Activity[J]. The Journal of PhysicalChemistry B,2005,109(11):4947-4952.
    [31]张文刚,邹雨芯,孙国庆等.二氧化钛沥青混合料催化性能影响因素研究[J].武汉理工大学学报,2012,34(3):38-41
    [32]叶超,陈华鑫,王闯.纳米二氧化钛改性沥青混合料路用性能研究[J].中外公路,2010,30(3):315-318.
    [33] Yin S,Ihara K,Aita Y,et al. Visible-light induced photocatalytic activity ofTiO(2-x)A(y)(A=N,S) prepared by precipitation route [J]. Photochem Photobiol,2006,179(1-2):105.
    [34]杨群,叶青,刘奕.TiO2改性沥青分散性与抗老化性能[J].同济大学学报(自然科学版);2011,39(2):263-265,281.
    [35]张春青,王妍,熊玲.纳米TiO2改性沥青抗紫外线老化能力研究[J].公路与汽运;2011,(3);88-91.
    [36]叶超,陈华鑫.纳米SiO2和纳米TiO2改性沥青路用性能研究[J].新型建筑材料;2009,36(6):82-84.
    [37] QIAN Chunxiang, ZHAO Lianfang, FU Dafang, et al; Photocatalytic Oxidation ofNitrogen Oxides by Nano-TiO2Immobilized on Road Surface Materials [J]. Journal ofthe Chinese Ceramic Society,2005,33(4):422-427.
    [38]赵路,钱国平.纳米二氧化钛在沥青路面中的综合应用[J].价值工程,2013,(06):144-146.
    [39] Liu Zhao, Yao Shushan, Sun Ping, et al. Preparation and characterization of highildispersed nanocrystalline rutile powders [J]. Mater Lett,2007,61:2802.
    [40] Chadwick M D, Goodwin J W, E J, et al. Surface charge properties of colloidal titaniumdioxide in ethylene glycol and water [J].Colloids, Surf,2002,203:232.
    [41]张智涛,刘强,柳清菊.钛白粉表面处理前的分散性研究[J].材料导报,2013,27(21):23-25.
    [42]徐海铭,刘黎萍,孙立军等.纳米二氧化钛在实际道路工程中的应用[J].公路工程,2011,36(4):189-192
    [43]韩相春,白海莹,关强等.催化材料降解汽车尾气的测试系统设计[J].东北林业大学学报,2005,33(5)
    [44]胡建荣,张益,张文刚.催化分解汽车尾气型沥青混合料研究[J].郑州大学学报(工学版)2013,34(3):90-93
    [45]沙爱民.环保型路面材料与结构[M].北京:科学出版社,2012:856-867
    [46]王波.甘肃地区沥青路面温度场研究[D].西安:长安大学,2011
    [47]陳建旭,黃建中,王耀寬等.轉爐石對多孔隙瀝青混凝土之影響[C].第八屆鋪面工程材料再生及再利用學術研討會暨2008世界華人鋪面專家聯合學術研討會論文集,2008.
    [48]蒋玮,沙爱民,肖晶晶等.多孔沥青混合料的空隙堵塞试验研究[J].建筑材料学报2013,16(2):271-275.
    [49]蒋玮,沙爱民,裴建中等.多孔沥青混合料的疲劳特性试验研究[J].建筑材料学报2012,15(4):513-517.
    [50]肖晶晶,沙爱民,蒋玮等.多孔沥青混合料路用性能研究[J].武汉理工大学学报2013,35(4):49-53.
    [51] MASAS E, CASTELBLANCO A, B. Effects of air void size distribution, pore pressureand energy on moisture damage [J]. Journal of Testing and Evaluation,2006,34(1):15-23.
    [52] ARAMBULA E, MASAD E, MARTIN A E. Influence of air void distribution on themoisture susceptibility of asphalt mixes [J]. Journal of Materials in Civil Engineering,2007,19(8):655-664.
    [53] MASAD E, JANDHYALA V K, DASGUPTA N, et al. Characterization of air voiddistribution in asphalt mixes using X-ray computed tomography [J]. Journal of Materialsin Civil Engineering,2012,14(2):122-129.
    [54]轻型汽车污染物排放限值及测量方法(中国第五阶段)[S].出版地:北京,环境保护部/国家质量监督检验检疫总局,2013.
    [55]赵小兰,聂飞,马国欣等.太阳光紫外线强度检测技术研究[J].电子测量技术2008,31(1):112-117.
    [56] Asphalt Institute. Performance graded asphalt binder specification and testing superpaveseriesNo.1(SP-1)[R]. Lexington.1994.
    [57]林民,李华,王伟等.1.0kt/a丙烯与双氧水环氧化制备环氧丙烷的中试研究[J].石油炼制与化工.2013,44(3):1-5.
    [58]栗琳,胡勇,巩彩兰等.太阳高度角对图像能量的影响及其校正[J].大气与环境光学学报.2013,8(1):11-17.
    [59]李安定,吕全亚.太阳能光伏发电系统工程[J].北京:化学工业出版社,2012,7
    [60]李晓锋,朱颖心.示踪气体浓度衰减法在民用建筑自然通风研究中的应用[J].暖通空调,1997,27(4):7-10.
    [61]周雨先,黄晨.示踪气体测定自然通风量技术现状[J].建筑热能通风空调,2013,32(1):54-56.
    [62] Christopher Y C, Wan M P, Anthony K L. Ventilation performance measurement usingconstant concentration dosing strategy [J]. Building and Environment,2004,39(11):1277-1288.
    [63] M H Sherman. Tracer-gas techniques for measuring ventilation in a single zone [J].Building and Environment,1990,25(4):365-374
    [64] Standard Test Method for Deterring Air Change in a Single Zone by Zone by Means ofTracer Gas Dilution (ASTM E741-2000). American Society for Testing and Materials,2002
    [65] Stephanie Laporthe, Joseph Virgone, Sophine castanet. A comparative study of two tracergases: SF6and N2O [J]. Building and Environment,2001,36:313-320
    [66] Guide for Using Carbon Dioxide Concentrations to Evaluate Indoor Air Quality andVentilation (ASTM D6245-98)[S]. American Society for Testing and Materials,2002
    [67] T G M Demmers, L R Burgess, V R Phillips, et al. Assessment of techniques formeasuring the ventilation rate using an experimental building section [J]. Journal ofAgricultural Engineering Research,2000,76:71-81
    [68] S Van Buggenhout, A Van Brecht, S Eren Ozcan, et al. Influence of sampling positionson accuracy of tracer gas measurements in ventilated spaces [J]. Biosystems Engineering,2009,104:216-223
    [69] Linsebigler A L, Lu G Q, Yates J T. Photocatalysis on TiO2Surfaces: principles,mechanisms, and selected results [J]. Chem Rev,1995,95:735.
    [70]李志军,王红英.纳米TiO2的性质及应用进展[J].广州化工,2006,34(1):23-25
    [71]朱艳,陆涛.纳米TiO2研究进展[J].钛工业研究进展,2009,26(3):13-15.
    [72]刘扬林.纳米TiO2薄膜的自清洁和光诱导亲水性[J].大众科技,2009,7:103-104.
    [73]孟庆超,葛圣松.纳米TiO2功能薄膜研究进展[J].新技术新工艺,2006,8:9-13.
    [74] Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces[J].Chem Rev,1993:267-300.
    [75]唐楷,王勇明,王美玲等.水溶液中纳米二氧化钛分散技术研究进展[J].涂料技术与文摘,2011,02:29-31.
    [76]崔玉民,王洪涛. TiO2催化技术在污水处理领域中应用[J].水处理技术,2009,35(4):9-12.
    [77]王江雪. TiO2在净化领域中的应用进展[J].洁净与空调技术,2006,2:21-24.
    [78] Hashimoto K,Irie H, Fujishima A. TiO2photo-catalysis: A historical overview and futureprospects [J]. Jpn J Appl Phys,2005,44:8269-8285.
    [79] Hoffman M R, Martin S T, Choi W, et al. Environmental applications of semiconductorphotocatalysis [J]. Chen Rev,1995,95:69
    [80] Memming R, Steckham E. Topics in Current Chemistry [J]. Berlin: Springer-Verlag,1988.143:79-113.
    [81] Martin S T, Herrmann H, Hoffmann M R. Time–resolved microwave conductivity [J].Trans Faraday Soc,1994,90:3323
    [82] Martin S T, Herrmann H, Choi W,et al. Time–resolved microwave conductivity, Part1-TiO2photoreactivity and size quantization [J]. Trans Faraday Soc,1994,90:3315.
    [83] Martin S T, Morrison C L, Hoffmann M R. Chenical mechanism of inorganic oxidants inthe TiOflV process: increased rates of degradation of chlorinated hydrocarbons [J]. J PhysChem,1994,98:13695.
    [84] Hoffmann A J, Mills G, Yee H,et al. Environmental applications of semiconductorphotocatalysis [J]. J Phys Chem,1992,96:5546.
    [85] Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces [J].Chem Rev,1993,93:267-300.
    [86] Karakitsou K E, Verykios X E. Photomineralization of4-chlorophenol sensitized bytitanium dioxide: a study of the initial kinetics o degradation of chlorinated hydrocarbons[J]. J Phys Chem,1994,98:13695.
    [87] Mu W, Herrmann J M, Pichat P. Room temperature photocatalytic oxidation of liquidcyclohexane into cyclohexanone over neat and modified TiO2[J]. Catal Lett,1989,3:73.
    [88] Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry[J]. New York: Wiley-INterscience,1993.681.
    [89]任成军,李大成,周大利等.纳米TiO2的催化原理及其应用[J].四川有色金属,2004,2:19-25.
    [90]张晶,张亚萍,于濂清等.纳米二氧化钛的水热制备及催化研究进展[J].无机盐工业,2010,42(9):6-9.
    [91] Frank A J, Kopidakis N, van de Lagemaat. Effect of a coadsorbent on the performance ofdye-sensitized TiO2solar cells: shielding versus banf-edge movement.[J]. Coordin ChemRev,2004,248:1165.
    [92]谌文.基于分形理论的环保安全型沥青路面抗滑性能研究[D].西安:长安大学,2013.
    [93] Turcotte D L. Implications of Chaos,Scale-invariance,and Fractal Statistics inGeology[J]. Global and Planetary Change,1990,89:301-308.
    [94] Gardner K H,Theis T L,Young T C. Colloid aggregation: Numerical Solution andMeasurements[J]. Colloids and surfaces A: Physicochemical and Engineering Aspcets,1998,141(2):237-252.
    [95]谢和平.分形—岩石力学导论[M].北京:科学出版社,1997.11.
    [96]孙洪泉.分形几何与分形插值[M].北京:科学出版社,2011.3.
    [97]刘柳,梁乃兴,王乐.数字图像技术在露石混凝土路面中的应用[J].重庆交通大学学报(自然科学版),2008,27(5):733-735.
    [98]杨浩.沥青混合料的数字图像特征研究[D].哈尔滨工业大学,2006.
    [99]文静.数字化技术评价沥青路面构造深度研究[D].长安大学,2009.
    [100]彭成坝.沥青混凝土路面纹理构造表征技术研究[D].长安大学,2011.6.
    [101]王端宜,李维杰,张肖宁.用数字图像技术评价和测量沥青路表构造深度[J].华南理工大学学报(自然科学版),2004,32(2):42-45.
    [102]陈华东,曾波,戴元华等.六偏磷酸钠的应用及制备技术[J].无机盐工业,2010,42(2):9-11.
    [103]朱友益,毛钜凡.六偏磷酸钠等分散剂对微细粒菱锰矿的分散作用研究[J].金属矿山,1990(12):50-53.
    [104]刘京娟.多元线性回归公式检验方法[J].湖南税务高等专科学校学报,2005,18(5):48-50.
    [105]金浩,高素英.最佳多元线性回归公式的选择[J].河北工业大学学报,2002,31(5):10-14.
    [106]霍倩,李书全.遗传算法应用于多元非线性回归公式求参的研究[J].河北农业大学学报,2002,25(2):107-110.
    [107]王慧文,孟浩.多元线性回归的拟合建模方法[J].北京航空航天大学学报,2007,33(4):500-504.
    [108]陶菊春,吴建民.可线性化非线性回归拟合公式的剖析与改进[J].数学的实践与认识,2003,33(2):7-12.
    [109]程毛林,张伦俊.多元非线性拟合公式的建立方法[J].统计与决策,2005,5:20-21.
    [110]李磊,潘慧玲.我国工业废水排放量的多元非线性回归拟合[J].江南大学学报(自然科学版),2011,10(3):309-313.
    [111]孙国庆.降噪环保型隧道铺装层TSEM沥青混合料设计研究[D].西安:长安大学,2011.
    [112]郑南翔,纪小平,侯月琴.沥青紫外线老化后性能衰减的非线性拟合[J].公路交通科技,2009,26(4):33-36.
    [113]纪小平,侯月琴,郑南翔.沥青热氧老化的非线性模拟[J].长安大学学报(自然科学版),2009,29(4):13-15.
    [114]张争奇,边秀奇,杜群乐.沥青混合料压实特性影响因素研究[J].武汉理工大学学报,2012,34(6).36-41.
    [115]李立寒,李新军,钟陟鑫.沥青混合料压实特性的影响因素分析[J].中国公路学报,2001,14(增刊).31-34.
    [116]蒋玮,沙爱民,裴建中等.多孔沥青混合料旋转压实特性[J].长安大学学报(自然科学版),2010,30(5):11-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700