用户名: 密码: 验证码:
光聚合法制备高分子微球及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光聚合作为一种重要的聚合物材料的合成技术,与传统的热聚合相比,具有环境污染小、能耗低、聚合速度快、聚合温度低、设备简单以及易于工业化生产等优点。随着全球化经济的飞速发展,环境污染问题和能源危机日趋严重,而光聚合环境污染小和生产能耗低的优点正符合聚合技术未来发展方向,具有极为广阔的应用前景。
     高分子微球因其特殊尺寸和结构在许多领域如医学工程、生物工程、电子信息、化学工程、化妆品等等领域有广泛的应用。高分子微球的合成方法很多,如乳液聚合、悬浮聚合、分散聚合、沉淀聚合,已经形成粒径在0.01-100μm范围内尺寸均一的微球制备体系。但是,这些聚合方法基本采用热引发聚合体系,聚合温度较高。而光聚合可以在低温进行,聚合速度快,在高分子微球的制备方面具有独特的优势。高分子微球的制备方法中,分散聚合和乳液聚合是适用面最广的制备高分子微球的经典方法,分散聚合适合于制备纳米级和微米级微球,而乳液聚合适合于纳米级微球,所制备的微球分布均匀,制备方法简单,在高分子微球制备技术中占有极为重要的地位。本论文研究了将光聚合应用于高分子微球制备,通过光引发分散聚合和无皂乳液聚合分别合成不同结构、不同粒径和不同形态的高分子微球,对微球聚合过程中的影响因素进行了较为系统的研究。在合成得到的高分子微球上分别进行金属纳米颗粒的负载研究,所得的复合微球分别表现出一定程度的催化性、抗菌性和荧光增强作用。主要研究内容如下:
     (1)光引发分散聚合法制备P(NIPAAm-g-St)微球
     首先是大分子单体的合成,以巯基乙醇为链转移剂,采用链转移自由基聚合法制备末端带羟基的N-异丙基丙烯酰胺低聚物(PNIPAAm),再通过端基置换反应得到末端带双键的PNIPAAm大分子单体,分别采用凝胶渗透色谱(GPC)、紫外-可见分光光谱(UV-Vis)、傅里叶转换红外线光谱(FT-IR)和氢核磁共振波谱(1H-NMR)对大分子单体进行表征,所得大分子单体分子量为4000,末端双键的引入率为60%;其次是P(NIPAAm-g-St)微球的合成,以2,2-二甲氧基-2-苯基苯乙酮为光引发剂,PNIPAAm大分子单体作为共聚单体和分散稳定剂,在乙醇和水(7/3,V/V)的混合介质中通过紫外光辐照进行分散光聚合得到P(NIPAAm-g-St)微球。微球的形态、粒径和粒径分布采用扫描电镜(SEM)和激光光散射(LLS)进行表征。结果显示在低辐照条件下制备的高分子微球粒径分布明显小于高辐照条件下制备的微球,探讨了光辐照强度、大分子单体的浓度和聚合温度对合成微球的粒径的影响,结果表明辐照强度越大、单分子单体浓度越高、聚合反应温度越低,所得微球的粒径越大,聚合反应速度表现为先快后慢直至停止反应,聚合转化率可达到70%以上。
     (2)光引发分散聚合法制备Pd/PNVA-g-PAN/PSt
     首先是PNVA大分子单体的合成,通过退化链转移自由基聚合和端基置换成功制备末端带双键的PNVA大分子单体,再以St、AN和大分子单体PNVA为共聚单体,PNVA大分子单体同时也是分散稳定剂,在乙醇和水(7/3,V/V)的混合溶剂中通过光引发分散聚合制备PNVA-g-PAN/PSt微球,所得微球结构通过FT-IR、1H-NMR进行表征,微球的粒径和形态采用SEM表征,所得微球粒径在范围500-800nm内可控,微球为表面带花瓣的球形结构;然后是Pd/PNVA-g-PAN/PSt复合微球的制备,以PdCl2为金属源通过原位还原的方法在合成高分子微球表面进行Pd纳米颗粒负载,得到Pd/PNVA-g-PAN/PSt复合微球,复合微球形态采用透射电镜(TEM)表征,通过热失重分析(TGA)测试得到复合微球Pd负载量在15-30%,XRD图谱显示Pd纳米颗粒结构为立方晶体结构,Pd纳米颗粒的粒径为9nm,与TEM表征结果相符。最后对复合微球的催化性能进行研究,以复合微球为催化剂,分别对葡萄糖的氧化反应和对碘代苯与丙烯酸的交叉偶联反应进行研究,结果表明复合微球在这两种反应中具有良好的催化性能,且复合微球能够回收利用。
     (3)光引发剂分散聚合法制备Ag/P(St-co-MMA)复合微球
     首先是P(St-co-MMA)的制备,以2,2-二甲氧基-2-苯基苯乙酮(BDK)为光引发剂,PVP为分散剂,在乙醇和水的混合介质中通过光引发分散聚合制备P(St-co-MMA)高分子微球。微球的结构采用FT-IR表征,粒径和粒径分布采用LLS表征,形态采用SEM表征,结果显示,所得高分子微球粒径在200-500nm内可控。其次是Ag/P(St-co-MMA)复合微球的制备,以AgNO3为金属源,分别以NaBH4和紫外光还原法通过原位还原将纳米Ag负载在P(St-co-MMA)微球表面,复合微球结构分别通过UV-vis, TEM和XRD进行表征,微球表面负载Ag纳米颗粒粒径在10-20nm,晶型为立方晶系,并发现采用NaBH4还原法制备的复合微球中的Ag纳米颗粒粒径更小。最后是复合微球的性能研究,分别研究了复合微球对金色葡萄球菌的抗菌性、对荧光素的荧光增强性质和对亚甲基蓝的光催化降解性,结果显示复合微球具有优良的抗菌性,对亚甲基蓝(MB)光降解反应具有一定的催化活性,对荧光素的荧光性能有一定增强作用和。
     (4)光引发无皂乳液聚合法制备P(St-co-MMA-co-AA)微球
     以水溶性的2-羟基-4-(2-羟乙氧基)-2-甲基苯丙酮为光引发剂,水为分散介质,通过无皂乳液聚合法成功制备P(St-co-MMA-co-AA)微球。微球的结构通过FT-IR进行表征,微球的形态通过SEM表征,微球的粒径和粒径分布通过LLS表征,采用测量电导率的方法来测量微球表面羧基含量。结果表明光引发无皂乳液聚合法制备的P(St-co-AA)微球粒径为180nm,粒径分布较窄,改变共聚单体配比能控制所得高分子微球的粒径大小,共聚单体丙烯酸用量越大,所得共聚物微球的粒径越低,聚合转化率达到90%,高于光引发剂分散聚合产率;以P(St-co-MMA-co-AA)微球为载体负载Ag纳米颗粒,通过UV-vis, TEM和XRD进行表征。
Photopolymerization is an important synthesis technology in polymer material,andcompared to thermal-initiated polymerization, The typical characteristic ofPhotopolymerization lies in that it can be carried out at low temperature,high reaction rate,energy saving, simple equipment, easy to implement industrial production and so on. With therapid development of global economy,the threats of energy and environment problem areincreasingly serious; Photopolymerization has tremendous advantages on sustainabledevelopment strategy.
     Polymer microspheres are finding to be increasing applications in various fields, such asmedicines, biotechnologies, electronics, chemical technologies, cosmetics and so on. Variousmethods have been employed to prepare polymer microspheres, such as emulsionpolymerization, suspension polymerization, and dispersion polymerization. However, thesemethods must be proceeded at high temperature by thermal-initiated polymerization, whichare energy-consuming and often difficult to prepare in low temperature. The thesis hasreviewed the photopolymerization technology was applied in the preparation polymermicrospheres. The main contents of this paper are as follows.
     (1) P(St-g-NIPAAM) microspheres were synthesized through dispersionPhotopolymerization. Taking2,2-dimethoxy-2-phenylacetophenone (BDK) as photoinitiator,PNIPAAM with a vinyl end groupas stabilizer,the mixture of ethanol and water asdispersion medium,P(St-g-NIPAAM) microspheres with narrow size distribution weresynthesized under the irradiation of UV-lamp.The obtained microspheres were characterizedby scanning electron microscopy (SEM) and laser light scattering (LLS). The monodispersionP(St-g-NIPAAM) nanospheres were obtained by UV photo-initiated polymerization of St andPNIPAAM in the ethanol-water media at low UV illumination. The results show that the sizeof microspheres can be controlled by changing the UV illumination, concentration ofmacromoners, and the polymerization temperature.
     (2) Pd/PNVA-g-PAN/PSt composite microspheres were synthesized successfully.Firstly, PNVA-g-PAN/PSt microspheres were prepared by dispersion photocopolymerizationof acrylonitrile (AN) with styrene (St) in the mixture of ethanol and water using dispersionmedium, PNVA macromonomer as reaction stabilizer. PNVA-g-PAN/PSt microsphereswere characterized FT-IR and1H-NMR. The diameter range of microspheres were controledin range from500-1000nm.Next, palladium nanoparticles were located onto the surfaces ofmicrospheres in the mixture of ethanol and water by in-situ reduction method using PdCl2as metal source and ethanol as reducing agent at90℃. The sizes of PdNPs were around9nmby TEM observations, The weight percents of PdNPs immobilized onto the microsphereswere15to30%, depending on the feed amount of Pd2+ions based on determination of TGA.XRD pattern showed that PdNPs were of face-centered cubic crystal structures. PdNPsshowed high activity and selectivity to catalyze the cross-coupling reaction of iodobenzenewith acrylic acid.
     (3) Ag/P(St-co-MMA) composite microspheres were synthesized. Firstly,P(St-co-MMA) microspheres were prepared by dispersion Photocopolymerization of Styrene(St) and methyl methacrylate (MMA) in a mixture of ethanol and water(Vethanol/Vwater=7/3) using BDK and polyvinylpyrrolidone (PVP) as the initiator andstabilizer, respectively. The structure of microspheres were characterized by FTIR, The sizeand size distribution of microspheres were characterized by LLS, The shape of microsphereswere characterized TEM. The results show that the size of P(St-co-MMA) microspheres canbe controlled in range from500to800nm. Next, Ag nanoparticles were located evenly ontosurface of the microspheres above. Taking silver nitrate (AgNO3) as metal source, Theultrafine dispersed nanoparticles of Ag can be located surface of the microspheres via thereduction of corresponding silver ions (Ag+) by sodium borohydride (NaBH4) or ultraviolet(UV) light. The composite microspheres were characterized by UV-vis, TEM and X-raydiffractometry (XRD). The composite microspheres had good antibacterial property andphotocatalytic. The composite microspheres on the fluorescent properties of fluorescein (FL)were also investigated. With the increase of Ag nanoparticles concentrations, the fluorescenceenhancement efficiency had a maximum.
     (4) P(St-co-AA) microspheres were prepared by Soap-free EmulsionPhotocopolymerization of St and acrylic acid (AA) in water using2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone. The structure of microspheres werecharacterized by FTIR, The shape of microspheres were characterized TEM,The size and sizedistribution of microspheres were characterized by LLS, The sizes of microspheres werearound70nm, Conversion rate of photopolymerization is up to86%.
引文
1. Fujibayashi T., Komatsu Y., Konishi N., et al. Effect of polymer polarity on the shape of“Golf Ball-like” particles prepared by seeded dispersion polymerization[J], Ind. Eng. Chem.Res.,2008,47:6445-6449
    2. Tanaka T., Komatsu Y., Fujibayashi T., et al. A novel approach for preparation ofmicrometer-sized, monodisperse dimple and hemispherical polystyrene particles[J], Langmuir,2010,26(6):3848-3853
    3. Fujibayashi T., Okubo M., Preparation and thermodynamic stability of micron-sized,monodisperse composite polymer particles of disc-like shapes by seeded dispersionpolymerization[J],Langmuir,2007,23:7958-7962
    4. Okubo M.,Konislli Y.,Inohart T.,et a1., Production of hollow polymer particles bysuspension polymerizations for ethylene glycol dimethacrylate/toluenedroplets dissolvingstyrene-methyl methacrylate copolymers[J], Appl. Polym. Sci.,2002,86:1087-1091
    5.王胜林,朱以华,昊秋芳等.微悬浮聚合法合成聚苯乙烯磁性微球[J],华东理工大学学报,2001,27(4):364-367
    6.徐晶,交联聚苯乙烯微球的制备[J].内蒙古石油化工,2008,12:6-8
    7. Harkins W. D., A General theory ofthe mechanism ofemulsion polymerizationl[J],J.Am.Chem.Soc.,1947,69(6):1428-1444
    8. Harkins W. D.,General theory of mechanism of emulsion polymerizationII[J], J.Polym.Sci.,1950,5(2):217-251
    9. Smith W. V., The partition of acrylonitrile between styrene and water[J],J.Am.Chem.Soc.,1948,70(6):2177-2179
    10. Smith W. V., The kinetics of styrene emulsion polymerization[J], J.Am.Chem.Soc.,1948,70(11):3695-3702
    11. Smith W. V.,Chain initiation in styrene emulsion polymerization[J], J.Am.Chem.Soc.,1949,71(12):4077-4082
    12. Robert M. F., Yashavanth K. K., Coagulation-control of particle number duringnonaqueous emulsion polymerization of methyl methacrylate[J], J. Colloid and Interface Sci.1976,54(1):6-12
    13. Zhang Y. H., Zou Q. C., Shu X. W. et al.,Preparation of raspberry-like polymer/silicananocomposite microspheres via emulsifier-free polymerization in water/acetone media[J], J.Colloid and Interface Sci.,2009,336:544-550
    14. Ngai T.,Wu C.,Double roles of stabilization and destabilization of initiatorpotassiumpersulfate in surfactant-free emulsion polymerization of styrene undermicrowaveirradiation[J], Langmuir2005,21(18):8520-8525
    15. Monteiro M. J.,de Barbeyrac J., Free-radical polymerization of styrene in emulsion usinga reversible addition-fragmentation chain transfer agent with a low transfer constant:effect onrate,particle size,and molecular weight[J],Macromolecules,2001,34(13):4416-4423
    16. Puseh J.,Van Herk A. M., Pulsed electron beam initiation in emulsion polymerization[J],Macromolecules,2005,38(21):8694-8700
    17. Atik S.,Thomas J. K., Photoinduced reactions in polymerized microemulsions[J], J. Am.Chem. Soc.,1983,105(14):4515-4519
    18. Capck L.,Juranicovfi V.,On the flee-radical microemulsion polymerization ofalkylmethacrylates[J], Eur. Polym. J.,1998,34(5-6):783-788
    19. Kawaguchi H.,Fujimoto K.,Saito M.et al. Preparation and modification of monodispersehydrogel microspheres [J], Polym. Int.,1993,30:225-231
    20. Kawaguchi H.,Fujimoto K.,Kasuya Y. Hydrogel microspheres III. Temperature-dependentadsorption of proteins on poly-N-isopropylacrylamide hydrogel microspheres [J], Colloid.Polym. Sci.1992,270:53-57
    21.Kondo A.,Fukuda H., Preparation of thermo-sensitive magetic microspheres and theirapplication to bioprocesses[J], Colloids and Surf., A:,1999.153:435-438
    22. Kashiwabara M., Fujimoto K. and Kawaguchi H., Preparation of monodisperse, reactivehydrogel microspheres and their amphoterization [J], Colloid. Polym. Sci.1995,273:339-345
    23.Okamura A., Fujimoto K., Kawaguchi H. et al., preparation and structural control ofpolyimide, Preprints of polymeric microspheres symposium,Tukuba,Japan,1996:167-170
    24.Tseng C M, Lu Y Y, EI-Aasser M S, et al. Uniform polymer particles by dispersionpolymerization in alcohol [J]. J. Polym Sci., Part A:Polym. Chem.,1986,24(11):2995-3007
    25.Ober C. K., Lok K. P. Particle size control in dispersion polymerization of polystyrene[J].Can. J. Chem,1985,63:209-216
    26.Takhashi K., Miyamori S., Uyama H, et al. Preparation of micron-size monodispersePoly(2-hydroxyethyl methacrylate) particles by dispersion polymerization[J]. J. PolymSci.,Part A:Polym. Chem.,1996,34:175-182
    27. Takhashi K., Miyamori S., Uyama H., et al. Preparation of micron-size monodispersePoly(2-hydroxyethyl methacrylate) particles by dispersion polymerization[J]. J. Polym Sci.,Part A:Polym. Chem.,1996,34:175-182
    28.赵中璋,杨数明,杨彦国等.分散聚合制备粒度均匀的聚甲基丙烯酸环氧丙酯微球[J].高分子学报,1999,1:31-36
    29.李雅洁,阚成友,黄世明等.微米级单分散苯乙烯-甲基丙烯酸共聚物微球的制备[J],北京化工大学学报,2005,32(4):60-64
    30. Bourgeat, Lami J., Encapsulation of Inorganic Particles by Dispersion PolymerizationinPolar Media1.Silica nanoparticles Encapsulated by Polystyrene[J], J. Colloid and InterfaceSci.,1998,197(2):293-308
    31.艾德生,纳米SiO2的分散聚合缴纳化研究[J].科学技术与工程,2004,4(9):813-815
    32. Shi X. Y., Tan T. W., Preparation of chitosan/ethylcellulose complex microcapsule and itsapplication in controlled release of Vitamin D2[J]. Biomaterials,2002,23:4469-4473
    33.吴远,叶红军,王家龙等.丝裂霉素-聚碳酸酯磁性微球的制备及靶向治疗原发性肝癌的实验研究[J].华夏医学,2001,14(1):1-3
    34. Kondo A.,Uchimura S.,Higashitani K.,et al. Immunological agglutination behavior oflatex particles with covalently immobilized antibodies [J], J.Ferment. BioEng.,1994,78:164-169
    35. Meahara T.,Hattori H. Determination of the net electric charge of a polyacrylamidemolecule by Donnan potential measurements [J], Colloid Polymer Sci.,1993,271:1157-1160
    36.Hatakeyama M., Iwato S.,Fujimoto K.,et al. DNA-carrying latex particles for DNAdiagnosis2. Distinction of normal and point mutant DNA using S1nuclease [J],Colloids Surf.B,1998,10:171-175
    37.Cloton C. K., Engineering challenge in cell-encapsulation technology[J].TrendsBiotechnol.,1996,14:158-162
    38. N. N. Gandhi, V. Vijayalakshmi, B. Sawant et al., Immobilization of Mucor miehei lipaseon ion exchange resins[J], Chem. Eng. J.,1996,61:149-156
    39.Gome F. M.,Pereora E. B. and De Casero H. F., Immobilization of Mucor lipase and its usein noncoventional biocatalysis[J], Biomacromolecules,2004,5:17-23
    40. Bayramoglu G., Kaya B. and Arica M. Y., Poly(GMA-HEMA-EGDMA) microspheres[J],Food Chemistry,2005,92:261-268
    41. Levin Y.,Pecht M., Goldstein L. et al., A water-insoluble polyaninnoic derivative oftrypsin I preparation and propertise[J], Biochemistry,2005,92:261-268
    42.Tatard V. M., Venier-Julienne M C, Saulnier P, et al. Pharmacologically activemicrocarriers: a tool for cell therapy[J]. Biomaterials,2005,26:3727-3737
    43.Kato D., Takeuchi M., Sakurai T., et al. The design of polymer microcarrier surfaces forenhanced cell growth[J]. Biomaterials,2003,24:4253-4264
    44.曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用,化学工业出版社,1997:155-160
    45.张立永,成国祥,陆书来等.悬浮聚合制备西咪替丁印迹聚合物微球的分子选择性能[J],分析化学,2003,31(6):655-658
    46.赖家平,卢春阳,何锡文.水溶液微悬浮聚合法制备酸性药物吲哚美辛分子印迹微球及其色谱表征[J],高等学校化学学报,2003,24(7):1175-1179
    47. Ma G-H., Fukutomi T., Preparation an analysis of Ordered Alloy Structure of BinaryMixture composed of microgels[J], J. Colloid and Interface Sci.,1994,168:393-401
    48. Ishii K., synthesis of microgels and their application to coatings[J], Colloids and Surf., A,1999153,591-595
    49. Iki K., Komazawa T., Yamaguchi T., Study on weatherability about silicone species insilicone modified acrylic emulsion, Reprints of13th polymer microspheressymposium,2004:207-208
    50. Tanaka H.,Suzuki Y., Yoshina F., Synthesis and coating application of water-bornefluoroacryic–polyurethane composite dispersions[J], Colloids and Surf., A,1999,153:597-601
    51.王芳,肖军,王经文等.溶剂蒸发法微胶囊固化剂的制备与表征[J],南京航空航天大学学报,2OO8,40(1):120-124
    52. Shigeake F.,Yutaka O.,Yoshii M., Microcapsule Type Latent Curing Agent for EpoxyResin,M ethod for Prod ucing the Same,One—Component Epoxy Resin Composition EpoxyResin Composition,and Epoxy Resin Cured Product:JP,102610[P].2009-05-14
    53.童速玲,张兴华,丁新平.环氧树脂固化促进剂的微胶囊化及其应用[J],广东化工,2004,6:41-43
    54. Shinzo Omi, Masato Saito, Masato Nagai et al., Preparation of monodisperse polystyenespheres incorporating polyimide prepolymer by diapersion polymerization in the Presence ofL-Ascorbic acid[J], J. Appl. Polym. Sci.1998,68:897-907
    55. Shinzo Omi, Masato Saito,Kengo Imanmura et al., Preparation of monodispersepolymeric microspheres including polyimide prepolymer by using SPG emulsificationtechnique[J], Colloids and Surf., A,1999,153:373-381
    56. Iga T.,Hasegawa J.,The improvement of a particle size distribution for suspensionpolymerization toner.Reprints of13thpolymer microspheres symposium,2007:101-104
    57. Ichino T.,Dual-phase polymer electrolyte prepared from polar and non-polar lattices,Colloids and Surf., A,1999,153:567-574
    58. Andrzcjcwska E.,Photopolymerization kinetics of multi-functional monomers[J],Prog. inPolym. Sci.,2001,26:605-665
    59. Clarkst, Hoyle, C. E. Jonsson S. et a1., Photopolymerization of acrylatesusingN-aliphaticmaleimides as photoinitiators[J],Polymer,1999,40:5063-5072
    60. Fouassicr J. P.,Photoinitiator,Photopolymerization and Photocuring:Fundamentals andApplications.New York Hanser Publishers:Munich Vienna,1995
    61. Roberto,S.B., Use ofradiation in biomaterials science.Nucl. Instrum. Methods in Phys.Res.,Sect. B,2002,191:752-757
    62. Norbert M.,Ulrich S., New developments of polymeric dental composites[J].Prog. Polym.Sci.,2001,26:535-576
    63.魏杰,金养智.光固化涂料,北京:化学工业出版社,2005
    64. Crivello,J.V.,Dietliker K., Chemistry&technology ofUV&EB formulation for coatings,inks&paints. Sita Technology:London,1998
    65.贺继东,王娟,丙烯腈光聚合研究[J].化学推进剂与高分子材料,2005,3(6):45-47
    66.阮维青,乔金梁,林纪辰.UV光聚合法合成高吸水性树脂中光引发剂的影响[J],辐射研究与辐射工艺学报,2004,22(2):82-86
    67. Nayak B. R., Mathias L. J. A novel photoinimer for thepolymerization of acrylates andmethacrylates [J]. J. Polym. Sci., Part A: Polym. Chem.,2005,43:5661-5670
    68. Günersel E. D., Hepuzer Y., Ya ci Y., Bisacylphosphine oxides as bifunctionalphotoinitiators for block copolymer synthesis[J]. Die Angewandte Makromolekulare Chemie,1999,264:88-91
    69. Crivello J. V.,The diseovery and development of onium salt cationic Photoinitiators[J], J.Polym. Sci., Part A: Polym. Chem.,1999,37(23):4241-4254
    70. Chen J. Y.,Zhao C., Wang R. X., Cao S. G. et al., Photochemical and thermalDecomposition of diphenylamine diazonium salts[J],J. of Photochem. and Photobio.,A,1999,125(1):73-78
    71. Uwe M., Andreas U., Wolfgang M. et al., New insights about diazonium salts as cationicPhotoinifiators[J], J. of Photochem. and Photobio., A,2001,140(1):53-66
    72. Crivello J. V., Lam H. W., Photoinitiated cationic Polymerization with triary-sulfoniumsalts[J], J. Polym. Sci. Part A:Polym. Chem.,1996,34(16):3231-3253
    73.黄强,熊万斌,姜厚友等.新型阳离子光引发剂[4-(2-羟基-3-丁氧基-1-丙氧基)苯基]苯碘鎓盐的合成即光敏性能研究[J],感光科学与光化学,2006,24(1):61-66
    74. Ghosh P.,Ghosh R., Photopolymerization of Methyl Methacrylate Using Benzophenone-Dimethlani-line Combination as Photoinitiator[J], Eur. Polym. J.,1981,14:545-549
    75. Delzenne G. A.,Larion U., Peeters H., Photopolymerization Initiatede by0-acyloximes[J],Eur. Polym. J.,1970,6:933-940
    76. Ghosh P., Mitra P. S., Bannarjee A. N., Photopolymerization of Methyl Methaerylate withthe Use of Bromine as Photoinitior[J], J. Polym. Sci. Part A:Polym. Chem.,1973,1l:2021-2029
    77. Lissi E. A., Zanocco A., Photoinitiated polymerization:Effect of the InitiatorAbsorbance[J], J. Polym. Sci. Part A:Polym. Chem.,1983,21:2197-2204
    78. Alvarez I., Lissi E. A., Encinas M. V., Effect of the Initiator AbsorbanceonTransition-Metal Complex Photoinitiated Polymerization[J]. J. Polym. Sci. Part A:Polym.Chem.,1998,36:207-210
    79.李橦,孙猛,于同隐.光聚合的吸光度效应[J],高等化学学报,1988,9:73-78
    80.李橦,曹维孝,冯新德.苯胺引发丙烯腈光聚合的动力学研究[J],中国科学(B),1987,5:457-462
    81.李会玲,杨万泰.ITX/EDAB光引发丙烯酸溶液聚合动力学[J],北京化工大学学报,2001,28:45-47
    82.于洪俊,于毅冰,杨万泰.紫外光引发醋酸乙烯酯溶液聚合研究[J],北京化工大学学报,2003,30:49-53
    83.周年深,朱秀林,高俊.紫外光辐射交联制保水性树脂[J],精细石油化工,2004,5:25-28
    84.张婕妤,刘莲英,杨万泰.光引发常规乳液聚合制备氨基聚苯乙烯纳米粒子,高分子学报,2010,12:1451-145785戚栋明,包永忠,黄志明等.纳米SiO2粒子静电吸附引发剂及引发甲基丙烯酸甲酯乳液聚合[J],高校化学工程学报,2006,20(2):245-249
    86.李威,王文锋,钱素萍等.纳米聚N-异丙基丙烯酰胺微凝胶的光引发聚合[J],辐射研究与辐射工艺学,2002,20(2):118-121
    87.刘连英,杨万泰.UV光引发的丙烯酰胺反相乳液聚合[J],高分子学报,2004,4:545-550
    88.汪威,刘连英,黄振华等.紫外光引发丙稀酰胺分散聚合研究[J],高分子学报,2005,3:320-326
    89.Georges M. K.,Veregin R. P. N.,Kazmaier P. M.,et a1., Narrow molecular weight resinsby a free-radical polymerization process[J],Macromolecules,1993,26(11):2987-2989
    90.黄剑莹,邹友思.TEMPO调控下的苯乙烯光聚合[J],高等学校化学学报,2008,29:1689-1693
    91.刘晓暄,任亚娥,张婷等.HTEMPO和TMPD调控下MMA可控/活性光聚合研究[J],高等学校化学学报,2006,27:192-195
    92.柳冀,王涛,黄毓礼.阳离子光引发剂[CpFe(η6-tol)]BF4光聚合活性及增感的研究[J],感光科学与光化学,2002,20(3):177-184
    93.冉蓉,于游,万涛等.三硫代碳酸酯引发的苯乙烯活性自由基光聚合[J],高分子材料科学与工程,2006,22(6):75-78
    94. Zhiqiang G., Eric A. Grulke et al., Synthesis of monodisperse polymer microspheresby photopolymerization of microdroplets[J], Colloid Polym. Sci.,2007,285:847-854
    95. Cemal E., Gustav S., Preparation of Monodisperse Polymer Particles byPhotopolymerization[J], J. Colloid Interface Sci.,1996,179:276-280
    96. Dai Q., Wu D. Z., Zhang Z. H., et al. Preparation of monodisperse poly(methylmethacrylate) particles by radiation-induced dispersion polymerization using vinyl terminuspolysiloxane macromonomer as a polymerizable stabilizer[J]. Polymer,2003,44:73-77
    97. Herrmann W. A., fele K., Preysing D. V., et al. Phospha-palladacycles andN-heterocyclic carbene palladium complexes: efficient catalysts for CC-coupling reactions[J].J Organomet Chem,2003,687:229-248
    98. Miyaura N., Suzuki A. Palladium-catalyzed cross-coupling reactions of organoboroncompounds[J]. Chem. Rev.,1995,95(7):2457-2483
    99. Suzuki A. Recent advances in the cross-coupling reactions of organoboron derivativeswith organic electrophiles[J], J. Organomet Chem.,1999,576:147-168
    100. Terasawa M., Kaneda K., Imanaka T. et al. A coordinatively unsaturated,polymer-boundpalladium(0) complex. Synthesis and catalytic activities[J]. J Organomet Chem,1978,162(3):403-414
    101.王国栋.聚硅氧烷空心胶囊的制备及Heck偶联催化应用[J],化学研究与应用,2008,20(4):403-406
    102. Chen C. W., Akashi M., Preparation of ultrafine platinum particles protected by poly(N-isopropylacrylamide) and their catalytic activity in the hydrogenation of allyl alcohol[J], J.Polym. Sci. Part A: Polym. Chem.,199735:1329-1332
    103. Liu J. C., He F., Durham E. et al., Polysugar-stabilized Pd nanoparticles exhibiting highcatalytic activities for hydrodechlorination of environmentally deleterious trichloroethylene[J],Langmuir,2008,24(1):328-336
    104. Kobayashi H., Yamauchi M., Kitagawa H., et al. On the nature of strong hydrogen atomtrapping inside Pd nanoparticles[J], J. Am. Chem. Soc.,2008,130(6):1828-1829
    105.宋一兵,孙长勇,叶飞. Pd/C催化剂上葡萄糖催化氧化反应[J],天然气化工,2003,28(3):56-59
    106. Mirescu A., Prü e U., A new environmental friendly method for the preparation of sugaracids via catalytic oxidation on gold catalysts[J]. Appl. Catal., B:,2007(70):644-652
    107. Okubo M., Yonehara H., Kurino T., Production of micron-sized,monodispersepolystyrene/poly(n-butyl methacrylate) composite particles having ‘‘Hamburger-like’’morphology by seeded polymerization[J]. Prog. Colloid Polym. Sci.,2004(124):22-26
    108. Okubo M., Fujibayashi T., Yamada M., et al. Micron-sized, monodisperse, snowman/confetti-shaped polymer particles by seeded dispersion polymerization[J]. Colloid Polym. Sci.,2005,283:1041-1045
    109.陈明清,刘晓亚,杨成等.分散共聚法制备特殊形态高分子微球的研究[J].高分子学报,2002(5):628-631
    110. Nishida N., Shiraishi Y., Kobayashi S. et al., Fabrication of liquid crystal sol containingcapped Ag-pd bimetallic nanoparticles and their electro-optic properties[J], J. Phys. Chem. C.,2008,112(51):20284-20290
    111. Angel D. P., Dominguez M. J., Angel D. G. et al., Aggregation state of Pt-Au/Cbimetallic catalysts prepared by surface redox reactions[J]. Langmuir,2000,16(18):7210-7217
    112.袁燕华,陈明清,刘晓亚等. PNIPAAm接枝PAN/PSt热敏性聚合物微球的制备[J],高分子材料科学与工程,2005,21(5):71-74
    113. Liu J. C., He F., Durham E. et al. Polysugar-stabilized Pd nanoparticles exhibiting highcatalytic activities for hydrodechlorination of environmentally deleterious trichloroethylene[J].Langmuir,2008,24(1):328-336
    114. Jose D., Jagirdar R. B. Au@Pd core-shell nanoparticles through digestive ripening[J]. J.Phys Chem C,2008,112(27):10089-10094
    115. Stephan T. D.,Panittamat K.,Pranut P., Layer-by-layer deposition of antimicrobial silvernanoparticles on textile fibers[J], Colloids Surf A: Physicochem Eng Aspects,2006,289(1-3):105-109
    116. Han M. H., Lin H. F., Yuan Y. H., et al. Pressure drop for two phase counter-current flowin a packed column with a novel internal [J]. Chem. Eng. J.,2003,94(3):179-187
    117. Miljanic S., Frkanec L., Biljan T. et al., Surface-enhanced raman scattering on molecularself-assembly in nanoparticle-hydrogel composite[J],Langmuir,2006,22(22):9079-9081
    118.焦洋,孙晓泉,王志荣等.贵金属纳米粒子及其复合物的非线性光学性质和应用研究进展[J].材料导报,2006,20:188-192
    119. Cheng X. J., Sie C. T., Zhao Q. et al., Facile method to prepare monodispersedAg/polystyrene composite microspheres and their properties[J],J. Polym. Sci. Part A: Polym.Chem.,2009,47:4547-4554
    120. Jiang L. Z., Wu Z. P., Wu D. Z. et al., Controllable embedding of silver nanoparticles onsilica nanospheres using poly(acrylic acid) as a soft template,Nanotechnology,2007,18:1-6
    121.赵琦,杜海燕,包建军等.镀银磁性PMMA微球的制备[J].高分子材料科学与工程,2009,25(8):122-125
    122. Henglein A., Meisel D., Spectrophotometric observations of the adsorption oforganasulfur compounds on colloidal silver nanoparticles[J], J. Phys. Chem. B,1998,102(43):8364-8366.
    123. Zhou C. H., Zhou J. F., Wu Z. S. et al.,Synthesis and characterization ofcopolymercore-Silvershellcomposite microspheres[J], Chinese J. Chem.,2005,23:1071-1075
    124.何耀良,黄科林,李克贤等.国内抗菌聚氨酯的研究进展[J],企业技术与发展,2009,8:24-27
    125.瓮亮,吴赞敏,李洪霞.印染废水的处理方法及进展[J],印染助剂,2005,22(11):7-11.
    126.毕进红,陈炳钦,车建刚等.可见光光催化剂AgNbO,:柠檬酸络合法制备及其性能[J],无机化学学报,2011,27(10):1952-1958
    127. Liu H. R., Du J. H., Synthesis and characterization of MoO2/P(St-co-MMA-co-AA)microspheres via microemulsion by γ-ray radiation[J],Solid State Sci.,2006,8:526-530
    128. Yu H. B., Peng J., Zhai M. L. et al., Synthesis and characterization of poly(n-butylacrylate)-poly(methyl methacrylate) latex interpenetrating polymer networks byradiation-induced seeded emulsion polymerization[J],Radiat Phys. Chem.,2007,76:1746-1750

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700