用户名: 密码: 验证码:
Mg-Gd-Y镁合金Zr晶粒细化行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金铸造过程中添加有效的晶粒细化剂是非常基础的环节,能显著细化合金组织、提高组织均匀性、减少铸造缺陷,有效改善合金的强韧性和塑性。Zr是不含Al元素的镁合金最有效的细化剂,目前主要是以二元Mg-Zr中间合金的形式加入。近年来,Mg-Gd-Y(-Zr)稀土镁合金因轻质、高强、耐热等优点,在汽车、航空、军工、通讯等领域展现了广阔的应用前景。然而,Zr对Mg-Gd-Y合金晶粒细化行为还未得到全面认识和研究。由于Zr的密度(6.52g/cm~3)重于液态Mg(~1.58g/cm~3),在Mg-Gd-Y镁合金熔炼过程中,Zr的自发沉降引起了晶粒细化的衰退,成为获得稳定晶粒细化效果的瓶颈,因此有必要阐明其衰退行为,以推进Zr细化工艺的发展。更为迫切的问题是,Zr沉降已引起研究者关注原料Zr细化剂的组织特征,特别需要研究Zr中间合金对Mg-Gd-Y细化效果的影响,以探寻更高效的Zr细化剂。同时,一条并行的思路是,研究和开发新型Zr细化剂或加Zr方法,以抑制Zr沉降、节省成本。此外,揭示合金元素Gd、Y、Zr在晶粒细化过程中的交互作用行为,对进一步研究镁合金Zr晶粒细化机制,具有一定的理论意义。
     本文研究了Zr对Mg-Gd-Y镁合金晶粒细化行为。通过Zr在Mg-Gd-Y熔体中的沉降实验,揭示了Zr沉降对晶粒细化效果衰退的影响规律,并指出了最佳保温时间。进而通过晶粒细化试验,阐明了Mg-Zr中间合金自身的Zr粒子尺寸分布状态对Mg-Gd-Y镁合金晶粒细化效果的影响,提出了显著改善Mg-30%Zr中间合金细化效果的方法。为抑制Zr沉降和降低成本,开发了针对Mg-Gd-Y镁合金的新型富Zr混合盐原位细化法,并从热力学角度阐明了相关的细化机制。最后,结合实验和理论分析,探讨了合金元素Gd、Y、Zr在该合金晶粒细化过程中的交互作用机制。
     沉降实验表明,Zr沉降对Mg-Gd-Y铸锭Zr含量及晶粒尺寸均具有非常不利的影响(衰退)。搅拌结束5min静置至240min,730℃~780℃之间,Zr含量衰退33%,晶粒尺寸粗化23%~27%。沉降计算表明,从搅拌结束静置至5min,主要是大于7μm粒子的沉降,可有效去除尺寸稍大的Zr夹杂,是工艺上需要的沉降;但从5min静置至240min,更细小的Zr粒子沉降占主要作用,是导致晶粒细化衰退的主要原因。
     优化的静置工艺为15min。建立了晶粒尺寸粗化率的数学模型:
     △C,%=5.21·lnt-8.15(t>5min,730℃),△C,%=6.76.lnt-9.42(t>5min,780℃),
     对理解Zr晶粒细化衰退具有一定指导意义。晶粒细化对比实验表明,对于不同的Mg-Zr中间合金,其组织内的Zr粒子尺寸
     分布状态,是影响Mg-Gd-Y合金细化效果的主要因素。当Zr中间合金组织中尺寸
     5μm以内细小Zr粒子的数量密度最高时,其细化效果最强,因为此区间的Zr粒子
     越多,越能在满足溶解Zr量的基础上,提供更多潜在的形核核心。基于此,提出
     了多道轧制改善Mg-30%Zr中间合金的Zr粒子分布,细化效果提高30%以上为抑制Zr沉降、节省成本,首次探索了针对Mg-Gd-Y合金的新型富Zr混合盐
     原位细化法。提出了优化后的Zr混合盐成分,为50%K2ZrF6-25%NaCl-25%KCl。
     对比实验表明,Zr盐细化效果可达到Mg-Zr中间合金的水平,而抗衰退性明显优于
     Mg-Zr中间合金。热力学分析揭示了Zr盐细化机制,可能主要由于原位生成的溶质
     Zr对Mg晶核的强烈生长抑制作用。阐明了Zr盐法产生的夹杂物是反应产物KF、MgF2和残余盐形成的团簇或结块;
     并采用MgO泡沫陶瓷过滤器进行净化除杂,使得铸锭力学性能得到明显提高,但
     今后仍有待进一步开发更高效的复合净化工艺以除杂。揭示了晶粒细化过程中,Gd、Y、Zr的交互作用行为。结果表明:未加Zr时,
     晶粒尺寸随着Gd、Y含量增加而降低,符合关系式dgs=3894.3·e-0.113·δ(Q为生长
     抑制因子);当Zr含量一定时,晶粒尺寸也是随Gd、Y的增加而降低,但Gd、Y的
     增加却降低了Zr对细化的贡献;当Gd、Y含量一定时,晶粒尺寸随Zr含量增加而
     降低。对溶解Zr和未溶解Zr的细化贡献分析表明,未溶解Zr粒子异质形核对晶粒
     细化的贡献率N(%)随Q增加而降低,基于数据分析构建了之间的数学关系式
     n,%=115.8.e-0.111`δ,对进一步研究Zr晶粒细化机制具有一定理论意义。结合Zr异质形核细化贡献的分析(n,%)与活性(active)形核Zr粒子质量分数的计
     算,阐明了Gd、Y含量增加抑制了Zr异质形核率的现象。表明一部分潜在形核Zr
     粒子并未成功形核,可能是由于溶质扩散场对形核的抑制而造成。
Grain refinement of cast magnesium alloys by inoculation of the melt with potentnucleant particles is the first effective step towards the goal of achieving a fine, uniformand equiaxed grain structure. This imparts to castings critically needed structuraluniformity and consistency in performance improving strength, ductility and so on.Zirconium is the most powerful refiner for Al-free Mg alloys, and the alloying processis normally by adding a binary Mg-Zr master alloy. In recent years, the light, highstrength and heat-resisting Mg-Gd-Y-Zr Mg alloy has attracted a great deal of attentionin the automotive, aviation, military and communication industry. As the density of Zr(~6.52g/cm~3) is much higher than liquid Mg (~1.58g/cm~3), Zr spontaneously settlesdown to the bottom of the crucible and thus this causes grain coarsening and muchwaste. This is an obstacle to development of grain refinement technology of Mg alloys.Therefore, it is very important to study the fading behavior of Zr in the melt, which isbenifical to improve the casting technique and save the usage of Zr. Moreover, thesettling of Zr raises certain concerns for researchers who pay more attention to theinherent quality of Mg-Zr refiners. Therefore, it is very crucial to investigate the effectof Zr master alloys on the grain refinement, which will help develop a more efficient Zrrefiner. Another thought is to develop a new Zr alloying method, which is cost savingand convenient. Furthermore, these studiesm will be useful for us to understand moreabout the grain refinement mechanism of Mg by Zr, if we incorporate the above issueswith the interaction effect of solute Gd, Y and Zr refiner.
     In this thesis, the grain refinement technology and mechanism of Mg-Gd-Y alloy byZr was investigated. Based on the settling behavior, the effect of settling of Zr on thefading of grain size was uncovered. The effect of Zr particle distribution in Mg-Zrmaster alloy on grain refinement was explained based on the experiments. Moreover,
     the refining efficiency of a Mg-30%Zr master alloy was impoved by hot-rolling. Furthermore, in order to develop an anti-settling and cheap alloying method of Zr, a kind of new Zr-rich salt mixture for Mg-Gd-Y alloy was formulated. The grain refining mechanism of Zr salts mixture is analyzed from thermodynamic aspect. Finally, the interaction effects of Gd, Y and Zr elements during grain refinement were clarified, and the grain refinement mechanism of Zr was discussed.
     The settling experiments show that it has an adverse (fading) effect on Zr content and grain size. Within the temperature range of730℃-780℃, when holding from5mins after stirring to240mins, the Zr content decreases by~33%, and the grain size coarsens by23~27%. The settling calcutaion shows that the particles greater than7μm in size settle out of the sample during the first5mins, which is better for removal of Zr clusters. However, the settling of much finer particles plays crucial role when settling time is from5mins to240mins. The optimal holding time is15mins. The dependence of coarsening rate of grain size on the holding time is established by the equations: ΔC,%=5.21·1nt-8.15(t>5min,730℃), ΔC,%=6.76·1tt-9.42(t>5min,780℃). This relationship is instructive to understand the coarsening of Zr grain refinement.
     The grain refinement experiments of Mg-Gd-Y alloys by Zr show that the main factor that influences the grain refining effect is the Zr particle size distribution within the microstructure of Mg-Zr master alloy. The master alloy with the largest number density of particles less than5μm in size exhibits the best grain refinement. This is because that those sutiable particles can produce more nucleating sites, when the soluble Zr is of sufficient level. Based on this finding, the particle number density of finer particles within a Mg-30%Zr master alloy has been prepared by hot rolling by8passes from7.5mm to0.5mm. The grain refining efficiency of the Mg-30%Zr is then improved by~30%.
     Considering settling problem, a new Zr-rich salts mixture for Zr alloying in Mg-Gd-Y alloy has been developed for the first time. The optimal composition of salts mixture is optimized to be [50%K2ZrF6-25%NaC1-25%KCl](with16.1%Zr inside). Compared with Mg-Zr master alloy, the grain refinement is satisfactory and the fading resistance is much better. Thermodynamic calculations show that the grain refinement of Zr salts is mainly due to the strong grain Growth Restriction Effect/Factor (GRF) of in-situ solute Zr produced by the reaction between Mg melt and Zr salts.
     The inclusions followed by chemical reaction of Zr are identified to be the agglomeration of KF, MgF2and the KSM residuals. Filtration purification by Ceramic Foam Filter (CFF) shows that the mechanical properties is slightly improved by-20MPa using the20ppi (pores per inch) MgO CFF, which indicates the purification effect is obvious. However, a more efficient multistage purification technology needs to be developed in future.
     The interaction behaviors between Gd, Y and Zr have been disclosed. The results show that the group of alloy without Zr addition has a decreasing grain size with increasing Gd and/or Y contents, and there is a mathematic relationship to show the grain size as following:dgs=3894.3·e-0.113Q, where Q is the value of GRF. The grain size of the group of alloy with an approximately the same Zr content also decreases with the increase in Gd and Y contents, while the increase in Gd and Y content decreases the grain refinement effect of Zr. In addition, the grain size of alloy with certain Gd/Y decreases with the increase in Zr content. The analysis indicates that the nucleating contribution (n,%) of Zr particles to grain refinement decreases with enhancing solute elements (Gd, Y, Zrs), and this effect has been established by the equation:n,%=115.8·e-0.111Q, which has theoretical significance for further investigation of Zr grain refinement mechanism.
     Combining the analysis of contribution of Zr to grain refinement with the calculation for weight percentage of active Zr nuclei, it is shown that the nucleation frequency decreases with increasing Gd and/or Y contents. This is possibly because some potential nucleating Zr particles are suppressed by the solute diffusion filed.
引文
[1]乌志明,马培华.镁、镁资源与镁质材料概述[J].盐湖研究,2007,15(4):65-72.
    [2]左铁镛.21世纪的轻质结构材料-镁及镁合金发展[J].新材料产业,2007,12:22-26.
    [3]彭光怀,张小联,邱承洲,胡珊玲.稀土镁合金的研究进展[J].江西有色金属,2005,19(3):27-30.
    [4]张丁非,彭建,丁培道,潘复生.镁及镁合金的资源、应用及其发展现状[J].材料导报,2004,18(4):72-76.
    [5]“十五”国家镁合金开发应用及产业化科技攻关重大项目管理办公室.镁合金应用开发与产业化[J].新材料产业,2006,(8):42-44.
    [6]孙明,吴国华,王玮,丁文江.镁合金纯净化研究现状与展望[J].2008,22(4):88-92.
    [7]陈振华.镁合金[M].北京:化学工业出版社,2004.
    [8]黎业生,董定乾,刘赣伟,李洪.镁合金晶粒细化剂研发现状及展望,江西理工大学学报,2007,28(4):5-9.
    [9]高德明. Mg-Al合金铸态组织细化技术基础研究[D].上海:上海大学,2009.
    [10] K. Kubota, M. Mabuchi, K. Higashi. Review processing and mechanical propertiesof fine-grained magnesium alloys [J]. Journal of Materials Science,1999,34(10):2255-2262.
    [11]王迎新. Mg-Al合金晶粒细化、热变形行为及加工工艺的研究[D].上海:上海交通大学,2006.
    [12]刘生发. Mg-9Al基合金组织细化技术及性能研究[D].武汉:武汉理工大学,2004.
    [13]张世军,黎文献,余琨,谭敦强.镁合金的晶粒细化工艺[J].铸造,2001,50(7):373-375.
    [14]潘义川.镁合金中α-Mg、Mg2Si相的异质形核机制与相关中间合金研究[D].济南:山东大学,2006.
    [15] M.A. Easton, D.H. StJohn. A model of grain refinement incorporating alloyconstitution and potency of heterogeneous nucleant particles [J]. Acta materialia,2001,49(10):1867-1878.
    [16] M.A. Easton, D.H. StJohn. An analysis of the relationship between grain size,solute content, and the potency and number density of nucleant particles [J].Metallurgical and Materials Transactions A,2005,36(7):1911-1920.
    [17] D.H. StJohn, P. Cao, M. Qian, M.A. Easton. A new analytical approach to revealthe mechanisms of grain refinement [J]. Advanced Engineering Materials,2007,9(9):739-749.
    [18] M. Johnsson, L. B ckerud. The influence of composition on equiaxed crystalgrowth mechanisms and grain size in Al alloys [J]. Zeitschrift für Metallkunde,1996,87(3):216-220.
    [19] T.E. Quested, A.T. Dinsdale, A.L. Greer. Thermodynamic modelling ofgrowth-restriction effects in aluminium alloys [J]. Acta Materialia,2005,53(5):1323-1334.
    [20] M.A. Easton, D.H. StJohn. The effect of alloy content on the grain refinement ofaluminium alloys [C]. In: Anjier JL, editor. Light metals2001, The Minerals, Metalsand Materials Society, Warrendale, Pennsylvania,2001, p.927.
    [21] P. Desnain, Y. Fautrelle, J.L. Meyer, J.P. Riquet, F. Durand. Prediction of equiaxedgrain density in multicomponent alloys, stirred electromagnetically [J]. ActaMetallurgica et Materialia,1990,38(8):1513-1523.
    [22] M. Johnsson. Influence of Si and Fe on the grain refinement of aluminium [J].Zeitschrift für Metallkunde,1994,85(11):781-785.
    [23] R. Schmid-Fetzer, A. Kozlov. Thermodynamic aspects of grain growth restrictionin multicomponent alloy solidification [J]. Acta Materialia,2011,59(15):6133-6144.
    [24] AC H nzi, Dalla Torre FH, AS Sologubenko, P Gunde, R Schmid-Fetzer, MKuehlein, JF L ffler, PJ Uggowitzer. Design strategy for microalloyed ultra-ductilemagnesium alloys [J]. Philosophical Magazine Letters,2009,89(6):377-390.
    [25] D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Z. Hildebrand. Grain refinement ofmagnesium alloys [J]. Metallurgical and Materials Transactions A,2005,36(7):1669-1679.
    [26] T.R. Ramachandran, P.K. Sharma, K. Balasubramanian. Grain refinement of lightalloys [C].68thWFC-World Foundry Congress, February,2008, pp.189-193.
    [27] Han Guang, Liu Xiangfa, Ding Haimin. Grain refinement of Mg-Al based alloysby a new Al-C master alloy [J]. Journal of Alloys and Compounds,2009,467(1-2):202-207.
    [28]孟志军.镁锆合金中富锆环形成机制研究[D].哈尔滨:哈尔滨工业大学,2009.
    [29]陈增,张密林,吕艳卓,韩伟,唐定骧.锆在镁及镁合金中的作用[J].铸造技术,2007,28(6):820-822.
    [30] Q. Ma, D.H. StJohn, M.T. Frost. Characteristic zirconium-rich coring structures inMg-Zr alloys [J]. Scripta Materialia,2002,46(9):649-654.
    [31] Y.C. Lee, A.K. Dahle, D.H. StJohn. The role of solute in grain refinement ofmagnesium [J]. Metallurgical and Materials Transactions A,2000,31(11):2895-2906.
    [32]张静,潘复生,郭正晓,丁培道,汪凌云.含Zr镁合金系中的合金相[J].兵器材料科学与工程,2002,25(6):50-56.
    [33] L. Duffy. Magnesium alloys-zirconium containing casting Alloys [J]. MaterialsWorld,1996,4:127-130.
    [34] G.L. Song, D.H. StJohn. The effect of zirconium grain refinement on the corrosionbehaviour of magnesium-rare earth alloy MEZ [J]. Journal of Light Metals,2002,2(1):1-16.
    [35]姚素娟,易丹青,李旺兴,等.高温镁合金的成分、组织设计与制备加工技术进展[J].轻金属,2007,(9):55-58.
    [36]王其龙,吴国华,郑韫,丁文江. Mg-Gd-Y系合金的研究进展[J].材料导报,2009,23(6):104-108.
    [37]余强国,翁国庆.稀土镁合金的发展、应用及开发[J].稀有金属与硬质合金,2006,34(3):36-38.
    [38]刘静安,温育智.稀土在有色金属工业的开发与应用[J].四川稀土,2003,(1):20-27.
    [39]何上明. Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究[D].上海:上海交通大学,2007.
    [40] D. Mizer, J.B. Clark. The magnesium-rich region of the magnesium-yttrium phasediagram [J]. Trans. Metall. Soc. AIME,1961,221, p.207.
    [41] D. Mizer, B.C Peters. A study of precipitation at elevated temperature in aMg-8.7pct Y alloys [J]. Metallurgical and Materials Transactions B,1972,3(12):3262-3264.
    [42] L.L. Rokhlin, N.I. Nikitina. Magnesium-gdolinium and magnesium-gadolinium-ytttrium alloys [J]. Zeitschrift für Metallkunde,1994,85(12):819-823.
    [43] L.L. Rokhlin. Magnesium alloys containing rare earth metals [M]. London: Taylorand Francis,2003, UK.
    [44] S. Kamado, S. Iwasawa, K. Ohuchi, Y. Kojima, R. Ninomiya. Aging hardeningcharacteristics and high temperature st rength of Mg-Gd and Mg-Tb alloys [J]. Journalof Japan Institute of Light Metals (Japan),1992,42(12):727-733.
    [45] M.E. Drits, Z.A. Sviderskaya, L.L. Rokhlin, N.I. Nikitina. Effect of alloying on theproperties of Mg-Gd alloys [J]. Metal Science and Heat Treatment,1979,21(11):887-889.
    [46]张新明,陈健美,邓运来,肖阳,蒋浩,邓桢桢. Mg-Gd-Y-(Mn,Zr)合金的显微组织和力学性能[J].中国有色金属学报,2006,16(2):219-227.
    [47]孙明,吴国华,王玮,侯正全,陈斌,丁文江. Mg-Gd系镁合金的研究进展[J].材料导报,2009,23(6):98-103.
    [48]杨忠,李建平,郭永春,许广涛,金福斌. Al对Mg-5Gd镁合金铸态显微组织和力学性能的影响[J].铸造,2009,58(6):585-588.
    [49] Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia, M.X. Liang. Plastic deformation anddynamic recrystallization behaviors of Mg-5Gd-4Y-0.5Zn-0.5Zr alloy [J]. MaterialsScience and Engineering A,2008,485(1-2):487-491.
    [50]童炎,王渠东,高岩,顾金海. Mg-13Gd-3Y-0.4Zr合金热处理工艺优化及其性能[J].轻金属,2007,(3):45-49.
    [51]肖阳,张新明,陈健美,蒋浩,邓桢桢.高强耐热Mg-9Gd-4Y-0.6Zr合金的性能[J].中南大学学报(自然科学版),2006,37(5):850-855.
    [52] S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie. W.J. Ding. Microstructure andstrengthening mechanism of high strength Mg-10Gd-2Y-0.5Zr alloy [J]. Journal ofAlloys and Compounds,2007,427(1-2):316-323.
    [53]蒋浩. Mg-Gd-Y耐热镁合金材料及其热处理研究[D].长沙:中南大学,2006.
    [54] Jakub í еk, Ivan Procházka, Bohumil Smola, Ivana Stulíková, VladivojO ená ek. Influence of deformation on precipitation process in Mg-15wt.%Gd alloy [J].Journal of Alloys and Compounds,2007,430(1-2):92-96.
    [55] B.L. Mordike. Creep-resistant magnesium alloys [J]. Materials Science andEngineering A,2002,324(1-2):103-112.
    [56] S. Kamado, Y. Kojima, R. Ninomiya, K. Kubota. Aging Characteristics and HighTemperature Tensile Properties of Magnesium Alloys Containing Heavy Rare EarthElements [C], in proceedings of the3rdInternational Magnesium Conference, UMIST,Manchester, United Kingdom;10-12Apr.1996. pp.327-342.
    [57]赵娟. Mg-Gd-Y系合金相图的热力学计算验证及其应用[D].西安:西安工业大学,2007.
    [58] Q.M. Peng, Y.M. Wu, D.Q. Fang, J. Meng, L.M. Wang. Microstructures andproperties of Mg-7Gd alloy containing Y [J]. Journal of Alloys and Compounds,2007,430(1-2):252-256.
    [59] Jun Wang, Jian Meng, Deping Zhang, Dingxiang Tang. Effect of Y for enhancedage hardening response and mechanical properties of Mg-Gd-Y-Zr alloys [J].Mater SciEng A,2007,456(1-2):78-84.
    [60] Qiuming Peng, Jianli Wang, Yaoming Wu, Limin Wang. Microstructures andtensile properties of Mg-8Gd-0.6Zr-xNd-yY (x+y=3, mass%) alloys [J]. MaterialsScience and Engineering A,2006,433(1-2):133-138.
    [61]刘瑞国.熔盐电解制备Mg-Zr和Mg-Zn-Zr合金工艺及阴极过程研究[D].哈尔滨:哈尔滨工程大学,2011.
    [62] W.P. Saunders, F.P. Strieter. Alloying zirconium to magnesium [J]. Transactionsof the American foundrymen’s society,1952,60:581-594.
    [63] Q. Ma, Z.C.G. Hildebrand, D.H. StJohn. The loss of dissolved zirconium inzirconium-refined magnesium alloys after remelting [J]. Metallurgical and MaterialsTransactions A,2009,40(10):2470-2479.
    [64] C.J. Bettles, M.A. Gibson, S.M. Zhu. Microstructure and mechanical behaviour ofan elevated temperature Mg-rare earth based alloy [J]. Materials Science andEngineering A,2009,505(1-2):6-12.
    [65]刘洪汇. Zr对Mg-2.8Nd-0.35Zn合金高温性能影响的研究[D].哈尔滨:哈尔滨理工大学,2005.
    [66]张世军,黎文献.Zr对Mg-Ce合金的晶粒大小及铸态组织性能的影响[J].轻合金加工技术,2003,31(2):16-18.
    [67] Q. Ma, D.H. StJohn, M.T. Frost. Zirconium alloying and grain refinement ofmagnesium alloys [C]. in proceedings of Magnesium Technology2003, Edited byHoward I. Kaplan TMS (The Minerals, Metals&Materials Society),2003,209-214.
    [68] Q. Ma, D.H. StJohn, M.T. Frost. Magnesium zirconium alloying [P]. US patent,0161121A1,2005.
    [69] H.E. Friedrich, B.L. Mordike. Magnesium Technology: Metallurgy, Design Data,Applications [M]. Berlin Heidelberg, Germany: Springer-Verlag,2006:128-143.
    [70]李华伦.开发、生产系列高性能镁合金的基础--镁合金加Zr技术[C].2001年全国镁行业年会,北京,中国有色金属工业协会,2001,pp.7-11.
    [71] P. Cao, Q. Ma, D.H. StJohn, M.T Frost. Uptake of iron and its effect on grainrefinement of pure magnesium by zirconium [J]. Materials Science and Technology,2004,20(5):585-592.
    [72] Q. Ma, D. Graham, L. Zheng, D.H. StJohn, M.T. Frost. Alloying of puremagnesium with Mg-33.3wt-%Zr master alloy [J]. Materials Science and Technology,2003,19(2):156-162.
    [73] Q. Ma. Creation of semisolid slurries containing fine and spherical particles bygrain refinement based on the Mullins-Sekerka stability criterion [J]. Acta Materialia,2006,54(8):2241-2252.
    [74] Q. Ma, L. Zheng, D. Graham, M.T. Frost, D.H. StJohn. Settling of undissolvedzirconium particles in pure magnesium melts [J]. Journal of Light Metals,2001,1(3):157-165.
    [75] A.A Nayeb-Hashemi, J.B Clark. Phase Diagrams of Binary Magnesium Alloys [M.ASM International, Metals Park, OH:1988.
    [76] H. Okamoto. Phase diagrams of dilute binary alloys [M]. ASM International,Materials Park, OH:2002, p.170.
    [77] Q. Ma, A. Das. Grain refinement of magnesium alloys by zirconium: Formationof equiaxed grains, Scripta Materialia,2006,54(5):881-886.
    [78] E.F. Emley. Principles of magnesium technology [M]. Oxford: Pergamon Press,1966, pp.126.
    [79]彭卓凯,张新明,陈健美. Zr在Mg-9Gd-4Y合金中的晶粒细化机制[J].北京科技大学学报,2006,28(2):148-152.
    [80] F. Sauerwald. The influence of zirconium upon the solidification of magnesiumalloys and some of the properties of cast magnesium alloys containing zirconium [J].Zeitschrift für Metallkunde,1949,40:41-46.
    [81] Z. Hildebrand, Q. Ma, D.H. StJohn, M. Frost. Influence of zinc on the solublezirconium content in magnesium and the subsequent grain refinement by zirconium [C].in proccedings of Magnesium Technology2004, Edited by Alan A. Luo, TMS (TheMinerals, Metals&Materials Society),2004, p.241-245.
    [82] Y. Tamura, N. Kono, T. Motegi, E. Sato. Grain refining of pure magnesium byadding Mg-Zr master alloy [J]. Journal of Japan Institute of Light Metals (Japan),1997,47(12):679-684.
    [83] Q. Ma, D.H. StJohn, M.T. Frost. Effect of soluble and insoluble zirconium on thegrain refinement of magnesium alloys [J]. Materials Science Forum,2003,419-422:593-598.
    [84] Q. Ma, D.H. StJohn. Grain nucleation and formation in Mg-Zr alloys [J].International Journal of Cast Metals Research,2009,22(1-4):256-259.
    [1] S. Cashion, N. Ricketts, R. Bailey. Industrial application of the AMCover cover gassystem for magnesium melt protection [C]. in Proceedings of6thInternationalConference on Magnesium Alloys and their Applications,2003. Wolfsburg, Germany:Wiley-VCH Verlag Gmbh&Co., p.995-1000.
    [2]付彭怀. Mg-Nd-Zn-Zr合金微观组织、力学性能和强化机制的研究[D].上海:上海交通大学,2008.
    [3] Fuwang Chen, Xuebing Huang, Yong Wang, Yun Zhang, Zhuangqi Hu.Investigation on foamceramic filter to remove inclusions in revert superalloy [J].Material Letters,1998,34(3~6):372-376.
    [4]王薇薇,张绍兴,泡沫陶瓷过滤片的正确选择和使用[J].铸造技术,1996,4:7~10.
    [5] Martin B. Taylor. Molten metal fluxing treatment: How best to achieve the desiredquality requirements [J]. Aluminium,2003,79(1-2):44-50.
    [6] M. Saternu, J. Botor. Refining process of aluminium conducted in continuousreactor-physical model [J]. Archives of Metallurgy and Materials,2010,55(2):463-475.
    [7]王玮. Mg-10Gd-3Y-0.5Zr合金复合净化行为研究[D].上海:上海交通大学,2010.
    [8] Q. Ma, D.H. StJohn, M.T. Frost. Effect of soluble and insoluble zirconium on thegrain refinement of magnesium alloys [J]. Materials Science Forum,2003,419-422:593-598.
    [9] Q. Ma, A. Das. Grain refinement of magnesium alloys by zirconium: Formation ofequiaxed grains, Scripta Materialia,2006,54(5):881-886.
    [10] Z. Hildebrand, Q. Ma, D.H. StJohn, Malcolm Frost. Influence of zinc on thesoluble zirconium content in magnesium and the subsequent grain refinement byzirconium [C]. in proccedings of Magnesium Technology2004, Edited by Alan A. Luo,TMS (The Minerals, Metals&Materials Society),2004, p.241-245.
    [11] Q. Ma. Creation of semisolid slurries containing fine and spherical particles bygrain refinement based on the Mullins-Sekerka stability criterion [J]. Acta Materialia,2006,54(8):2241-2252.
    [12] Q. Ma, Z.C.G. Hildebrand, D.H. StJohn. The loss of dissolved zirconium inzirconium-refined magnesium alloys after remelting [J]. Metallurgical and MaterialsTransactions A,2009,40(10):2470-2479.
    [13] ASTM Standard E112-10, Standard test methods for determining average grainsize [S]. American Society for Testing and Materials,2010,26pages.
    [14] A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow. Modelling ofinoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B[J]. Acta Materialia,2000,48(11):2823-2835.
    [1] Q. Ma, L. Zheng, D. Graham, M.T. Frost, D.H. StJohn. Settling of undissolvedzirconium particles in pure magnesium melts [J]. Journal of Light Metals,2001,1(3):157-165.
    [2] Q. Ma, D.H. StJohn, M.T. Frost. Heterogeneous nuclei size in magnesium-zirconium alloys [J]. Scripta Materialia,2004,50(8):1115-1119.
    [3] A.A. Nayeb-Hashemi, J.B. Clark. Phase diagrams of binary magnesium alloys [M].1988,365-369,118-121, Metals Park, OH, American Society for Metals.
    [4] Q. Ma, D.H. StJohn, M.T. Frost. Zirconium alloying and grain refinement ofmagnesium alloys [C]. in proceedings of Magnesium Technology2003, Edited byHoward I. Kaplan TMS (The Minerals, Metals&Materials Society),2003,209-214.
    [5] Q. Ma, D. Graham, L. Zheng, D.H. StJohn, M.T. Frost. Alloying of puremagnesium with Mg-33.3wt-%Zr master alloy [J]. Materials Science and Technology,2003,19(2):156-162.
    [6] H.E. Friedrich, B.L. Mordike. Magnesium Technology: Metallurgy, Design Data,Applications [M]. Berlin Heidelberg, Germany: Springer-Verlag,2006:128-143.
    [7]周明付.高锆镁锆中间合金工艺研究[J].湖南有色金属,2003,19(4):32-34.
    [8]刘瑞国.熔盐电解制备Mg-Zr和Mg-Zn-Zr合金工艺及阴极过程研究[D],哈尔滨:哈尔滨工程大学,2011.
    [9]刘甲祥,杨庆山,柳术平,陈卫平,何碧宁.高质量Mg-Zr中间合金的研制[J].稀有金属与硬质合金,2006,34(1):30-32.
    [10]龚丽勤. Al3Ti3B中间合金对Mg-Al系合金的晶粒细化研究[D].北京:清华大学,2005.
    [11]李英龙,陈彦博,曹富荣,温景林. Al-Ti-C晶粒细化剂的形核与衰减机理研究[J].特种铸造及有色合金,2005,25(12):712-714.
    [12]曾大新,苏俊义,陈勉己.固体金属在液态金属中的熔化和溶解[J].铸造技术,2000,1:33-36.
    [13]卢柯,生红卫,金朝晖.晶体的熔化和过热[J].材料研究学报,1997,11(6):658-665.
    [14] D.R. Poirier, G.H. Geiger. Transport Phenomena in Materials Processing, TheMinerals, Metals and Materials Society, Warrendale, PA (1994), pp.68-71.
    [15][著]饭田孝道,格斯里,[译]冼爱平,王连文.液态金属的物理性能[M].北京:科学出版社,2006.
    [16]王玉青.合金熔体的黏滞特性研究[D].济南:山东大学,2007.
    [17] E.A. Moelwyn-Hughes. Physical Chemistry [M]. Oxford: Pergamon Press,1961.
    [18]王春建. Mg-Al系合金晶粒细化机理研究[D].昆明:昆明理工大学,2010.
    [19] T. Ishikawa, J.T. Okada, P. F. Paradis, Y. Watanabe. Thermophysical propertymeasurements of liquid gadolinium by containerless methods [J]. International Journalof Thermophysics,2010,31(2):388-398.
    [20] Paul-Fran ois Paradis, Takehiko Ishikawa, Noriyuki Koike. Thermophysicalproperties of molten yttrium measured by non-contact techniques [J]. MicrogravityScience and Technology, Microgravity Sci. Technol,2009,21(1-2):113-118.
    [1] A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow. Modelling ofinoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B[J]. Acta Materialia,2000,48(11):2823-2835.
    [2]韩延峰,疏达,王俊,孙宝德.超声制备Al-5Ti-1B中间合金中TiB2粒子尺寸分布及其晶粒细化性能[J].上海交通大学学报,2007,41(4):604-608.
    [3]张作贵,刘相法,边秀房. TiB2分布形态对Al5TiB合金细化特性的影响[J].特种铸造及有色合金,1999,(5):12-13.
    [4] Q. Ma, D. Graham, L. Zheng, D.H. StJohn, M.T. Frost. Alloying of puremagnesiumwith Mg-33.3wt-%Zr master alloy [J]. Materials Science and Technology,2003,19(2):156-162.
    [5] Q. Ma, D.H. StJohn, M.T. Frost. A new zirconium-rich master alloy for the grainrefinement of magnesium alloys [C]. in proceedings of the6th International ConferenceMagnesium Alloys and their Applications, Kainer KU ed,2003, Wolfsburg, Germany.Weinheim: Wiley-VCH,2003. p.706-712.
    [6] T.E. Quested, A.L. Greer. The effect of the size distribution of inoculant particles onas-cast grain size in aluminium alloys [J]. Acta Materialia,2004,52(13):3859-3868.
    [7] Peijie Li, E.G. Kandalov, V.I. Nikitin. Grain refining performance of Al-Ti masteralloys with different microstructures [J]. Materials Letters,2005,59(6):723-727.
    [8] Q. Ma, Z.C.G. Hildebrand, D.H. StJohn. The loss of dissolved zirconium inzirconium-refined magnesium alloys after remelting [J]. Metallurgical and MaterialsTransactions A,2009,40(10):2470-2479.
    [9] Q. Ma, D.H. StJohn, M.T. Frost. Heterogeneous nuclei size inmagnesium-zirconium alloys [J]. Scripta Materialia,2004,50(8):1115-1119.
    [10] Q. Ma. Heterogeneous nucleation on potent spherical substrates duringsolidification [J]. Acta Materialia,2007,55(3):943-953.
    [11] D.H. StJohn, Q. Ma, M.A. Easton, P. Cao, Z. Hildebrand. Grain refinement ofmagnesium alloys [J]. Metallurgical and Materials Transactions A,2005,36(7):1669-1679.
    [12] Q. Ma. Creation of semisolid slurries containing fine and spherical particles bygrain refinement based on the Mullins-Sekerka stability criterion [J]. Acta Materialia,2006,54(8):2241-2252.
    [13] Q. Ma, D.H. StJohn, M.T Frost. Characteristic zirconium-rich coring structures inMg-Zr alloys [J]. Scripta Materialia,2002,46(9):649-654.
    [14] P. Cao, Q. Ma, D.H. StJohn, M.T. Frost. Uptake of iron and its effect on grainrefinement of pure magnesium by zirconium [J]. Materials Science and Technology,2004,20(5):585-592.
    [15] Q. Ma, D.H. StJohn, M.T. Frost. Effect of soluble and insoluble zirconium on thegrain refinement of magnesium alloys [J]. Materials Science Forum,2003,419-422:593-598.
    [16] Y.C. Lee, A.K. Dahle, D.H. StJohn. The role of solute in grain refinement ofmagnesium [J]. Metallurgical and Materials Transactions A,2000,31(11):2895-2906.
    [17] T.E. Quested, A.T. Dinsdale, A.L. Greer. Thermodynamic modelling ofgrowth-restriction effects in aluminium alloys [J]. Acta Materialia,2005,53(5):1323-1334.
    [18] T. Chandrashekar, M. K. Muralidhara, K. T. Kashyap, P. Raghothama Rao. Effectof growth restricting factor on grain refinement of aluminum alloys [J]. TheInternational Journal of Advanced Manufacturing Technology,2009,40(3-4):234-241.
    [19] A. Ramirez, Ma Qian, B. Davis, T. Wilks, D.H. StJohn. Potency of high-intensityultrasonic treatment for grain refinement of magnesium alloys [J]. Scripta Materialia,2008,59(1):19-22.
    [20] M.A. Easton, D.H. StJohn. An analysis of the relationship between grain size,solute content, and the potency and number density of nucleant particles [J].Metallurgical and Materials Transactions A,2005,36(7):1911-1920.
    [21] Q. Ma, Z.C.G. Hildebrand, D.H. StJohn. The loss of dissolved zirconium inzirconium-refined magnesium alloys after remelting [J]. Metallurgical and MaterialsTransactions A,2009,40(10):2470-2479.
    [22] A. Das, G. Liu, Z. Fan. Investigation on the microstructural refinement of anMg-6wt.%Zn alloy [J]. Materials Science and Engineering A.2006,419(1-2):349-356.
    [23]陈勇军,王渠东,翟春泉,丁文江.大塑性变形制备高强镁合金的研究与展望[J].机械工程材料,2006,30(3):1-3,47.
    [24] S. Viswanathan, P. Saha, D. Foley, K. T. Hartwig. Engineering a more efficientzirconium grain refiner for magnesium [C]. in proceedings of Magnesium Technology2011, Edited by: Wim H. Sillekens, Sean R. Agnew, Neale R. Neelameggham, andSuveen N. Mathaudhu, TMS (The Minerals, Metals&Materials Society),2011, p.559-564.
    [25] Partha Saha. An analysis of the grain refinement of magnesium by zirconium [D].Tuscaloosa, Alabama, USA: The University of Alabama,2010.
    [26] Q. Ma, D.H. StJohn, M.T. Frost, M.R. Barnett. Grain refinement of puremagnesium using rolled Zirmax master alloy (Mg-33.3Zr)[C]. in proccedings ofMagnesium Technology2003, Edited by Howard I. Kaplan, TMS (The Minerals,Metals&Materials Society),2003,215-220.
    [27] M.A. Easton, D.H. StJohn. Grain refinement of aluminum alloys: part II.confirmation of, and a mechanism for, the solute paradigm [J]. Metallurgical andMaterials Transactions A,1999,30(6):1625-1633.
    [28] M.A. Easton, D.H. StJohn. Improved prediction of the grain size of aluminumalloys that includes the effect of cooling rate [J]. Materials Science and Engineering A,2008,486(1-2):8-13.
    [1] Q. Ma, L. Zheng, D. Graham, M.T. Frost, D.H. StJohn. Settling of undissolvedzirconium particles in pure magnesium melts [J]. Journal of Light Metals,2001,1(3):157-165.
    [2]陈增.熔盐电解法制备镁锂和镁锆合金研究[D].哈尔滨:哈尔滨工程大学,2008.
    [3]刘瑞国.熔盐电解制备Mg-Zr和Mg-Zn-Zr合金工艺及阴极过程研究[D].哈尔滨:哈尔滨工程大学,2011.
    [4]陈建军,杨庆山.镁热还原K2ZrF6制备镁锆中间合金[J].金属材料与冶金工程,2007,35(5):15-17,42.
    [5]刘甲祥,杨庆山,柳术平,陈卫平,何碧宁.高质量Mg-Zr中间合金的研制[J].稀有金属与硬质合金,2006,34(1):30-32.
    [6]周明付.高锆镁锆中间合金工艺研究[J].湖南有色金属,2003,19(4):32-34.
    [7] Charles James Prior Ball. Master alloy for introducing zirconium intomagnesium [P],1950.
    [8] Frederick P. Stricter. Master alloy comprising zirconium and magnesium for use inmaking magnesium-base alloys containing zirconium [P],1953.
    [9] William Michael Doyle. Magnesium base alloys containing zirconium [P],1954.
    [10] William C. Newbams, et al. Method of making magnesium zirconium masteralloy [P],1958.
    [11] Edward Frederick Emley. Alloying of manganese and zirconium to magnesium [P],1959.
    [12] Naohisa Nishino, et al. Magnesium alloy and method of producing the same [P],2002.
    [13] William Unsworth. Introduction of zirconium into magnesium [P],1961.
    [14]范靖亚.铝合金熔炼中的加Zr方法[J].轻合金加工技术,1994,22(11):12-14.
    [15]陆树荪.有色制造合金熔炼[M].北京:国防工业出版社,1983.
    [16]胥志红,张雅玲,王涛.铝合金熔炼加Zr新工艺[J].轻合金加工技术,1999,27(8):13-16.
    [17] J.A.S. Tenório, D.C.R. Espinosa, Recycling of aluminium, in: G.E. Totten, D.S.MacKenzie (Eds.), Handbook of Aluminum (Vol.2): Alloy production and materialsmanufacturing, Marcel Dekker Inc., New York,2003, pp.128-130.
    [18] B. Zhou, Y. Yang, and M.A. Reuter, In: Proceedings Yazawa InternationalSymposium on Metallurgical and Materials Processing, San Diego, California, USA,2003, pp.1249-1258.
    [19]何上明. Mg-Gd-Y-Zr-(Ca)合金的微观组织演变、性能和断裂行为研究[D].上海:上海交通大学,2007.
    [20] Wei Wang, Guohua Wu, Qudong Wang, Yuguang Huang, Wenjiang Ding. Gdcontents, mechanical and corrosion properties of Mg-10Gd-3Y-0.5Zr alloy purified byfluxes containing GdCl3additions [J]. Materials Science and Engineering: A,2009,507(1-2):207-214.
    [21] Q. Ma, A. Das. Grain refinement of magnesium alloys by zirconium: Formationof equiaxed grains, Scripta Materialia,2006,54(5):881-886.
    [22] E.F. Emley. Principles of magnesium technology [M]. Oxford: PergamonPress;1966. p.126.
    [23] E.F. Horst, B.L. Mordike, Magnesium Technology: Metallurgy, Design Data,Application, Springer-Verlag, Berlin-Heidelberg,2006, pp.128.
    [24] Q. Ma, D.H. StJohn. Grain nucleation and formation in Mg-Zr alloys [J].International Journal of Cast Metals Research,2009,22(1-4):256-259.
    [25] Q. Ma. Heterogeneous nucleation on potent spherical substrates duringsolidification [J]. Acta Materialia,2007,55(3):943-953.
    [26] S. Schamm, R. Fedou, J.P. Rocher, J.M. Quenisset, R. Naslain. Metall. Mater.Trans. A22(1991)2133-2139. The K2ZrF6wetting process: Effect of surface chemistryon the ability of a SiC-Fiber preform to be impregnated by aluminum [J]. MetallurgicalAnd Materials Transactions A,1991,22(9):2133-2139.
    [27] J.C. Cohen, et al. Abrasive articles [P]. US Patent3,111,401,1963.
    [28] F. Basile, E. Chassaing, G. Lorthioir, Reduction of Zr (IV) in (KCl/NaCl) eutectic(50/50mol%) containing KF/ZrCl4in molar ratios of6/1or4/1at750°C.Characterization of the dissolved species by IR spectroscopy [J]. Journal of AppliedElectrochemistry,1984,14(6):731-739.
    [29]叶大伦,胡建华.实用无机物热力学数据手册(第2版)[M[.北京:冶金工业出版社,2002.
    [30] Zhang Henghua, Tang Xuan, Shao Guangjie, Xu Luoping. Refining mechanism ofsalts containing Ti and B elements in purity aluminum [J]. Journal of MaterialsProcessing Technology,2006,180(1-3):60-65.
    [31]翟春泉,丁文江,徐小平,邓祖威,余滋璋.新型无公害镁合金熔剂的研制[J].特种铸造及有色合金,2002,284-286。
    [32] T.A. Utigard, K. Friesen, R.R. Roy, J. Lim, A. Silny, C. Dupuis. The properties anduses of fluxes in molten aluminum processing [J]. JOM Journal of the Minerals, Metalsand Materials Society,1998,50(11):38-43.
    [33] Fuwang Chen, Xuebing Huang, Yong Wang, Yun Zhang, Zhuangqi Hu.Investigation on foamceramic filter to remove inclusions in revert superalloy [J].Material Letters,1998,34(3~6):372-376.
    [34]王薇薇,张绍兴,泡沫陶瓷过滤片的正确选择和使用[J].铸造技术,1996,4:7~10.
    [35] M.B. Taylor. Molten metal fluxing treatment: How best to achieve the desiredquality requirements [J]. Aluminium,2003,79(1-2):44-50.
    [36] M. Saternu, J. Botor. Refining Process Of Aluminium Conducted In ContinuousReactor-Physical Model [J]. Archives of Metallurgy and Materials,2010,55(2):463-475.
    [37]罗启全.铝合金熔炼和铸造[M].广州:广东科技出版社,2002.
    [38]王玮. Mg-10Gd-3Y-0.5Zr合金复合净化行为研究[D].上海:上海交通大学,2010.
    [1] Q. Ma, A. Das. Grain refinement of magnesium alloys by zirconium: Formation ofequiaxed grains, Scripta Materialia,2006,54(5):881-886.
    [2]黎业生,董定乾,刘赣伟,李洪.镁合金晶粒细化剂研发现状及展望[J].江西理工大学学报,2007,28(4):5-9.
    [3] Q. Ma, Z.C.G. Hildebrand, D.H. StJohn. The loss of dissolved zirconium inzirconium-refined magnesium alloys after remelting [J]. Metallurgical and MaterialsTransactions A,2009,40(10):2470-2479.
    [4] D.H. StJohn, Q. Ma, M.A. Easton, P. Cao, Z. Hildebrand. Grain refinement ofmagnesium alloys [J]. Metallurgical and Materials Transactions A,2005,36(7):1669-1679.
    [5] Guangling Song, D.H StJohn. The effect of zirconium grain refinement on thecorrosion behaviour of magnesium-rare earth alloy MEZ [J]. Journal of Light Metals,2002,2(1):1-16.
    [6] C.J. Bettles, M.A. Gibson, S.M. Zhu. Microstructure and mechanical behaviour ofan elevated temperature Mg-rare earth based alloy [J]. Materials Science andEngineering A,2009,505(1-2):6-12.
    [7] M.A. Easton, D.H. StJohn. A model of grain refinement incorporating alloyconstitution and potency of heterogeneous nucleant particles [J]. Acta materialia,2001,49(10):1867-1878.
    [8] M.A. Easton, D.H. StJohn. An analysis of the relationship between grain size, solutecontent, and the potency and number density of nucleant particles [J]. Metallurgical andMaterials Transactions A,2005,36(7):1911-1920.
    [9] D.H. StJohn, P. Cao, Q. Ma, M.A. Easton. A new analytical approach to reveal themechanisms of grain refinement [J]. Advanced Engineering Materials,2007,9(9):739-749.
    [10] M. Johnsson, L. B ckerud. The influence of composition on equiaxed crystalgrowth mechanisms and grain size in Al alloys [J]. Zeitschrift für Metallkunde,1996,87(3):216-220.
    [11] T.E. Quested, A.T. Dinsdale, A.L. Greer. Thermodynamic modelling ofgrowth-restriction effects in aluminium alloys [J]. Acta Materialia,2005,53(5):1323-1334.
    [12] M.A. Easton, D.H. StJohn. The effect of alloy content on the grain refinement ofaluminium alloys [C]. In: Anjier JL, editor. Light metals2001, The Minerals, Metalsand Materials Society, Warrendale, Pennsylvania,2001, p.927.
    [13] P. Desnain, Y. Fautrelle, J-L. Meyer, J-P. Riquet, F. Durand. Prediction of equiaxedgrain density in multicomponent alloys, stirred electromagnetically [J]. ActaMetallurgica et Materialia,1990,38(8):1513-1523.
    [14] M. Johnsson. Influence of Si and Fe on the grain refinement of aluminium [J].Zeitschrift für Metallkunde,1994,85(11):781-785.
    [15] R. Schmid-Fetzer, A. Kozlov. Thermodynamic aspects of grain growth restrictionin multicomponent alloy solidification [J]. Acta Materialia,2011,59(15):6133-6144.
    [16] A.C. H nzi, F.H. Dalla Torre, A.S. Sologubenko, P. Gunde, R. Schmid-Fetzer, M.Kuehlein, J.F. L ffler, P.J. Uggowitzer. Design strategy for microalloyed ultra-ductilemagnesium alloys [J]. Philosophical Magazine Letters,2009,89(6):377-390.
    [17] Q. Ma, P. Cao, M.A. Easton, S.D. McDonald, D.H. StJohn. An analytical modelfor constitutional supercooling-driven grain formation and grain size prediction [J].Acta Materialia,2010,58(9):3262-3270.
    [18] D.H. StJohn, Q. Ma, M.A. Easton, P. Cao. The InterdependenceTheory:The relationship between grain formation and nucleant selection [J]. Acta Materialia,2011,59(12):4907-4921.
    [19] M.A. Easton, D.H. StJohn. Grain refinement of aluminum alloys Part I. thenucleant and solute paradigms—a review of the literature [J]. Metallurgical andMaterials Transactions A,1999,30(6):1613-1623.
    [20] M.A. Easton, D.H. StJohn. Grain refinement of aluminum alloys Part II.Confirmation of, and a mechanism for, the solute paradigm [J]. Metallurgical andMaterials Transactions A,1999,30(6):1625-1633.
    [21] Y.C. Lee, A.K. Dahle, D.H. StJohn. The role of solute in grain refinement ofmagnesium [J]. Metallurgical and Materials Transactions A,2000,31(11):2895-2906.
    [22] A.A. Nayeb-Hashemi, J.B. Clark. Phase Diagrams of Binary Magnesium Alloys,ASM International, Metals Park, OH,1988.
    [23]罗强,赵忠,蔡启舟,樊自田,何剑. Y和Gd对消失模铸造AZ91D镁合金组织和性能的影响[J].铸造,2010,59(6):568-572.
    [24] Wenlong Xiao, Shusheng Jia, Jianli Wang, Jie Yang, Lidong Wang, Limin Wang.Effects of rare earth on the structure and properties of Mg-6Zn-5Al-4Gd-1RE (RE=Ceor Y) alloys [J].2008,23(10):2609-262.
    [25] Q. Dong, M.X. Zhang, J.A. Taylor, P.M. Kelly. A new approach to designing agrain refiner for Mg casting alloys and its use in Mg-Y-based alloys [J]. Acta Materialia,2009,57(10):3052-3059.
    [26] Q. Dong, M.X. Zhang, P.M. Kelly. Crystallography of heterogeneous nucleation ofMg grains on Al2Y nucleation particles in an Mg-10wt.%Y alloy [J]. Scripta Materialia,2009,61(3):312-315.
    [27] Q. Ma, D.H. StJohn, M.T. Frost. Effect of soluble and insoluble zirconium on thegrain refinement of magnesium alloys [J]. Materials Science Forum,2003,419-422:593-598.
    [28] Q. Ma. Creation of semisolid slurries containing fine and spherical particles bygrain refinement based on the Mullins-Sekerka stability criterion [J]. Acta Materialia,2006,54(8):2241-2252.
    [29]刘贵立. Mg合金晶粒细化机理的电子理论研究[J].物理学报,2009,58(5):3319-3323.
    [30]王慧源,刘生发,韩辉,康柳根.镁合金晶粒细化及机理研究进展[J].铸造技术,2008,29(12):1734-1738.
    [31] B.L. Bramfitt. The effect of carbide and nitride additions on the heterogeneousnucleation behavior of liquid iron [J]. Metallurgical Transactions,1970,1(7):1987-1995.
    [32] G.Y Yuan, Z.L. Liu, Q.D. Wang, W.J. Ding. Microstructure refinement ofMg-Al-Zn-Si alloys [J]. Materials Letters,2002,56(1-2):53-58.
    [33] L. Lu, A.K. Dahle, D H StJohn. Grain refinement efficiency and mechanism ofaluminium carbide in Mg-Al alloys [J]. Scripta Materialia,2005,53(5):517-522.
    [34] Y. Cai, D. Taplin, M.J. Tan, W. Zhou. Nucleation phenomenon in SiC particulatereinforced magnesium composite [J]. Scripta Materialia,1999,41(9):967-971.
    [35] I. Naglic, A. Smolej, M. Dobersek. TEM analysis of the TiC particles inaluminium containing AlTi3C0.15grain refiner [J]. Kovové Materiály MetallicMaterials,2007,45(6):293-299.
    [36] C.D. Mayes, D.G. McCartney, G.J. Tatlock. Observations on the microstructureand performance of an Al-Ti-C grain-refining master alloy [J]. Materials Science andEngineering A,1994,188(1-2):283-290.
    [37] A.L. Greer. Grain Refinement of Alloys by Inoculation of Melts [J]. PhilosophicalTransactions of the Royal Society A,2003,361(1804),479-495.
    [38] P. Schumacher, A.L. Greer. Studies of the action of the grain refined particles inaluminum alloys [C]. in proceedings of124thTMS (The Minerals, Metals&MaterialsSociety) Annual Meeting and Exhibition, Light Metal1995, Warrendale, PA, pp.869-877.
    [39] P. Saha, S. Viswanathan. An analysis of the grain refinement of magnesium byzirconium [C]. in proceedings of Magnesium Technology2011, Edited by: Wim H.Sillekens, Sean R. Agnew, Neale R. Neelameggham, and Suveen N. Mathaudhu, TMS(The Minerals, Metals&Materials Society),2011, p.175-180.
    [40] Partha Saha. An analysis of the grain refinement of magnesium by zirconium [D].Tuscaloosa, Alabama, USA: The University of Alabama,2010.
    [41] Q. Ma. Heterogeneous nucleation on potent spherical substrates duringsolidification [J]. Acta Materialia,2007,55(3):943-953.
    [42]李敏敏.铸造铝合金细化工艺及其机理研究[D].上海:上海大学,2007.
    [43]陈平昌,朱六妹,李赞.材料成形原理[M].北京:机械工业出版社,2001
    [44] H.E. Friedrich, B.L. Mordike. Magnesium Technology: Metallurgy, Design Data,Applications [M]. Berlin Heidelberg, Germany: Springer-Verlag,2006:128-143.
    [45] E.F. Emley. Principles of magnesium technology [M]. Oxford: Pergamon Press,1966, pp.126.
    [46]田倩. Mg-RE-Zr合金的细化机理及影响因素的研究[D].哈尔滨:哈尔滨工业大学,2011.
    [47]孟志军.镁锆合金中富锆环形成机制研究[D].哈尔滨:哈尔滨工业大学,2009.
    [48] J.W. Cahn, G.S. Cargill, F. Spaepen, K.N. Tu (Eds.), Phase transitions incondensed systems-experiments and theory [M], Materials Research Society, Pittsburgh(PA)(1987), pp.41-55.
    [49] Volmer M. Z Elektrochem1929,35:555.
    [50] D. Turnbull. Theory of catalysis of nucleation by surface patches [J]. ActaMetallurgica,1953,1(1):8-14.
    [51] N.H. Fletcher. Size effect in heterogeneous nucleation [J]. Journal of ChemicalPhysics,1958,29(3):572-576.
    [52] D. Turnbull. Kinetics of heterogeneous nucleation [J]. Journal of Chemical Physics1950,18(2):198-203.
    [53] B. Chalmers. Principles of solidification [M]. New York: John Wiley,1964, p.77-83.
    [54] G. Shewmon. Transformations in metals [M]. New York: McGraw-Hill,1969, p.160-163.
    [55] L. Yang, C.E. Birchenall, G.M. Pound, M.T. Simmad. Some observations onheterogeneous nucleation of sodium crystals from atomic beams [J]. Acta Metallurgica,1954,2(3):462-469.
    [56] D. Walton. Nucleation of vapor deposits [J]. Journal of Chemical Physics,1962,37(10):2182-2188.
    [57] B.E. Sundquist. On "Nucleation catalysis in supercooled liquid tin"[J]. ActaMetallurgica,1963,11(6):630-632.
    [58] B. Cantor. Heterogeneous nucleation and adsorption [J]. PhilosophicalTransactions of the Royal Society of London A,2003,361(1804):409-417.
    [59] Jiafang Wang, Zhen-Gang Wang, Yuliang Yang. Nucleation in binary polymerblends: Effects of foreign mesoscopic spherical particles [J]. Journal of ChemicalPhysics,2004,121(2):1105-1113.
    [60] I. Maxwell, A. Hellawell. A simple model for grain refinement duringsolidification [J]. Acta Metallurgica,1975,23(2):229-237.
    [61] F.M. Kuni, A.K. Shchekin, A.I. Rusanov, B. Widom. Role of surface forces inheterogeneous nucleation on wettable nuclei [J]. Advances in Colloid and InterfaceScience,1996,65:71-124.
    [62] T.V. Bykov, X.C. Zeng. Heterogeneous nucleation on mesoscopic wettableparticles: A hybrid thermodynamic/density-functional theory [J]. Journal of ChemicalPhysics,2002,117(4):1851-1868.
    [63] A.W. Adamson, A.P. Gast. Physical chemistry of surfaces [M]. sixth ed. New York:John Wiley&Sons;1997. p.465-466.
    [64] W.T. Kim, B. Cantor. An adsorption model of the heterogeneous nucleation ofsolidification [J]. Acta Metallurgica Et Materialia,1994,42(9):3115-3127.
    [65] W.W. Mullins, R.F. Sekerka. Morphological Stability of a Particle Growing byDiffusion or Heat Flow [J]. Journal of Applied Physics,1963,34(2):323-329.
    [66]罗守靖,陈炳光,齐丕骧.液态模锻与挤压铸造技术[M].北京:化学工业出版社,2007.
    [67]崔忠圻.《金属学与热处理》[M].北京:机械工业出版社,1998.
    [68] D. Turnbull. Under what conditions can a glass be formed [J]. ContemporaryPhysics,1969,10(5):473-488.
    [69]郭俊清,李庆春.环境做功对金属凝固过程形核的影响[J].金属科学与工艺,1985,4(4):46-54.
    [70]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2006.
    [71]禹日成,张富祥,张君,王文魁.落管中Al4Mn合金的形核研究[J].物理学报,1996,45(4):628-634.
    [72]胡谦谦,张立华.提高7050铝合金形核率的试验及理论分析[J].铸造,2011,60(12):1175-1179,1184.
    [73]陈忠伟,介万奇.合金凝固过程的形核模型[J].金属学报,2004,40(10):1027-1031.
    [74] The PANDAT software package. Version8.2, CompuTherm LLC.
    [75] M.A. Easton, D.H. StJohn. Improved prediction of the grain size of aluminumalloys that includes the effect of cooling rate [J]. Materials Science and Engineering A,2008,486(1-2):8-13.
    [76] J.H. Perepezko. Metals handbook, vol.15. Metals Park: ASM;1988, p.101.
    [77] Q. Ma, D.H StJohn, M.T. Frost. Characteristic zirconium-rich coring structures inMg-Zr alloys [J]. Scripta Materialia,2002,46(9):649-654.
    [78] Da Shu, Baode Sun, J. Mi, P.S. Grant. A quantitative study of solute diffusion fieldeffects on heterogeneous nucleation and the grain size of alloys [J]. Acta Materialia,2011,59(5):2135-2144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700