用户名: 密码: 验证码:
锑矿区沉积物生态风险评价及修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国锑矿产量和储备量高居世界首位。锑被广泛用于化工、电子和医药行业,是重要的战略资源。我国锑矿主要集中分布在湖南、贵州、广西等南方省区。锑矿区开采、冶炼和锑制品加工已经导致了矿区严重的水污染。本论文针对我国锑矿区锑污染的现状,开展了矿区沉积物和水环境锑污染调查、锑的生物有效性分析、锑和重金属污染的生态风险评价、污染河流沉积物中锑的稳定性、吸附除锑技术及除锑吸附材料安全性评价的研究工作。
     首先调查了广西大厂锑矿区下游河流中水样和沉积物样品中的Sb含量,14个河水样品中Sb浓度范围为59.1~213.8μ g/L,平均值为139.9μ g/L。沉积物中Sb含量范围为5.06~20.9mg/kg,平均值为12.9mg/kg。对沉积物中的Sb使用Tessier形态分析的结果显示,沉积物中铁锰氧化物结合态(中等可利用性)的Sb占8.11~75.1%,平均值53.0%;残渣态(惰性态)的Sb为3.35~39.2%,平均值19.9%;碳酸盐结合态的锑为9.87-32.4%,平均值15.1%;再其次为有机结合态15.5-32.4%,平均值6.21%;水溶态3.10-16.0%,平均值5.82%。除Sb外,沉积物中其它共存重金属Cd、Cu、Ni、As、Zn、Pb和Cr的平均浓度分别为10.9mg/kg、204mg/kg、247mg/kg、19.3mg/kg、1329mg/kg、44.0mg/kg和101mg/kg。采用潜在生态风险指数法评价沉积物中Sb及重金属污染的潜在生态风险结果显示,Cd和Sb的潜在生态风险最大,为该地区主要生态风险因子,其余6种金属的潜在生态风险由大到小依次为Cu, Ni, As, Zn, Pb和Cr。鉴于Cd的相关研究已经比较深入,本文未作进一步研究。
     为进一步了解污染河流沉积物特性及其中Sb的释放特性,对14个样点的沉积物进行了物相分析、红外光谱(FTIR)分析和元素分析。结果表明样品所含矿物相、表面官能团、主要元素含量等特性相似。沉积物中主要含有石英石、斜长石、云母、方解石和斜磷锰矿石等矿物,主要金属含量顺序均为Si>Al>Fe>Ca>K>Mg>Mn。进一步考察pH、盐度和腐植酸含量对样品锑释放影响的结果表明,在pH3.0±0.2、固液比1g/0.1L、混合时间3h、混合强度160rpm时,锑释放的浓度范围在22~125μg/L之间。随着盐度增加,14个样点锑释放量均呈增大趋势,浓度变化范围为26~180μg/L。随着腐植酸浓度增加,3个锑释放量最大样点的沉积物样品锑释放量也呈增大趋势,浓度范围为22~153μg/L。在pH、盐度和腐植酸影响这三个因素中,pH对锑释放影响最大。pH对沉积物/酸盐作用的影响是样品所含矿物溶解释放锑和矿物表面荷电特性改变吸附Sb(OH)6-/H3SbO3能力变化两方面综合平衡的结果。在pH=3.0时,沉积物锑释放量与沉积物表面Mn元素显著相关,推测样品斜磷锰矿的含量及其溶解显著地影响锑的释放,矿物(主要是斜磷锰矿)溶解较之表面吸附对锑的释放影响更大。
     针对污染的含锑水样,进行了吸附处理研究,利用共沉淀法制备的铁锆氧化物(IZOP)能有效地吸附水中的Sb(V)。对IZOP的结构及表面分析结果表明,该吸附剂粒度为微米级,呈无定形结构,具有较大的比表面积,孔容达到了0.42ml/g。对IZOP除Sb(V)性能测试表明,其最佳吸附pH范围为中性偏酸(<7.5),Sb(V)吸附过程符合准二级速率方程。在中性条件下,初始Sb(V)浓度为20mg/L时,IZOP对Sb(V)的最大吸附容量可达78mg/g。Sb(Ⅴ)在IZOP上的吸附可以用Langmiur等温吸附式描述。经急性毒性实验和小鼠嗜多染红细胞毒理学测试表明该吸附剂本身安全的,处理后耗竭材料符合渗滤性毒性评价标准(TCLP)。
     本研究对于了解锑矿区河流水体和沉积物污染现状、沉积物中锑的生物有效性、锑及重金属的生态风险,以及沉积物中锑的稳定性有着明显的参考价值;对于含锑水样的处理和修复有着明显的借鉴意义。总体而言,本研究对于推动目前的锑污染研究和修复方法研究都有着积极的意义。
Antimony production and reserves in China is the highest in the world. It is one of the most important strategic resources and is widely used in chemical, electronics and pharmaceutical industries. Antimony resources in China are mainly produced in the southern provinces of Hunan, Guizhou, Guangxi etc. Mining, smelting and processing of antimony products have led to serious water contamination in antimony-mining areas. Focused on antimony contaminations in water and sediments in antimony-mining areas, this thesis carries out research work on antimony contamination investigation, biological availability analysis, ecological risk analysis of antimony and other heavy metals, the stability and release risk of antimony in sediments of polluted rivers, absorptive removal from water, and safety assessment on adsorption materials.
     First, antimony in river water and sediments at downstream rivers from GuangXi Dachang antimony mining areas were investigated.14samples were collected. Antimony in water are from59.1-213.8μg/L, with an average concentration of139.9μg/L. Antimony in sediments are from5.06-20.9mg/kg, with an average concentration of12.9mg/kg. The species of antimony in sediments were analyzed using the Tessier sequential extraction method. The results showed that8.11-75.1%of Sb in sediments were combined to iron oxides and manganese oxides, and3.35-39.2%of antimony in residual,9.87-32.4%associated with carbonate salts,15.5-32.4%in organical-binding form and the other3.10-16.0%in water dissolvable form. In addition, the average concentrations of Cd、Cu、Ni、As、 Zn、Pb and Cr in sediments are10.9mg/kg,204mg/kg,247mg/kg,19.3mg/kg,1329mg/kg,44.0mg/kg and101mg/kg, respectively. In sediments, Cd and Sb, having the largest potential ecological risks, are the major ecological risk factors in this area. The potential ecological risks of the other6metals including Cu, Ni, As, Zn, Pb and Cr are in a descending order. Since Cd contaminations in sediments and water have been intensively reported in recent years, so it is not focused in the further study.
     To investigate the effect of aquatic chemistry on antimony release from Sb-contained sediments, samples from the down-stream of an antimony-polluted reviver were characterized. Their X-ray diffraction patterns (XRD), Fourier transform infrared spectra (FTIR) and X-ray fluorescence spectra were collected. Moreover, the effect of pH, salty and concentrations of humic acids on the release of antimony were also investigated. The results showed that all sediment samples contained similar mineral phases, surface groups and similar main element contents. Identified phases included quartz. albite, muscovite, calcite and stewartite. Elements at the surface of the sediments followed the order of Si>Al>Fe>Ca>K>Mg>Mn. Batch release experiments showed that the amounts of released antimony increased with decreasing pH, increasing concentrations of salinity and humic acids. pH was the most important factor to affect antimony release.22~153μg/L of antimony was released from the14sediments at conditions of pH3.0±0.2, the adsorbent dose of1g/0.1L, shaking time of3h at160rpm. With increasing concentrations of salty and humic acid, the released antimony ranged from26to180μg/L, and from22to153μg/L, respectively. Among the three investigated factors, the effect of pH was the most intensive one. It is speculated that the release was caused by pH-related mineral dissolution and desorption, and the final states was an equilibrium of the both processes. At pH=3, the released antimony was positively correlated to the contents of Mn at the surface of sediments. That means that dissolution of stewartite rather than surface adsorption markedly affected the release of antimony.
     The adsorption treatment study is adopted on the antimony-polluted water sample, and Iron-Zirconium Oxide Particle (IZOP) prepared by coprecipitation method can effectively absorb Sb(V) from water. Structure and surface analysis on IZOP shows that the adsorbent particle is micron-sized, amorphous-structured, has large specific surface areas, and the pore volume is0.42ml/g. The test of IZOP's absorption of Sb (V) shows that the optimum adsorption pH range is neutral partial acid (<7.5), and Sb (V) adsorption process is in line with the pseudo-second order rate equation. Under neutral conditions, the maximum adsorption capacity was78mg/g at an initial Sb(V) concentration of20mg/L. The isotherm of Sb(V) absorption on the IZOP adsorbent can be modeled by the Langmiur equation. Acute toxicity test and mouse polychromatic erythrocytes toxicology test show that the adsorbent is safe by itself, and the depletion materials after processing meet the Toxicity Characteristic Leaching Procedure (TCLP).
     This study provides basic information on Sb pollution in water and sediments in a downstream revier in Dachang Sb-mining area, as well as the bioavailabitliy, and ecological risk and the remediation method. Besides, it has a positive meaning for promoting the research level of antimony contamination investigation and ecological risk assesment and the development of remediation technology.
引文
[1]鲍振襄.湖南中西部钨锑砷金矿床中辉锑矿含金性的初步研究[J].1992,地质与资源4,270-227.
    [2]邮海健,吴艳宏,刘恩峰,羊向东.长江中下游不同湖泊沉积物中重金属污染物的累积及其潜在生态风险评价[J].2010,湖泊科学,675-683.
    [3]陈家镛,2005.湿法冶金手册[M],冶金工业出版社,北京.
    [4]程杰,李学德,花日茂.巢湖水体沉积物重金属的分布及生态风险评价[J].2008,农业环境科学学报27,1403-1408.
    [5]谷鸣,叶晓川,吴巍,邓芬,宋跃进,曹军卫.黄芪水提物中微量铅对小鼠急性毒性和骨髓嗜多染红细胞微核试验的影响[J].2002,中国医院药学杂志22,527-528.
    [6]国家环境保护局,土壤环境质量标准(GB15618-1995)[M],1995,中国环境科学出版社.
    [7]何孟常,万红艳.环境中锑的分布、存在形态及毒性和生物有效性[J].2004,化学进展16,131-135.
    [8]胡国成,许木启,许振成.府河—白洋淀沉积物中重金属污染特征及潜在风险评价[J].2011,农业环境科学学报30,146-153.
    [9]金相灿,刘鸿亮,屠清英,1990.中国湖泊富营养化[M],中国环境科学出版社,北京.
    [10]孔繁翔,胡维平,谷孝鸿.太湖梅梁湾2007年藻类水华大规模爆发原因分析及应急措施建议[J].2007,湖泊科学19,357-358.
    [11]雷凯,卢新卫,王利军,翟雨翔,黄静,屈雅斋.渭河西安段表层沉积物重金属元素分布及潜在生态风险评价[J].2008,地质科技情报27,83-87.
    [12]李玲,张国平,刘虹,项萌,魏晓飞,李海霞.广西大厂矿区土壤-植物系统中Sb、As的迁移转化特征[J].2010a,环境科学学报11.2305-2313.
    [13]李玲,张国平,刘虹,项萌,魏晓飞,李海霞.广西大厂矿区土壤-植物系统中Sb.As的迁移转化特征[J].2010b,环境科学学报30.
    [14]李鹏,曾光明,蒋敏,徐卫华,张长.pH值对霞湾港沉积物重金属Zn、Cu释放的影响[J].2010,环境工程学报4,2425-2428.
    [15]李雪华,徐鹏,李俊青,曹若愚,范航,高媛媛.广西大厂矿区沉积物重金属污染及风险评价[J].2012,中北大学学报(自然科学版),190-196.
    [16]李鱼,刘亮,董德明.花修艺,杨帆,徐珑.城市河流淤泥中重金属释放规律的研究[J].2003,水土保持学报17,59-61.
    [17]廖自基,1986.环境中微量重金属元素的污染危害与迁移转化[M],冶金工业出版社,北京.
    [18]廖自基,1992.微量元素的环境化学及生物效应[M],中国环境科学出版社,北京.
    [19]刘碧君,2010.中国典型锑矿区锑及其伴生有毒元素的污染特征及健康风险评估[M],中国科学院研究生院,北京.
    [20]柳怀玉,洪花,吕伟,张晓红.高扬.韩冰.平阳霉素PLGA微球鼠体内急性毒性实验研究[J].2010,中国实验诊断学14.1939-1940.
    [21]罗献林.湖南板溪锑矿床地球化学特征及找矿效果[J].1994,矿产与地质41,169-177.
    [22]马秀平,井维鑫,王茜.丹河水系表层沉积物重金属污染及生态风险评价[J].2010,农业环境 科学学报29,1180-1186.
    [23]宁增平,肖唐付.锑的表生地球化学行为与环境危害效应[J].2007,地球与环境,176-182.
    [24]牛红义,吴群河,陈新庚.珠江(广州河段)表层沉积物中重金属的生态风险研究[J].2008,水生生物学报32,802-810.
    [25]尚英男,倪师军,张成江.成都市河流表层沉积物重金属污染及潜在生态风险评价[J].2005,生态环境14,827-829.
    [26]宋瑞霞,邢淑霞,白雪涛.四种新型饮水的安全性评价及其对小鼠免疫功能的影响[J].2004,卫生研究33,419-421.
    [27]宋燕华,严峻,夏勇,傅剑云,蔡德雷,郑云燕.黑加仑提取物的致突变性和亚急性毒性研究[J].2009,浙江预防医学21,1-3.
    [28]王亚平,王岚,许春雪,季俊峰,王苏明.pH对长江下游沉积物中重金属元素Cd、Pb释放行为的影响[J].2012,地质通报31,594-600.
    [29]王永华,刘振宇,刘伟,徐南妮,金相灿.巢湖合肥区底泥污染物分布评价与相关特征研究[J].2003,北京大学学报39,502-506.
    [30]徐伟,刘锐平,曲久辉,彭若梦.铁锰复合氧化物吸附去除五价锑性能研究[J].2012,环境科学学报32,270-275.
    [31]许光眉,施周.邓军.石英砂负载氧化铁的表征及其除锑吸附性能研究[J].2006,环境科学学报26,607-612.
    [32]杨歌,周跃,贝荣塔,郭广军,寸文娟.滇东南矿区河流底泥重金属污染潜在生态风险评价[J].2007,环境科学导刊26,80-82.
    [33]杨振,胡明安,黄松.大宝山矿区河流表层沉积物重金属污染及潜在生态风险评价[J].2007,桂林工学院学报127,44-48.
    [34]易建斌,单业华.锑的成矿构造地球化学特性研究[J].1999,地质地球化学31,44-49.
    [35]余辉,张文斌,余建平.洪泽湖表层沉积物重金属分布特征及其风险评价[J].2011,环境科学32,437-444.
    [36]张俊然,吴卓桢,张云翼,丁文兴,朱惠刚.小鼠骨髓微核试验评价某市水源水及自来水的遗传毒性[J].1997,上海环境科学16,37-39.
    [37]张晓丹,贾绍华.黄芪桂枝五物汤对小鼠的急性毒性研究[J].2011,药物评价研究34,89-91.
    [38]张徐军,吕锡武.应用遗传毒性测试评价不同饮用水处理工艺出水的安全性[J].2009,东南大学学报(自然科学版)39,1023-1027.
    [39]张颖,陈衍景,祁进平,冷成彪,赵成海.陕西旬阳公馆—青铜沟汞锑矿床地球化学研究[J].2010,矿物研究30,98-106.
    [40]张志,赵永斌,刘如意.微电解—中和沉淀法处理酸性重金属矿山地下水的试验研究[J].2002,有色金属,45-47.
    [41]张中文,李光德,张世远,敬佩,焦伟.泮河底泥中重金属污染及潜在生态危害评价[J].2008,环境科学与技术31,134-153.
    [42]赵天从,汪键,1999.有色金属提取冶金手册[M],冶金工业出版社,北京.
    [43]朱霭林,易国贵,马骥,郑启钤.贵州雷公山地区锑矿成矿规律[J].1996,贵州地质16,221-232.
    [44]朱静,吴丰昌,邓秋静,邵树勋,莫昌莉,潘响亮,黎文,张润宁.湖南锡矿山周边水体的环境特征[J].2009,环境科学学报29,655-661.
    [1]Agency C.E.P.,1997. Public Health Goal for Antimony in Drinking Water Ⅱ. Agency, C.E.P. (ed), California.
    [2]Ainsworth N., Cooke, J.A., Johnson, M.S. Distribution of antimony in contami-nated grassland:1-Vegetation and soils[J].1990, Environ. Pollut.65.
    [3]Anawar H.M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., T Ishizuka. Geochemical occurrence of arsenic in groundwater of Bangladesh:sources and mobilization processes[J]. 2003, Journal of Geochemical Exploration 77,109-131.
    [4]Andreae M.O., Asmode, J.F., Foster, P., Van't dack, L. Determination of antimony(Ⅲ), antimony(V), and methylantimony species in natural waters by atomic absorption spectrometry with hydride generation[J].1981, Anal. Chem.53,1766-1771.
    [5]Ashley P.M., Graham, B,, Tighe, M., Wolfenden, B.J. Antimony and arsenic dispersion in the Macleay River catchment, New South Wales, Australia:a study of the environmental geochemical consequences[J].2007, Australian Journal of Earth Sciences 54,83-103.
    [6]Ashley P.M., Lottermoser, B.G. Arsenic contamination at the Mole River mine, northern New South Wales[J].1999, Australian Journal of Earth Sciences 46,861-874.
    [7]Baroni F., Boscagli, A., Protano, G., Riccobono, F. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area[J].2000, Environ. Pollut.109,347-352.
    [8]Beattie D.A., Chapelet. J.K., Grafe. M., Skinner. W.M., Smith. E. In situ ATR FTIR studies of SO4 adsorption on goethite in the presence of copper ions[J].2008, Environ. Sci. Technol.42, 9191-9196.
    [9]Belzile N., Chen, Y.-W., Wang, Z. Oxidation of antimony (Ⅲ) by amorphous iron and manganese oxyhydroxides[J].2001, Chem. Geol.174,379-387.
    [10]Biswas B.K., Inoue, J.-i., Kawakita, H., Ohto, K., Inoue, K. Effective removal and recovery of antimony using metal-loaded saponified orange waste[J].2009, J. Hazard. Mater.172, 721-728.
    [11]Boily J.-F.o., Gassman, P.L., Peretyazhko, T., Szanyi, J.n., Zachara, J.M. FTIR Spectral Components of Schwertmannite[J].2010, Environ. Sci. Technol.44,1185-1190.
    [12]Bomhard E., Loser, E., Dornemann, A., Schilde, B. Subchronic oral toxicity and analytical studies on nickel rutile yellow and chrome rutile yellow with rats[J].1982, Toxicol. Lett.14, 189-194.
    [13]Borum D., Abernathy., C. Human oral exposure to inorganic arsenic[J].1994, Environ. Geochem. Health,21-30.
    [14]Bowen H.J.M.,1979. Environmental Chemistry of the Elements[M], Academic Press, London.
    [15]Brannon J.,., W.J.P. Fixation and mobilization of antimony in sediments[J].1985, Environmental pollution, Series B,107-126.
    [16]Bruwaene R.V. Metabolism of antimony-124 in lactating cows[J].1982, Health Phys.43. 733-738.
    [17]Callahan M., Slimak, M.,., N.G.,1979. Water-related environmental fate of 129 priority pollutants Vol.1. Final report. Agency, E.P. (ed), Cincinnati, OH, US
    [18]Casals J. Pharmacokinetic and toxicological studies of antimony dextran glycoside (RL-712)[J].1972, British journal of pharmacology 46,281-288.
    [19]Casiot C., Ujevic, M., Munoz, M., Seidel, J.L., Elbaz-Poulichet, F. Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France)[J].2007, Appl. Geochem.22,788-798.
    [20]CEU,1998. Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Union, C.o.t.E. (ed), pp.32-54, Council of the European Union.
    [21]Chen M., Ma, L.Q., Harris, W.G. Baseline concentrations of 15 elements in Florida surface soils[J].1999, Journal of Environmental Quality 28,1173-1181.
    [22]Chen X. Low levels of zinc in hair and blood, pica, anorexia and poor growth in Chinese preschool children[J].1985, American journal of clinical nutrition 42,694-700.
    [23]Chulay J., Spencer, H., Mugambi, M. Electrocardiographic changes during Treatment of Leishmaniasis with Pentavalent Antimony (Sodium Stibogluconate)[J].1985, American journal of tropical medicine and hygiene,702-709.
    [24]Crommentuijn T., Sijm, D., Bruijn, J.d., Hoop, M.v.d., Leeuwen, K.v., E van de Plassche. Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations [J].2000, Journal of Environmental Management 60,121-143.
    [25]Cullen M., Kayne, R., Robins, J. Endocrine and reproductive dysfunction in men associated with occupational inorganic lead intoxication [J].1984, Archives of environmental health 39, 431-440.
    [26]Denys S., Tack, K., Caboche, J., Delalain, P. Bioaccessibility, solid phase distribution, and speciation of Sb in soils and in digestive fluids[J].2008, Chemosphere 74,711-716.
    [27]Ding M., de Jong, B.H.W.S., Roosendaal, S.J., Vredenberg, A. XPS studies on the electronic structure of bonding between solid and solutes:adsorption of arsenate, chromate, phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide[J].2000, Geochim. Cosmochim. Acta 64,1209-1219.
    [28]Dou X., Zhang, Y., Zhao, B., Wu, X., Wu, Z., Yang, M. Arsenate adsorption on an Fe-Ce bimetal oxide adsorbent:EXAFS study and surface complexation modeling[J].2011, Colloids Surf., A 379,109-115.
    [29]EPA,1986. Guidelines for developmental toxicity risk assessment.
    [30]EPA,1986b. Guidelines for estimating exposures.
    [31]EPA,1992. Framework for ecological risk assessment. Risk Assessment Forum, U.S.E.P.A. (ed), Washington, DC.
    [32]EPA,1998. Guidelines for ecological risk assessment. Risk Assessment Forum, U.S.E.P.A. (ed), Washington, DC.
    [33]EPA,1999. National Primary Drinking in Water Standards. Water, E.O.o. (ed), Washington DC.
    [34]Ettler V., Mihaljevic, M., Sebek, O.. Z Nechutny. Antimony availability in highly polluted soils and sediments-A comparison of single extractions[J].2007, Chemosphere 68,455-463.
    [35]Felicetti S., Thomas, R., McClellan, R. Metabolism of two valence states of inhaled antimony in hamsters[J].1974, Am. Ind. Hyg. Assoc. J.35,292-300.
    [36]Filella M. Antimony interactions with heterogeneous complexants in waters, sediments and soils:A review of data obtained in bulk samples[J].2011, Earth-Science Reviews 107, 325-341.
    [37]Filella M., Belzile, N., Chen, Y.-W. Antimony in the environment:a review focused on natural waters:Ⅰ. Occurrence[J].2002a, Earth-Science Reviews 57,125-176.
    [38]Filella M., Belzile, N., Chen, Y.-W. Antimony in the environment:a review focused on natural waters:Ⅱ. Relevant solution chemistry[J].2002b, Earth-Science Reviews 59,265-285.
    [39]Filella M., Belzile, N., Lett, M.-C. Antimony in the environment:A review focused on natural waters. Ⅲ. Microbiota relevant interactions[J].2007, Earth-Science Reviews 80,195-217.
    [40]Flynn H.C., Meharg, A.A., Bowyer, P.K., G.I Paton. Antimony bioavailability in mine soils[J]. 2003, Environ. Pollut.124,93-100.
    [41]Fu Z., Wu, F., Amarasiriwardena, D., Mo, C., Liu, B., Zhu, J., Deng, Q., Liao, H. Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China[J].2010, Sci. Total Environ.408,3403-3410.
    [42]Fu Z., Wu, F., Mo, C., Liu, B., Zhu, J., Deng, Q., Liao, H., Zhang, Y Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China[J].2011, Microchemical Journal 97,12-19.
    [43]G Tyler, T Olsson. Concentrations of 60 elements in the soil solution as related to soil acidity[J].2001, European Journal of Soil Science 52,151-162.
    [44]Gal J., Hursthouse, A.S., S.J Cuthbert. Chemical availability of arsenic and antimony in industrial soils[J].2006, Environmental Chemical Letters 3,149-153.
    [45]GDNielsen. Nickel-sensitive patients with vesicular hand eczema:oral challenge with a diet naturally high in nickel[J].1990, British journal of dermatology 122,299-308.
    [46]Goldberg S., Johnston, C.T. Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling[J].2001, J. Colloid Interface Sci.234,204-216.
    [47]Groth D., Stettler, L., Burg, J. Carcinogenic effects of antimony trioxide and antimony ore concentrate in rats[J].1986, Journal of toxicology and environmental health 18,607-626.
    [48]Guo H., Stuben, D., Berner, Z. Removal of arsenic from aqueous solution by natural siderite and hematite[J].2007, Appl. Geochem.22,1039-1051.
    [49]Guo X.,., Z.W., He, M. Removal of antimony(V) and antimony(Ⅲ) from drinking water by coagulation-flocculation-sedimentation (CFS)[J].2009, Water Res.43,4327-4335.
    [50]Hakanson L. An ecological risk index for aquatic pollution control-a sediment logical app roach[J].1980, Water Res.14,975-1001.
    [51]Hammel W., Debus, R., Steubing, L. Mobility of anti mony in soil and its availability to plants[J].2000, Chemosphere 41,1791-1798.
    [52]Hashem N., Shawki, R. Cultured peripheral lymphocytes:one biologic indicator of potential drug hazard[J].1976, African journal of medical science 5,155-163.
    [53]Hayes K.F., Papelis, C., Leckie, J.O. Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces[J].1988, J. Colloid Interface Sci.125,717-726.
    [54]He M. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China.[J].2007, Environ Geochem Health 29,209-219.
    [55]He M., Wang, X., Wu, F. Antimony pollution in China [J].2012a, Sci. Total Environ.,41-50.
    [56]He M., Wang, X., Wu, F., Fu, Z. Antimony pollution in China[J].2012b, Sci. Total Environ. 421-422,41-50.
    [57]Hindmarsh J.T., R.F McCurdy. Clinical and environmental aspects of arsenic toxicity. [J]. 1986, CRC critical reviews in clinical laboratory sciences 23,315-347.
    [58]Ho Y.-S. Review of Second-Order Models for Adsorption Systems[J].2006, ChemInform 37, no-no.
    [59]Ho Y.S., McKay, G. Pseudo-second order model for sorption processes[J].1999, Process Biochem.34,451-465.
    [60]Hodgson E., Vardon, A., Singh, Z. Studies of the effects of antimony salts on conception and pregnancy in animals[J].1927, Indian journal of medical research 15,491-495.
    [61]Huang Y., Ruiz, P. Antimony Dispersion and Phase Evolution in the Sb2O3-Fe2O3 System[J]. 2005, The Journal of Physical Chemistry B 109,22420-22425.
    [62]Huang Y, Ruiz, P. The nature of antimony-enriched surface layer of Fe-Sb mixed oxides[J]. 2006, Appl. Surf. Sci.252,7849-7855.
    [63]IARC,1980. Arsenic and arsenic compounds. Hum, I.M.E.C.R. (ed), pp.39-141.
    [64]IARC,1989. Some organic solvents, resin monomers and related compounds, pigments and occupational exposures in paint manufacture and painting. Humans, I.M.o.t.E.o.C.R.t. (ed), pp. 291-305, Lyon.
    [65]James L., Lazar, V., Binns, W. Effects of sublethal doses of certain minerals on pregnant ewes and fetal development[J].1966, American journal of veterinary research 27,132-135.
    [66]Janus J., Krajnc, E.,1990. Integrated criteria document chromium:effects, National Institute of Public Health and Environmental Protection, Bilthoven, Netherlands,.
    [67]Johnson C.A., Moench, H., Wersin, P., Kugler, P., Wenger, C. Solubility of antimony and other elements in samples taken from shooting range[J].2005, Journal of Environmental Quality 34, 248-254.
    [68]Jolliffe D. Nephrotoxiciiy of pentavalent antimonials[J].1985, Lancet i
    [69]584.
    [70]Jones R.D. Survey of antimony workers:mortality 1961-1992[J].1994, Occupational and Environmental Medicine 51,772-776.
    [71]Kanematsu K., Hara, M., Kada, T. Rec assay and mutagenicity studies on metal compounds[J]. 1980, Mutation research 77,109-116.
    [72]Kanematsu K., Kada, T. Mutagenicity of metal compounds[J].1978, Mutation research 53, 207-208.
    [73]Kang M., Kamei, T. Magara, Y. Comparing polyaluminum chloride and ferric chloride for antimony removal[J].2003, Water Res.37,4171-4179.
    [74]Kobayashi T., Sasaki, T., Takagi, I., Moriyama, H. Solubility of Zirconium(Ⅳ) Hydrous Oxides[J].2007, J. Nucl. Sci. Technol.44,90-94.
    [75]Kok F. Serum copper and zinc and the risk of death from cancer and cardiovascular disease[J]. 1998. American journal of epidemiology 128,352-359.
    [76]Kolbe F., Weiss, H., Morgenstern, P., Wennrich, R., Lorenz, W., Schurk, K., Stanjek, H., Dans, B. Sorption of aqueous antimony and arsenic species onto akaganeite[J].2011, J. Colloid Interface Sci.357,460-465.
    [77]Kosmulski M. pH-dependent surface charging and points of zero charge Ⅱ. Update[J].2004, J. Colloid Interface Sci.275,214-224.
    [78]Lagergren S. About the theory of so-called adsorption of soluble substances[J].1898, K. Svenska VetenskapsakadHandl 24,1-39.
    [79]Leuz A.-K., Monch, H., Johnson, C.A. Sorption of Sb(Ⅲ) and Sb(V) to Goethite:Influence on Sb(III) Oxidation and Mobilization(?) [J].2006, Environ. Sci. Technol.40,7277-7282.
    [80]Lintschinger J., Koch, I., Serves, S., Feldmann, J., Cullen, W.R. Determination of antimony species with high-performance liquid chromatography using element specific detection[J]. 1997, Fresenius' Journal of Analytical Chemistry 359,484-491.
    [81]Lintschinger J., Michalke, B., Schulte-Hostede, S., P Schramel. Studies on speciation of antimony in soil contaminated by industrial activity [J].1998, International Journal of Environmental Analytical Chemistry 72,11-25.
    [82]Liu Q., Guo, H., Shan, Y. Adsorption of fluoride on synthetic siderite from aqueous solution[J]. 2010, J. Fluorine Chem.131,635-641.
    [83]Longtin J.,1985. Status report-national inorganics and radionuclides survey.. US Environmental Protection Agency, O.o.D.W. (ed), Cincinnati, OH.
    [84]Marek K. pH-dependent surface charging and points of zero charge:Ⅲ. Update[J].2006, J. Colloid Interface Sci.298,730-741.
    [85]Marek K. pH-dependent surface charging and points of zero charge. Ⅳ. Update and new approach[J].2009, J. Colloid Interface Sci.337.439-448.
    [86]McMichael A. The Port Pirie cohort study:maternal blood lead and pregnancy outcome[J]. 1986, Journal of epidemiology and community health 40,18-25.
    [87]Miller J. Poisoning by antimony:a case report[J].1982, Southern medical journal 75,592.
    [88]Mitsunobu S., Takahashi, Y., Terada, Y, Sakata, M. Antimony(Ⅴ) Incorporation into Synthetic Ferrihydrite, Goethite, and Natural Iron Oxyhydroxides[J].2010, Environ. Sci. Technol.44, 3712-3718.
    [89]Mohan D., Pittman Jr, C.U. Arsenic removal from water/wastewater using adsorbents-A critical review[J].2007, J. Hazard. Mater.142,1-53.
    [90]Molokhia M., Smith, H. The behaviour of antimony in blood[J].1969, Journal of tropical medicine and hygiene 72,222-225.
    [91]Moskalev Y. Materials on the distribution of radioactive antimony[J].1959, Medical radiology 4,6-13.
    [92]Muller K., Daus, B., Morgenstern, P., R Wennrich. Mobilisation of antimony and arsenic in soil and sediment samples-evaluation of different leaching procedures[J].2007, Water, Air and Soil Pollution 183,427-436.
    [93]Nahas S.E., Temtamy, S., Hondt, H.d. Cytogenetic effect of two antimonial antibilharzial drugs:tartar emetic and bilharcid[J].1982, Environmental mutagenesis 4,83-91.
    [94]Nakamoto K.,2009. Infrared and Raman spectra of inorganic and coordination compounds, 6th ed.[M],John Wiley, New York.
    [95]Noda L.K., Goncalves, N.S., de Borba, S.M., Silveira, J.A. Raman spectroscopy and thermal analysis of sulfated ZrO2 prepared by two synthesis routes[J].2007, Vib. Spectrosc 44, 101-107.
    [96]Oh S., Cook, D.C., Townsend, H.E. Characterization of Iron Oxides Commonly Formed as Corrosion Products on Steel[J].1998, Hyperfine Interact.112,59-66.
    [97]Otto G., Maren, T., Brown, H. Blood levels and excretion rates of antimony in persons receiving trivalent and pentavalent antimonials[J].1947, American journal of hygiene 46, 193-211.
    [98]Parisis N.E., Heede, M.A.V.d. Antimony uptake and correlation with other metals in mushroom species[J].1992, Toxicological and Environmental Chemistry 36,205-216.
    [99]Paton G., Allison, A. Chromosome damage in human cell cultures induced by metal salts[J]. 1972, Mutation research 16,332-336.
    [100]Peak D., Ford, R.G., Sparks, D.L. An in Situ ATR-FTIR Investigation of Sulfate Bonding Mechanisms on Goethite[J].1999, J. Colloid Interface Sci.218,289-299.
    [101]Ponthieu M., Juillot, F., Hiemstra, T., van Riemsdijk, W.H., Benedetti, M.F. Metal ion binding to iron oxides[J].2006, Geochim. Cosmochim. Acta 70,2679-2698.
    [102]Poon R., Chu, I., Lecavalier, P. Effects of antimony on rats following 90-day exposure via drinking water[J].1998, Food Chem. Toxicol.36,21-35.
    [103]Pratas J., Prasad, M.N.V., Freitas, H., Conde, L. Plants growing in abandonedmines of Portugal are useful for biogeochemical exploration of arsenic, anti-mony, tungsten and mine reclamation[J].2005, Journal of Geochemical Exploration 85,99-107.
    [104]Pribyl E. On the nitrogen metabolism in experimental subacute arsenic and antimony poisoning[J].1927, J. Biol. Chem.74,775-781.
    [105]Rakshit S., Sarkar, D., Punamiya, P., Datta, R. Antimony sorption at gibbsite-water interface[J]. 2011, Chemosphere 84,480-483.
    [106]Rapant S., Dietzova, Z., Cicmanova, S. Environmental and health risk assessment in abandoned mining area, Zlata Idka, Slovakia[J].2006, Environ. Geochem. Health 51, 387-397.
    [107]Rintoul L., Bahfenne, S., Frost, R.L. Single-crystal Raman spectroscopy of brandholzite Mg[Sb(OH)6]2·6H2O and bottinoite Ni[Sb(OH)6]2· 6H2O and the polycrystalline Raman spectrum of mopungite Na[Sb(OH)6][J].2011, Journal of Raman Spectroscopy 42,1147-1153.
    [108]Salmon M., Wright, T. Chronic copper poisoning presenting as pink disease[J].1971, Archives of disease in childhood 46,108-110.
    [109]Salonen J. Interactions of serum copper, selenium, and low density lipoprotein cholesterol in atherogenesis[J].1991, British medical journal 302,756-760.
    [110]Scheinost A.C., Rossberg, A., Vantelon, D. Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy[J].2006, Geochim. Cosmochim. Acta 70,3299-3312.
    [111]Schroeder H. Zirconium, niobium, antimony and fluorine in mice:effects on growth, survival and tissue levels[J].1968,Journal of nutrition 95,95-101.
    [112]Schroeder H., Mitchener, M., Nason, A. Zirconium, niobium, antimony, vanadium and lead in rats:life term studies[J].1970, Journal of nutrition 100,59-68.
    [113]Shizuko A. Adsorption kinetics of antimony(V) ions onto a-ferric oxide surfaces from an aqueous solution[J].1987, Langmuir 3,489-493.
    [114]Smith K.S., Huyck H.L.O.1999. An overview of the abundance, relative mobility, bioavailability and human toxicity of metals. In:Plumlee, G.S., Logsdon, M.J. (Eds.), The Environmental Geochemistry of Mineral Deposits. Part A:Processes, Techniques and Health Issues[M], Society of Economic Geologists, Littleton.
    [115]Stefanc I.I., Music, S., Stefanic, G., Gajovic, A. Thermal behavior of ZrO2 precursors obtained by sol-gel processing[J].1999, J. Mol. Struct.480-481,621-625.
    [116]Stuart W. Lippincott, Ellerbrook, L.D., Rhees, M., Mason, P. A study of the distribution and fate of antimony when used as tartar emetic and fuadin in the treatment of American soldiers with schistosomiasis japonica[J].1947, Journal of clinical investigation 26,370-378.
    [117]Telford K., Maher, W., Krikowa, F., Foster, S., Ellwood, M.J., Ashley, P.M., Lockwood, P.V., Wilson, S.C. Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mone, NSW, Australia[J].2009, Environmental Chemistry 6.
    [118]Tessier A., Campbell, P.G.C. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals[J].1979, Anal.Chem 51,844-851.
    [119]Tighe M., Ashley, P., Lockwood, P., Wilson, S. Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system[J].2005. Sci. Total Environ.347, 175-186.
    [120]Tighe M., Lockwood, P. Importance of Noncrystalline Hydroxide Phases in Sequential Extractions to Fractionate Antimony in Acid Soils[J].2007, Communications in Soil Science and Plant Analysis 38,1487-1501.
    [121]Tiller K. Urban soil contamination in Australia[J].1992, Australian Journal of Soil Research 30,937-957.
    [122]W.E Weir,1998. Management of Tailings at New England Antimony Mines. Project submitted in fulfilment of requirements for Degree of Bachelor of Engineering.[M], University of New England, Armidale, NSW,2351, Australia.
    [123]Wagner S. Skin cancer and arsenical intoxication from well water[J].1979, Archives of dermatology 115,1205-1207.
    [124]Wallack R.N., Hope, B.K. Quantitative consideration of ecosystem characteristics in an ecological risk assessment:A case study[J].2002, Human and Ecological Risk Assessment 8, 1805-1814.
    [125]Wang Y, Morin, G., Ona-Nguema, G., Juillot, F., Calas, G., Brown. G.E. Distinctive Arsenic(V) Trapping Modes by Magnetite Nanoparticles Induced by Different Sorption Processes[J].2011, Environ. Sci. Technol.45,7258-7266.
    [126]Watkins R., Weiss, D., Dubbin, W., Peel, K., Coles, B., Arnold, T. Investigations into the kinetics and thermodynamics of Sb(Ⅲ) adsorption on goethite (a-FeOOH)[J].2006, J. Colloid Interface Sci.303,639-646.
    [127]Watt W. Chronic inhalation toxicity of antimony trioxide:validation of the threshold limit value[J].1983, Dissertation abstracts international, B 44,739.
    [128]Westrick M. Physiologic responses attending administration of antimony, alone or with simultaneous injections of thyroxin[J].1953, Proceedings of the Society for Experimental Biology and Medicine 82,6-60.
    [129]WHO,1989. Toxicological evaluation of certain food additives and contaminants, pp.163-219 WHO, Cambridge, Cambridge University Press.
    [130]WHO,1996. Guidelines for Drinking-Water Quality-Health Criteria and Other Supporting Information, World Health Organization, Geneva.
    [131]WHO,2003. Antimony in drinking-water, London, UK.
    [132]Wilson N.J., Craw, D., Hunter, K. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand[J].2004a, Environ. Pollut.129,257-266.
    [133]Wilson N.J., Craw, D., Hunter, K. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand[J].2004b, Environmental Pollution 129, 257-266.
    [134]Wilson S.C., Lockwood, P.V., Ashley, P.M., Tighe. M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic:A critical review[J].2010, Environ. Pollut.158,1169-1181.
    [135]Wu X., Zhang, Y., Dou, X., Yang, M. Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent[J].2007, Chemosphere 69,1758-1764.
    [136]Wu Z., He, M., Guo, X. Removal of antimony (Ⅲ) and antimony (Ⅴ) from drinking water by ferric chloride coagulation:Competing ion effect and the mechanism analysis[J].2010, Sep. Purif. Technol.76,184-190.
    [137]Xi J., He, M., Lin, C. Adsorption of antimony(Ⅲ) and antimony(Ⅴ) on bentonite:Kinetics, thermodynamics and anion competition[J].2011, Microchem. J.97,85-91.
    [138]Xu W., Wang, H., Liu, R., Zhao, X., Qu, J. The mechanism of antimony(Ⅲ) removal and its reactions on the surfaces of Fe-Mn Binary Oxide[J].2011, J. Colloid Interface Sci.363, 320-326.
    [139]Zhu J., Wu, F., Pan, X. Removal of antimony from antimony mine flotation wastewater by electrocoagulation with aluminum electrodes[J].2011, Journal of Environmental Sciences 23, 1066-1071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700