用户名: 密码: 验证码:
两种频率电项针对AD模型大鼠空间学习记忆能力分子机制的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨两种频率电项针对阿尔茨海默病(Alzheimer's disease, AD)模型大鼠空间学习记忆能力分子机制的影响,以期更好地为电项针治疗AD提供客观的理论依据。
     方法:20月龄、健康、清洁级、雄性SD大鼠适应性喂养1周,经Morris水迷宫实验淘汰掉先天愚钝鼠后,根据体重(320±50g)从小到大编号,随机分为空白组、假损伤组、模型组、2Hz治疗组和50Hz治疗组,每组10只。空白组仅给予正常饮食、饮水。假损伤组给予胃饲及腹腔注射与模型组等量的生理盐水。模型组与治疗组大鼠,每天给予20mg·ml-1的AlCl3水溶液2m1胃饲,48mg·kg-1的D-半乳糖腹腔注射,连续8周,余同空白组。
     穴位与针具常规消毒,取大鼠项部双侧的“风池”、“供血”,用Φ0.40mm×25mm毫针,直刺10mm,接DJ-6805D型脉冲电针仪,一组导线同侧上下连接,正极连“风池”穴,负极连“供血”穴。治疗组根据频率分为2Hz治疗组和50Hz治疗组。针刺通电持续刺激20min,每天1次,每周休息1天,连续治疗4周。空白组、假损伤组、模型组不予治疗,但采取与治疗组同样时间的抓取、绑定。
     以Morris水迷宫实验检测AD大鼠行为学变化;以光、电镜检测海马组织形态学、神经元超微结构;以免疫组化技术观察pCREB1、BDNF、TrkB、 Bcl-2、Bax及Caspase-3蛋白的阳性表达;以原位杂交技术观察pCREB1、 BDNFmRNA的阳性表达。应用motic image3.2软件对图像进行分析,并用SPSS17.0统计软件处理收据。
     结果:
     1.行为学:造模前各组大鼠的逃避潜伏期、穿越平台次数和靶象限游泳路程百分比无差异(P>0.05);造模完成后模型组、2Hz治疗组及50Hz治疗组与空白组及假损伤组比较,逃避潜伏期、穿越平台次数和靶象限游泳路程百分比有明显差异(P<0.01);治疗结束后:与空白组及假损伤组比较,模型组逃避潜伏期、穿越平台次数和靶象限游泳路程百分比有明显差异(P<0.01);与模型组比较,2Hz治疗组的逃避潜伏期、穿越平台次数和靶象限游泳路程百分比有差异(P<0.05),而50Hz治疗组的有明显差异(P<0.01);与2Hz治疗组比较,50Hz治疗组的逃避潜伏期、穿越平台次数和靶象限游泳路程百分比有差异(P<0.05)。
     2.组织形态学:空白组细胞形态完整、染色均匀,核仁清晰。假损伤组存在少数炎性细胞。模型组细胞固缩,数目明显减少,排列极不规整,部分细胞核溶解固缩,核周出现大量空泡物质。2Hz治疗组有少量细胞形态固缩,染色均匀,排列欠规整。50Hz治疗组偶见细胞固缩,染色均匀,排列较规整,核仁明显,细胞质染色清晰。
     3.神经元超微结构:空白组及假损伤组未见明显变化;模型组溶酶体及脂褐素增多,神经元内尼氏体分散,线粒体空化,突触小泡减少。2Hz治疗组较模型组略有改善,有脂褐素存在,突触小泡数目略有增加。50Hz治疗组较模型组改善明显,神经元形态尚可,尼氏体相对较少,突触小泡数目较多,部分线粒体空化。
     4.免疫组化结果:(1)与空白组及假损伤组比较,模型组pCREB1、 BDNF、TrkB、Bcl-2、Bax、Caspase-3蛋白阳性细胞表达检测均有显著性差异(P<0.01)。(2)与模型组比较,2Hz治疗组pCREB1、BDNF、TrkB、 Bcl-2、Bax、Caspase-3蛋白阳性细胞表达有差异(P<0.05),50Hz治疗组pCREB1、BDNF、TrkB、Bcl-2、Bax、Caspase-3蛋白阳性细胞表达(P<0.01)。(3)与2Hz治疗组比较50Hz治疗组pCREB1、BDNF、TrkB、 Bcl-2、Bax、Caspase-3蛋白阳性细胞表达(P<0.05)。
     5.原位杂交结果:(1)与空白组及假损伤组比较,模型组pCREB1mRNA、BDNFmRNA的阳性细胞表达有明显差异(P<0.01);(2)与模型组比较,2Hz治疗组pCREB1mRNA、BDNFmRNA阳性细胞表达有明显差异(P<0.05),50Hz治疗组有明显差异(P<0.01);(3)与2Hz治疗组比较,pCREB1mRNA和BDNFmRNA阳性细胞表达有差异(P<0.05)。
     结论:
     1.两种频率电项针均可缩短AD模型大鼠的平均逃避潜伏期,提高靶象限游泳路程百分比,增加其穿越平台次数,且50Hz治疗组疗效好于2Hz治疗组。
     2.两种频率电项针均可改善AD模型大鼠海马神经细胞组织形态和超微结构,且50Hz治疗组疗效好于2Hz治疗组。
     3.两种频率电项针均可增加pCREB1和BDNF蛋白及mRNA、以及TrkB蛋白阳性细胞的表达,从而提高对海马神经元的保护,且50Hz治疗组疗效好于2Hz治疗组。
     4.两种频率电项针均可增加Bcl-2阳性细胞的表达,减少Bax和Caspase-3阳性细胞的表达,从而减少海马神经元的凋亡,且50Hz治疗组疗效好于2Hz治疗组。
     5.电项针对AD模型大鼠的治疗作用与频率快慢有关,50Hz的疗效优于2Hz的疗效。
Objective:To explore the effect of the molecular mechanism of the spatial learning and memory ability for the rats model of Alzheimer's disease (AD)with two kinds of frequency of electro-nape-acupuncture, in order to better provide objective theoretical basis for the treatment of AD with this therapy method.
     Methods:20months of age, clean grade and male Sprague-Dawley (SD) rats feeding adaptation of one week, eliminateding the congenital dull rats by Morris water maze, were randomly divided into blank normal group, sham injury group, model group,2Hz and50Hz groups(n=10) based on body weight(320±50) from small to large numbers. Blank group rats were given a normal diet, drinking water. Sham group rats were given Normal saline with stomach feeding and intraperitoneal injection as the same with the model group. Model group and treatment group rats were given20mg/ml of AICl3solution2ml with stomach feeding and48mg/Kg of D-galactose with intraperitoneal injection every day, lasting8weeks, and feeding as same as blank group.
     After routine disinfection, take bilateral "Fengchi" and "Gongxue" as acupoints of the rats,with of Φ0.40X25mm acupuncture needles, piercing10mm, then connected with the pulse electro-acupuncture apparatus (DJ-6805D), ipsilateral upper and lower set of wires connected to the acupoints,which positive connected "Fengchi" and negative connected "Gongxue". The treatment group was divided according to the frequency2Hz and50Hz, energized stimulating contine20min, once a day, resting one day after6times. The therapy time was four weeks. Blank group, sham groupand model group were without treatment, but taking ahold and binding as the same time as the treatment group.
     Morris water maze test was used to the behavior changes of AD rats. HE staining and Electron microscope were used to look into the changes of histomorphology. Took Immunohisto chemistry and Insitu hybridization to detect the expression of pCREB1(mRNA), BDNF(mRNA), TrkB, Bcl-2/Bax, Caspase-3. The images were analyzed by the software of Motic image3.2, and the receipt were dealed with the SPSS17.0statistical software.
     Results:
     1. Behavior changes:Before modeling of rats in each group, the escape latency, the percentage of target quadrant swimming distance and the number of crossing the platform were difference (P>0.05). Compared with the blank and sham groups after the completion of the modeling, the escape latency, the percentage of target quadrant swimming distance and the number of crossing the platform of the model group,2Hz group and50Hz group were significant differences(P<0.01). After the end of treatment, compared with the blank and sham group, the behavioral indices of the model were significant differences (P<0.01); compared with the model group, the behavioral indices of2Hz group were difference(P<0.05), the50Hz group were significantly difference(P<0.01), compared with the2Hz group, the behavioral indices of50Hz group were difference (P<0.05).
     2. Tissue morphology:Compared with the blank group, the sham group changed little; the model group improved significantly. Compared with the model group, the degree of injury of the2Hz group were light, the50Hz group were lighter.
     3. Neuronal ultrastructure:there were no significant change between blank group and sham group. Lysosomes and lipofuscin of neurons increased, neuronal tigroid body, dispersion, mitochondrial cavitation, reduced synaptic vesicles.
     4The results of immunohistochemistry:(1) Compared with blank group and sham group, there were significant differences detected the positive cells expression of pCREB1, BDNF, TrkB, Bcl-2, Bax, Caspase-3protein of model group(P<0.01).(2) Compared with the model group, the positive cells expression of pCREB1, BDNF, TrkB, Bcl-2, Bax, Caspase-3protein of2Hz group were differences (P<0.05), and of50Hz group were significantly differences(P<0.01).(3) Compared with the2Hz group, the positive cells expression of pCREB1, BDNF, TrkB, Bcl-2, Bax, Caspase-3protein of50Hz group were differences (P<0.05).
     5The results of in situ hybridization:(1) Compared with control group and sham group, the positive cells expression of pCREB1mRNA and BDNFmRNA of model group had significant difference(P<0.01).(2) Compared with the model group, the positive cells expression of pCREB1mRNA and BDNFmRNA of2Hz group had difference (P<0.05), and50Hz group were significantly differences(P<0.01).(3) Compared with2Hz group, the positive cells expression of pCREBlmRNA and BDNFmRNA of50Hz group were differences (P<0.05).
     Conclusion:
     1. Two frequency of electro-nape-acupuncture can shorten the average escape latency, improved the times of crossing platform and the percentage of the target quadrant swimming path of the rats model of AD, and the effect of50Hz group was better than2Hz group.
     2. Two frequency of electro-nape-acupuncture can improve the morphology of hippocampal neural cells and ultrastructure of the rats model of AD, and the effect of50Hz group was better than2Hz group.
     3. Two frequency of electro-nape-acupuncture can increase the positive cells expression of the mRNA of pCREB1and BDNF, and of the protein of pCREB1, BDNF and TrkB of the rats model of AD, in order to improve the protection of hippocampal meuros, and the effect of50Hz group was better than2Hz group.
     4Two frequency of electro-nape-acupuncture can increase the positive cells expression of the protein of Bcl-2and reduce the positive cells expression of the protein of Bax and Caspase-3to reduce the apoptosis of hippocampal neurons, and the effect of50Hz group was better than2Hz group.
     5. The frequency's speed of the electro-nape-acupuncture determined the therapeutic effect to the rats of AD, and the effect of50Hz group was better than2Hz group.
引文
1王维治主编.神经病学[M],第5版,北京:人民卫生出版社,2005,267-268.
    2洪亮,杨文明.Alzheimer病与前炎性因子[J].医学综述,2006,12(10):628-630.
    3董红.浅谈老年痴呆[J].中国现代药物应用,2008,2(17):114-1151.
    4杨期东,周琳.中国阿尔茨海默病的流行病学特征[J].中国临床康复,2004,8(31):6982-6983.
    5张艳霞,张允岭.基于现代文献的老年性痴呆证型及证候要素分布研究[J].北京中医药大学学报,2011,34(6):417-420.
    6陈美娟,高之旭.石杉碱甲胶囊和片剂治疗阿尔采夫病的多种心双盲研究[J].中国新药与临床,2000,19(1):102-108.
    7陈涛,胡金家,蒋唯松.人参治疗老年性痴呆的研究进展[J].解剖学研究,2007,29(06):463-465.
    8李富仁,丑莉莉,范新田.远志茯苓醇提物改善学习记忆障碍的实验研究[J].北华大学学报(自然科学版),2011,2(2):172-176.
    9张春,王世真,王铁,等.川芎嗪对拟AD小鼠脑胆碱乙酰基转移酶和NMDA受体的影响[J].江苏医药,2011,37(4):390-392.
    10李莉,刘耕陶.五味子酚对氧自由基引起大鼠脑突触体和线粒体损伤的保护作用[J].药学学报,1998,33(2):81.
    11朱济英,王明琴,吴红卫,等.芹菜甲素对拟痴呆大鼠脑神经元保护机制的研究[J].中国当代医药,2009,16(9):11-13.
    12叶翠飞,张兰,李斌,等.二苯乙烯苷对胆碱能损伤拟老年性痴呆大鼠学习记忆功能和兴奋性的影响[J].中国康复理论与实践,2003,9(10):593-595.
    13唐民科,张均田.丹酚酸B体外抑制淀粉样β蛋白的纤维形成及其细胞毒作用[J].中国药理学报,2001,22(4):380-384.
    14张文,李维祖,李卫平,等.黄芪总苷防治地塞米松诱导小鼠记忆障碍和对APP及β-分泌酶mRNA表达的研究[J].中国中药杂志,2010,35(5):642-646.
    15李晓光,罗焕敏.海风藤药理作用研究进展[J].中药材,2002,25(3):214-216.
    16段光琳,董梅,吴建梁,等.大黄素对Ap毒性作用的神经元的保护作用[J].中华医学研究杂志,2002,2(1):123.
    17韩金安,胡威夷,孙增会.颅脑损伤后钙、钙调蛋白的变化及三七总皂甙的治 疗作用[J].中国中西医结合杂志,1999,19(4):227.
    18刘景根,李瑞,刘国卿,等.蝙蝠葛苏林碱及异构体对PC12细胞缺血性损伤的保护作用[J].药学学报,1998,33(3):165.
    19曹娟,董联玲,冀俊虎,等.红景天对老年性痴呆大鼠行为学及海马区凋亡相关蛋白表达的影响[J].中国中医急症,2008,17(11):1567-1569.
    20朱未名,胡海燕.阿尔茨海默病的中医药临床研究概况[J].中医杂志,2005,46(05):389-391.
    21周鲁,张卫华,曾令航,等.老年性痴呆的复方用药规律研究[J].辽宁中医杂志,2005,32(03):243-244.
    22王晶,陈欢雪,陈民.补元聪脑汤对AD大鼠胆碱能系统的影响[J].辽宁中医药大学学报,2010,12(4):88-89.
    23徐建民.益智汤抗老年期痴呆的实验研究[J].康复与养生,2007,14(4):279-280
    24苗琦,张效科,陈美芳,等.益智灵胶囊对老年性痴呆大鼠健脑益智作用机制的实验研究[J].现代中医药,2007,27(4):70-72.
    25李新毅,穆俊霞.脑聪汤对实验性阿尔茨海默病大鼠单胺类神经递质的影响[J].中西医结合心脑血管病杂志,2006,4(2):128-129.
    26张桂娟,马民,马义.脑康冲剂治疗阿尔茨海默病的临床与实验研究[J].中国老年杂志,2006,26(5):619-620.
    27朱未名,胡海燕.安神益智方对老年痴呆症模型小鼠学习记忆能力及脑组织内自由基代谢的影响研究[J].中华中医药学刊,2007,25(6):1230-1232.
    28李满生,徐厚谦,金华,等.寿聪胶囊对老年痴呆大鼠行为学及过氧化氢酶、单胺氧化酶的影响[J].中国中医信息杂志,2008,15(10):34-35.
    29王芝兰,王荣田,郭立新,等.益脑灵对老年性痴呆模型大鼠学习记忆力及海马细胞超微结构的影响[J].中医药学报,2005,33(3):50-52.
    30秦大莲,岳永花,田吉,等.脑舒胶囊对阿尔茨海默病大鼠神经炎症损伤的保护[J].中国新药杂志,2010,19(11):986-990.
    31黄德弘,刘孟渊,闫小峰.加味当归芍药散对纤丝状Aβ42诱导脑内炎症因子及磷酸化MAPK信号分子表达的影响[J].中国实验方剂学杂志,2011,17(2):143-8.
    32何明大,刘运林.脑灵汤对阿尔茨海默病模型鼠凋亡调控基因的影响[J].中国现代医学杂志,2005,15(22):3398-3401.
    33冯方俊,涂晋文,董梦久,等.寿尔智胶囊对体外培养大鼠海马神经元细胞凋亡的影响[J].康复与养生,2005,12(1):40-41.
    34杨文明,周磊,孙林娟.智脑胶囊对阿尔茨海默病模型大鼠脑组织BDNF及其TrkB影响的实验研究[J].中国实验方剂学杂志,2010,16(3):67-70.
    35王小艳,董军,陆大祥,等.中药复方SMI对拟老年痴呆小鼠学习记忆能力及海马BDNF表达的影响[J].中国病理生理杂志,2005,21(3):524-527.
    36钟炳武,王哲,何明大.脑灵汤对阿尔茨海默病模型大鼠行为学及海马CA3区域淀粉样前体蛋白表达的影响(英文)[J].中南大学学报(医学版),2010,35(5):431-437.
    37陈洪华,郭宗君,金丽英.活忆饮对阿尔茨海默病模型大鼠p淀粉样肽1-40表达和学习能力的影响[J].齐鲁护理杂志,2008,14(16):42-44.
    38周忠光,韩玉生,姜波,等.补气活血方对多因素损伤AD大鼠海马区β-APP及相关基因表达的影响[J].中国中医药科技,2008,15(2):97-98.
    39刘剑刚,李浩,姚明江,等.还脑益聪方对老龄大鼠学习记忆及脑组织β类淀粉样蛋白和P物质水平的影响[J].中国实验方剂学杂志,2010,16(2):52-55.
    40丁晓蓉,于建春,于涛,等.“益气调血,扶本培元”针法从气论治老年性痴呆解辨[J].中医药学刊,2005,23(2):282-284.
    41刘会安,侯冬芬.化浊益智针法治疗血管性痴呆的临床疗效观察及机理研究[J].中国针灸,1997,17(9):521-525.
    42欧阳颀,李忠仁,穆艳云,等.针刺治疗阿耳茨海默病临床疗效对照研究[J].中国针灸,1999,(7):399-402.
    43孙长旺.针刺四神穴为主治疗老年痴呆症临床经验[J].天津中医,1997,14(2):79.
    44杨湘潭.针灸醒脑开窍法为主治疗老年性痴呆26例[J].中国针灸,1996,16(11):3.
    45付平,贾建平,王葳,等.电针内关和神门穴对脑功能成像不同影响的观察[J].中国针灸,2005,25(0 1):61-63.
    46许建阳,王发强,单保慈,等.针刺治疗老年性痴呆的认知能力及其脑功能成像的研究一附10例临床报告[J].中国中西医结合影像学杂志,2004,2(02):85-87.
    47黄泳,唐安戊,李求实,等.头电针对正常人脑葡萄糖代谢的影响[J].中国针 灸,2004,24(11):779-801.
    48李忠仁.针药防治“呆病”研究的策略[J].上海针灸杂志,2005,24(03):28-29.
    49周友龙,韩红艳,贾建平.阿尔茨海默病患者穴位埋线后认知功能变化与脑功能成像改变的相关性研究[J].中国中西医结合杂志,2008,28(08):689-693.
    50马莉,赵立刚,成燕萍,等.针刺百会、大椎对老年性痴呆大鼠脑内SOD及AChE的影响[J].中西医结合心脑血管病杂志,2008,6(2):166-167.
    51望庐山,周丽莎.电针治疗对阿尔茨海默病大鼠Ach、ChAT、AchE的影响[J].针灸临床杂志,2009,25(6):40-42.
    52沈梅红,唐青青,李忠仁,等.电针对Aβ25-35诱导的阿尔茨海默病大鼠模型海马长时程增强的影响[J].针刺研究2010,35,(1):3-7.
    53卢圣锋,邵欣,唐勇,等.电针促进阿尔茨海默病模型小鼠(SAMP8)海马神经元突触可塑性的神经细胞黏附机制[J].中国康复医学杂志,2008,23(12):1057-1060.
    54张晓东,刘洋,王吉锡,等.电针对阿尔茨海默病大鼠学习记忆及NOS、CaMKⅡ表达的影响[J].针灸临床杂志,2011,27(6):70-74.
    55朱书秀,孙国杰.电针对阿尔茨海默病模型大鼠学习记忆能力及海马区胶质细胞的影响[J].中国针灸,2009,29(2):133-136.
    56国海东,邵水金,陆萍萍,等.自噬调控p-淀粉样蛋白水平在电针治疗阿尔茨海默病模型大鼠中的作用及其机制[J].解剖学杂志,20114,3(增刊):68.
    57罗玳红,唐文志.电针对老年性痴呆模型大鼠学习记忆影响的实验研究[J].新中医,2003,35(11):77-78.
    58唐勇,余曙光,罗松,等.电针对老年性痴呆大鼠胆碱能神经元损伤的保护作用[J].中西医结合学报,2006,4(4):374-377.
    59曾芳,赵纪岚,周奇志,等.电针对老年性痴呆模型大鼠海马线粒体酶活性的影响[J].中国老年学杂志,2006,26(6):7-8.
    60沈刚.阿尔茨海默病的危险因素研究[J].临床合理用药,2012,5(4c):17.
    61崔宇,吴群红,郝艳华,等.阿尔茨海默病发病的相关危险因素研究[J].中国全科医学,2012,15(9B):3000-3002.
    62李玉静,唐灵涛,董万利.老年性痴呆70例危险因素分析[J].中国误诊学杂志,2010,10(24):5966.
    63石君飞,周东升,陈中鸣.阿尔茨海默病患病危险因素调查分析[J].中国预防医学杂志,2012,13(11):836-838.
    64闫国立,詹向红,李伟,等.阿尔茨海默病危险因素的Logistic回归分析[J].中国老年学杂志,2012,2(5):1903-1904.
    65宋保兰.阿尔茨海默病发生的风险因素[J].中国保健营养,2013,1(下):148.
    66仇成轩,Bengt Winb1 AD, Laura Frat I,等.瑞典斯德哥尔摩市社区人群老年痴呆和阿尔茨海默病的危险因素队列研究[J].中华流行病学杂志,2005,26:882-887.
    67方传勤,周华东.脑缺血危险因素与Alzheimer病[J].国际脑血管病杂志,2006,14(11):817.
    68张耀东,徐勇.中国人群老年性痴呆发病危险因素的荟萃分析[J].中国老年学杂志,2010,30(5):1173-1175.
    69惠晓萍,徐勇.老年阿尔茨海默病发病风险预测的循证研究[J].江苏预防医学,2010,21(1):18-21.
    70吴峰,黄河浪.阿尔茨海默病的危险因素研究进展[J].中华疾病控制杂志,2011,15(4):336-339.
    71王荫华.阿尔茨海默病的病因与社区预防[J].中国全科医学,2001,4(12):935-937.
    72汤兆君.老年性痴呆的脑功能障碍及治疗方向[J].现代中西医结合杂志,2008,17(13):2105-2106.
    73贾建平主编.中国痴呆与认知障碍诊治指南[M].北京:人民卫生出版社,2010:13,169.
    74张惠红.阿尔茨海默病精神行为症状的临床特征与护理[J].中国城乡企业卫生,2012,(152):63-64.
    75 Lobo A, Launer LJ, Fratiglioni L, et al. Prevalence of dementia and major subtypes in Europe:A collaborative study of population based cohorts Neurologic Diseases in the Elderly Research Group[J]. Neurology,2000,54 (11Suppl5):s4-9.
    76 Brookmeyer R, Gray S, Kawas C. Projection of Alzheimer's disease in the United States and the public health impact of delaying disease onset Am[J]. J Public Health, 1998,88 (9):1337-1342.
    77 Yamada T, Hattori H, Miura A, et al. Prevalence of Alzheimer's disease, vascular dementia and dementia with Lewy bodies in a Japanese population[J]. Psychiatry Clin Neurosci,2001,55 (1):21-25.
    78 Suh GH, Kim JK, Cho MJ. Community study of dementia in the older Korean rural population [J]. Aust N J Psychiatry,2003,37:606-612.
    79解恒革.阿尔茨海默病的流行病学[J].中国全科医学,2001,4(12):933-934.
    80 Zhang ZX, Zahner GE, Roman GC, et al. Dementia subtypes in China:prevalence in Beijing, Xian, Shanghai, and Chengdu[J]. Arch Neurol,2005,62:447-453.
    81 Jorm AF, Jolley D. The incindence of dementia a meta-analysis[J]. Neurology, 1998,51:728-733.
    82朱紫青,张明园,R. Katzman,等.社区老年人5年随访中痴呆等疾病的死亡率分析[J].中华精神科杂志,1997,03(4):231-234.
    83洪震,周玢,黄茂盛,等.上海城乡老年期痴呆患者死亡率和生存预示因素研究[J].中华流行病学杂志,2005,26(6):404-407.
    84 Wolfson C, Wolfson DB, Asgharian M, et al. A reevaluation of the duration of survival after the onset of dementia[J]. N Engl JMed,2001,344(15):1111-1116.
    85 Xia W. Amyloid metabolism and secretases in Alzheimer's disease[J]. Curr Neurol Neurosci Rep 2001,1 (5):422-427.
    86 Xia W. Amyloid inhibitors and Alzheimer's disease[J]. Curr Opin Investig Drugs 2003,4(1):55-59.
    87 Humpel C. Chronic mild cerebrovascular dysfunction as a cause for Alzheimer's disease?[J]. Exp Gerontol 2011,46(4):225-232.
    88 Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics[J]. Science 2002,297 (5580):353-356.
    89 Selkoe DJ. Alzheimer's disease:genes, proteins, and therapy. Physiol Rev 2001, 81 (2):741-766.
    90 Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology[J]. Proc Natl Acad Sci U S A 1986,83 (13):4913-4917.
    91 Krishnamurthy PK, Johnson GV. Mutant (R406W) human tau is hyperphosphory-lated and does not efficiently bind microtubules in a neuronal cortical cell model[J]. J Biol Chem2004,279(9):7893-7900.
    92 Quintanilla RA, Dolan PJ, Jin YN, et al. Truncated tau and Abeta cooperatively impair mitochondria in primary neurons[J]. Neurobiol Aging 2012,33 (3): 619. e25-619. e35.
    93 Olgiati P, Politis A, Malitas P, et al. APOE epsilon-4 allele and cytokine production in Alzheimer's disease[J]. Int J Geriatr Psychiatry 2010,25 (4):338-344.
    94 Bianchetti A, Ranieri P, Margiotta A, et al. Pharmacological treatment of Alzheimer's Disease[J]. Aging Clin Exp Res 2006,18(2):158-162.
    95 Feldman H, Gauthier S, Hecker J, et al. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer's disease[J]. Neurology 2001,57 (4):613-620.
    96 Conti E, Galimberti G, Tremolizzo L, et al. Cholinesterase inhibitor use is associated with increased plasma levels of anti-Abeta 1-42 antibodies in Alzheimer's disease patients[J]. Neurosci Lett 2010,486(3):193-196.
    97 Swerdlow R H, Khan S M. The Alzheimer's disease mitochondrial cascade hypothesis:An update[J]. Exp Neurol,2009,218(2):308-315.
    98 Gibson G E, Starkov A, Blass J P, et al. Cause and consequence:Mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases[J]. Biochim Biophys Acta,2010,1802(1):122-134.
    99 Walton JR. Evidence for participation of aluminum in neurofibrillary tangle formation and growth in Alzheimer's disease[J]. J Alzheimers Dis 2010,22 (1): 65-72.
    100 Li L, Holscher C. Common pathological processes in Alzheimer disease and type 2 diabetes:a review[J]. Brain Res Rev 2007,56(2):384-402.
    101 Luchsinger JA, Tang MX, Shea S, et al. Hyperinsulinemia and risk of Alzheimer disease[J]. Neurology 2004,63(7):1187-1192.
    102邹磊,全明海,程永强,等.乙酰胆碱酯酶抑制剂的研究进展[J].食品科学,2005,26(增刊):105-108.
    103朱天瑞,李晓红.他汀类药物对阿尔茨海默病的治疗作用[J].国际神经病学神 经外科学杂志,2010,37(1):77-80.
    104王芬,魏翠柏,贾建平.洛伐他汀对淀粉样前提蛋白β位点裂解酶表达和活性的影响[J].中国神经精神疾病杂志,2010,36(2):80-83.
    105阮志,章海燕.阿尔采末病治疗药物的研究展望[J].中国新药与临床杂志,2012,13(4):175-187.
    106余琳潇,荣成,张晓,等.雌激素在阿尔茨海默病中作用的研究进展[J].西南军医,2008,10(3):128-130.
    107喻东山.阿尔茨海默病药物治疗新进展[J].中国全科医学,2009,12(10A):1811-1813.
    108孙振球主编.医学统计学[M].第二版.北京:人民卫生出版社,2010:832.
    109霍金,韩数.电项针干预对老年性痴呆大鼠5-HT及CHATmRNA的影响[J].针灸临床杂志,2012,28(4):68-70.
    110 Morris R. Developments of a water-maze procedure for studying spatial learning in the rats[J]. J Neurosci Mehods,1984,11 (1):47-60.
    111李浩,刘剑刚,姚明江,等.还脑益聪方对老龄认知障碍大鼠脂质代谢和海马内质网Aβ相关结合蛋白表达的影响[J].中国中医基础医学杂志,2009,15(5):354-357.
    112 Rosenzweig E S, Barnes C A. Impact of aging on hippocampal function:Plasticity, network dynamics, and cognition[J]. Prog Neurobiol,2003,69 (3):143-179.
    113刘新峰,陈春富.实验神经病学[M].人民军医出版社,2006,8,229-233.
    114赵保胜,徐暾海.老年性痴呆疾病模型的建立[J].中国实验方剂学杂志,2011,17(6):274-276.
    115 Wirak DO, Bayney R, Ramabhadran TV, et al. Deposits of amyloid beta protein in the central nervous system of transgenic mice[J]. Science,1991,253:323-325.
    116 Houlden H, Crook R, Backhovens H, et al. ApoE genotype is a risk factor in nonpresenilin early-onset Alzheimer's disease families[J]. Am J Med Genet,1998, 81: 117-121.
    117 Hwang DY, Chae KR, Kang TS, et al. Alterations in behavior, amyloid beta-42, caspase-3, and Cox-2 in mutant PS2 transgenic mouse model of Alzheimer's disease[J]. FASEB J 2002,16:805-813.
    118 Gotz J. Tau and transgenic animal models[J]. Brain Res Brain Res Rev,2001. 35:266-286.
    119俞英欣.APP/PS1双转基因Alzheimer病鼠模型海马神经发生的研究.第四军医大学[D],2009,5,31-32.
    120岳启安,赵淑梅,高敬宗,等.呆聪液对老龄大鼠痴呆模型脑M受体作用的实验研究[J].中国中西医结合杂志,2000,20(11):846-848.
    121 Yue-Chun Wang. Zi-Dong Wang, Si-Chun He, et al. Brain c-fos gene expression in two rat models of Alzheimer's disease and vascular dementia:a comparative study [J]. Chinese Journal of Clinical Rehabiliation,2003,7(28):3802-3803.
    122刘道宽.Alzheimer's病的研究进展点滴[J].中华神经精神科杂志1995,28(4):239-242.
    123隋承光,尹元琴,任常山.Alzheimer病动物模型的构建及其分子病理学的变化[J].中国老年学杂志,2005,25(9):1069-1071.
    124 Hob A, Nitta A, Nadai M, et al. Dysfunction of cholinergic and dopaminergic neuronal systems in beta-amyloid protein-infused rats[J]. J Neurochem,1996,66(3): 1113-1117.
    125方芳,晏勇,冯占辉,等.Aβ1-40和铝联合注入大鼠侧脑室内致老年性痴呆模型的实验研究[J].中国神经免疫学和神经病学杂志,2007,14(6):339-343.
    126秦海强,田苏平,孙秀兰,等.鹅膏蕈氨酸、p-淀粉样蛋白、D-半乳糖对大鼠学习记忆的影响[J].中国行为医学科学,2001,10(1):6-7.
    127郑集.从代谢观点看衰老机制[J].中华老年医学杂志.1983,2(1):52.
    128骆静,郑陶冶,莫扎拜,等.火麻仁提取液对D半乳糖致衰模型小鼠学习记忆及代谢产物的影响[J].北京师范大学学报(自然科学版),2003,39(3):386-389.
    129邱柏程,刘庆丰.D-半乳糖大鼠衰老模型的评价[J].广西医学,2009,31(7):918-920.
    130龚国清,徐黻本.小鼠衰老模型研究[J].中国药科大学学报.1991,21(2):101-103.
    131秦斌,王新德.β2淀粉样蛋白及Tau蛋白和Alzheimer病关系的研究[J].国外医学·老年医学分册,1995,16(6):267.
    132 white DM, Longstreth WT Jr, Rosenstoek L, et al. Neurologic syndrome in 25workers from an aluminum smelting Planet[J]. Arch Intern Med,1992,152: 1443-1448.
    133 Yen-koo HC. The effect of aluminum on conditioned avoidance (CAR) in mice[J]. Toxicol Ind Health,1992,8(1-2):1-7.
    134 Casamenti F, Prosperi C, Giovanelli L, et al. Interleukin-1beta activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo:implications for Alzheimer's disease[J]. Neuroscience,1999,91(3): 831-842.
    135李文彬,韦丰,范明,等.D-半乳糖在小鼠上诱导的拟脑老化效应[J].中国药理学与毒理学杂志,1995,9:93-95.
    136钱小明,吴振国,施志明,等.衰老小鼠组织牛磺酸含量与脂质过氧化损伤的关系[J].基础医学与临床,1995,15:390.
    137周原.两种阿尔茨海默病大鼠模型比较的实验研究[D].吉林:延边大学医学部,2007.
    138 Fei XIAO, Xiao-Guang LI, Xiao-Yu ZHANG, et al. Combined administration of D-galactose and aluminium induces Alzheimer-like lesions in brain[J]. Neurosci Bull, 2011,27 (3):143-155.
    139郭贵文,吴亚兰,杨小红,等.氯化铝对大鼠脑组织胶质原酸性纤维蛋白和淀粉样p-蛋白前体基因表达的影响[J].中国药理学与毒理学杂志,1999,13(3):227-230.
    140钱亦华,杨杰,任惠民,等.痴呆模型大鼠背海马结构内淀粉样蛋白沉积的免疫细胞化学研究[J].西安医科大学学报(中文版),1997,18(3):304-307.
    141张晓裕.阿尔茨海默病造模条件的优化及去痴灵对该模型的作用[D].广州:暨南大学,2010.
    142 Abdel-Aal RA, Assi AA, Kostandy BB. Rivastigmine reverses aluminum induced behavioral changes in rats[J]. Eur J Pharmacol,2011,659 (2-3):169-176.
    143胡银娥,杨华元,王频.不同电针参数效应研究进展及思考[J].上海中医药大学学报,2007,21(4):73.
    144劳宁,熊利泽,路志红,等.不同频率电针预处理对诱导脑缺血耐受程度的差异[J].中国临床康复,2005,9:116-117.
    145王威,唐伟,孙忠人.电针对拟老年性痴呆大鼠学习记忆和海马神经元突触形态可塑性的影响研究[J].中国实用神经疾病杂志,20103,1(18):29-31.
    146彭忠勇,陈志斌,修波,等.嗅鞘细胞移植联合督脉电针对脊髓损伤大鼠脊髓诱发电位的影响[J].中国组织工程研究与临床康复,13(23):4226-4232.
    147胡银娥,王频,杨华元.近5年临床及实验研究中电针应用的现状分析[J].中国针灸,2009,29(3):254-258.
    148沈梅红,刘晓华,李缨,等.电针调节脑缺血再灌注大鼠大脑皮层Bcl-2和Bax mRNA的表达[J].辽宁中医杂志,2012,39(1):155-157.
    149刘言寿.试论电针疗法临床补泻的模拟运用[J].中国针灸,1997,9:569-571.
    150韩济生.针刺镇痛原理[Z].上海科学技术出版社,1999.
    151马淑兰.电针干预“围绝经期综合征”大鼠模型效应的机制[D].上海:上海医学院,2011.
    152周杰芳,靳瑞.中等强度电针对虚实不同高血压病人的影响[J].针灸临床杂志,2004,20(9):28-29.
    153肖丹秦,唐敬师,袁斌,等.大鼠丘脑中央下核内注射5-HT2受体拮抗剂噻庚啶对强电针镇痛的阻断效应.中国神经科学杂志,2000,16(4):352.
    154 Guo Zhuang-li, Pei Hai-tao. Qubin on the expression of tumor necrosis factor-alpha in the cerebral cortex and striate body of rats with cerebral ischemia reperfusion[J]. Chinese Journal of Clinical Rehabilitation,2005,9(25):218-220.
    155蔡定均,张新星,刘旭光,等.电针对自由运行状态小鼠SCN内Per1基因表达的影响[J].辽宁中医杂志,2011,38(4):776-778.
    156曹健,周美启,吴生兵,等.针刺对CCs大鼠交感颈中心神经电活动的影响[J].辽宁中医药大学学报,2011,31(6):86-88.
    157彭静,曾芳,何宇恒,等.电针对SAMP8小鼠海马神经元葡萄糖调节蛋白75的影响研究[J].针灸临床杂志,2010,26(2):45-47.
    158马骏,梁少荣,王述菊,等.电针对鱼藤酮诱导的帕金森病模型大鼠黑质GDNF mRNA表达的影响[J].中国老年学杂志,2011,31(10):3946-48.
    159郑利岩,王巍,张江艳.于经络输入不同频率的声波调节人体虚实证的探索[J].针灸临床杂志,1998:14(1):7-9.
    160温景荣,赵晓峰,王舒,等.脑缺血及再灌研究中电针应用状况的文献分析和 初步研究[J].天津中医药,2006,23(2):128-129.
    161童明欧,周厚强,张世俊,等.不同留针时间对急性腰扭伤的疗效观察[J].中医外治杂志,2009,18(3):51-52.
    162汪泽栋,周围,王淑慧,等.不同频率电项针对AD模型大鼠空间记忆能力及海马区pCREB1和BDNF的影响[J].针灸临床杂志,2013,29(1):66-69.
    163王飞,崔晓峰.足三里配四关穴止人流术后腹痛临床观察[J].中国社区医师(医学专业),2012,14(313):232.
    164高维宾.针灸绝招—项针治疗延髓麻痹[M].北京市,中国中医药出版社,1993.
    165高维滨,盛国滨,姚凤珍,等.针刺治疗真性延髓麻痹90例临床观察[J].中国针灸,2000,3:149-150.
    166马睿杰,高维滨.项针临床研究进展[J].辽宁中医杂志,2007,34(7):1016-1017.
    167张萍萍,高维滨,鞠丹.电项针为主治疗特发性突聋的临床观察[J].针灸临床杂志,2012,28(2):44-45.
    168高维滨.针灸六绝—神经病针灸现代疗法[M].中国医药科技出版社,2007:144-145.
    169胡镜清,温泽淮,赖世隆.Morris水迷宫检测的记忆属性与方法学初探[J].广东中医药大学学报2000,17(2):117-119.
    170周砚青,常亮,王昆.用水迷宫实验检测甲醛对小鼠的神经毒性[J].公共卫生与预防医学,2007,18(6):4-6.
    171范小兰,王玮,赵小贞.年龄、性别因素对大鼠Morris水迷宫测试成绩的影响[J].福建医科大学学报,2003,37(1):53-54.
    172蔡文琴,李海标.发育神经生物学[M].北京:科学出版社,1999:338-344.
    173张业彬,吴百燕.实验动物在生物医学研究中的应用与选择[M].北京:科学出版社,1997:98-99.
    174 Holgado-Madruga M, Moscatello DK, Emlet DR, et al. Grb2-associated binde-rl mediates phosphatidylinositol 3-kinase activation and the promotion of cell survival by nerve growth factor[J]. Proc Natl Acad Sci US A,1997,94:12419-12424.
    175 Yuan J. Yankner BA. Apoptosis in the nervous system[J]. Nature,2000,407.-802-809.
    176 Montminy MR, Sevarino kA, Wagner JA, et al. Identification of a cyclic-AMP- responsive element within the rat somatostatin gene[J]. Proc Natl Acad SciUSA,1986, 83 (18):6682-6686.
    177 Montminy MR, Bilezi K, Jian LM. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene [J]. Nature,1987,328(6126):175-178.
    178 Yamamoto KK, Gonzalezga, Biggsw H, et al. Phosphorylation-induced binding and transcri-ptional efficacy of nuclear factor CREB[J]. Nature,1988,334(6182): 494-498.
    179 Quinn PG. Distinct activation domains within cAMP response element binding protein (CREB) mediate basal and cAMP-stmiulated transcription[J]. J Biol Chem, 1993,15,268 (23):16999-17009.
    180 Walker WH, Sanborn BM, Habener JF. An isoform of transcription factor CREM expressed during spermatogenesis lacks the pthosphorylation domain and represses cAMP-induced transcription[J]. Proc Natl Acad Sci USA,1994,20,91 (26): 12423-12427.
    181 Hoeffler JP, Meyer TE, Yun Y, et al. Cyclic AMP-responsive DNA-binding protein:structre based on a cloned placental Cdna[J]. Science,1988,9,242(4884): 1430-1433.
    182 Kwok RP, Lundblad JR, Chrivia JC, et al. Nuclear protein CBP is a coactivator for the transcription factor CREB[J]. Nature,1994,21,370(6486):233-236.
    183 Carlezon J RWA, Duman R S, Nestler E J. The many faces of CREB[J]. Trends in Neurosci,2005,28 (8):436-444.
    184 Bonnie E L, David D G. Function and regulation of CREB family transcription factors in the nervous[J]. System Neuron,2002,35(4):605-623.
    185 Impey S, Smith DM, Obrietan K, et al. Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning[J]. Nat Neurosci,1998, 1 (7):595-601.
    186 Barde YA, Edgar D, Thoenen H. Purification of a new neurotrophic factor from malllinalian brain-BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra[J]. Nature,1982,350:230-232.
    187 Von Bart held CS, Johnson JE. Target derived BDNF (brain-derived neurotrophic factor) is essential for the survival of developing neurons in the list hmooptic nucleus[J]. JC11-Oxy fraction of 17-KNeurol,2001,433:550-5641.
    188 Ojeda SR, Romero C, Tapia V, et al. Neurotrophic and cell dependent control of early follicular development[J]. Mol Cell Endocrinol,2000,163 (12):67-71.
    189 Balkowiec A, Katz DM. Activity dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ[J]. Neurosci,2000,20:7417-74231.
    190 Kawamoto Y, Nakamura S, Nalcano S, et al. Immunohistochemical location of brain-derived neurotrophic factor in adult rat brain[J]. Neuroseience,1996,74: 1209-1226.
    191焦先婷,刘晓青.P75NTR的研究进展[J].国际病理科学与临床杂志,2008,28(4):330-333.
    192 Patapoutian A, Reichardt L F. Trk receptors:mediators of neurotrophin action[J]. Curr Opin Neurobiol,2001,11:272-280.
    193 MariniAM, JiangX, Wu X, et al. Role of brain-derived neurotrophic factor and NF-kappaB in neuronal plasticity and survival From genes to phenotype[J]. Restor Neurol Neurosci,2004,22(2):121-130.
    194 Cheng PL, Song AH, Wong YH, et al. Self-amplifying autocrine actions of BDNF in axon development[J]. Proc Natl Acad Sci USA,2011,108(45):18430-18435.
    195 Poo MM. Neurotrophins as synaptic modulators[J]. Nat Rev Neurosci,2001,2 (1):24-32.
    196 Blum R, Kafitz KW, Konnerth A. Neurotrophin-evoked depolarization requires the sodium channel Nav1-9[J]. Nature,2002,419(17):687-693.
    197 Tong L, Balazs R, Thornton PL, et al. Beta-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons[J]. J Neurosci,2004,24:6799-6809.
    198 Kwon M, Fernandez JR, Zegared GF, et al. BDNF promoted increases in proximal dendrites occur via CREB-dependent transcriptional regulation of cypin[J]. J Neurosci,2011,31:9735-9745.
    199 Bekinschtein P, CammarotaM, Lgaz LM, et al. Persistence of long-term memory storage requires a late protein synthesis-and BDNF-dependent phase in the hippocampus[J]. Neuron,2007,53 (2):261-277.
    200 Fumagalli F, Racagni G, Riva MA. The expanding role of BDNF:a therapeutic target for Alzheimerps disease? [J]. Pharmacogenomics J,2006,6(1):8-15.
    201盛树力.性痴呆:分子生物学到临床诊治[M].北京:科学技术文献出版社1999,1266-279.
    202 Abrahamson IK, Ferguson IA, Rush RA. Endogenous Chicken nerve growth factor from sheath cells is transported in regenerating nerve[J]. Dev Biol,1987,124 (2): 551-556.
    203 MertzK, Koscheck T, Schilling K. Brain derived neurotrophic factor modulates dend titie morphology of cerebellar basket and stellate cells:Aninviron study[J]. NeurSci,2000,97 (2):303-310.
    204马隽,张展翅,崔慧先,等.磁刺激对小鼠原代海马神经元突触素、生长相关蛋白及脑源性神经营养因子表达的影响通路表达的影响[J].第二军医大学学报,2011,32,(10):1096-1102.
    205 Remondes M, Schuman EM. Molecular mechanisms contributing to long-lasting synaptic plasticity at the temporoammanic-CA1 synapse[J]. Learn Mem,2003,10: 247-252
    206 Miyamoto E. Molecular mechanism of neuronal plasticity:induction and maintenance of long-term potentiation in the hippocampus[J]. J Pharmacol Sci,2006, 100 (5):433-4421.
    207 Bonhoeffer T. Neurotrophins and activity-dependent development of the neocortex[J]. Curr Opin Neurobiol,1996,6(1):119-126.
    208 Lu B. A. Chow. Neurotrophins and hippocampal synaptic transmission and plasticity[J]. J Neurosci Res,1999,58 (1):76-87
    209 Tartaglia N. Protein synthesis-dependent and independent regulation of hippoc-ampal synapses by brain-derived neurotrophic fact or [J]. J Biol Chem,2001,276 (40): 37585-37593.
    210 Yamada K, Nabeshima T. Brain-derived neurotrophic factor/ TrkB signaling in memory processes[J]. J Pharmacol Sci,2003,91:267-270.
    211孙继虎,严晓晴,肖杭,等.脑源性神经营养因子对海马神经元NMDA受体功能下调的逆转作用[J].中国神经科学杂志,2000,16(4):349-351.
    212 Molteni R, Zheng JQ, Ying Z, et al. Voluntary exercise increases axonal regeneration from sensory neurons[J]. Proc Natl Acad SciUSA,2004,101 (22): 8473-8478.
    213 Nakahashi T, Fujimura H, Altar CA, et al. Vascular endothelial cells synthesize and secrete brain- derived neurotrophic factor[J]. Febs Lett,2000,470(2):113-127.
    214 Griesbeck O, Parsadanian AS, Sendtner M, et al. Expression of neurotrophins in skeletal muscle:quantitative comparison and significance for motoneuron survival and maintenance of function[J]. Neuro Sci Res,1995,42(1):21-23.
    215刘新颖,安志兴,吴月红.维生素C对新生大鼠海马神经细胞生长的影响[J].西北农林科技大学学报(自然科学版),2005,6(33):31-34.
    216 Andrea C, Agata C, Filippo C, et al. Induction of dickkopf-1, a negative modulator of the wnt pathway, is associated with neuronal degeneration in alzheimer's brain[J]. J Neurosci,2004,24, (26):6021-6027.
    217 Veereshwarayya V, Kumar P, Rosen KM, et al. Differential effects of mitochondrial heat shock protein 60 and related molecular chaperones to prevent intracellular beta-Amyloid-induced inhibition of complex Ⅳ and limit apoptosis[J]. J Biol Chem,2006,281 (40):29468-29478.
    218 Deshpande A, Mina E, Glabe C, et al. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons [J]. Neurosci, 2006,26 (22):6011-6018.
    219 Zamzami N, Brenner C, Maizoi I, et al. Subcellular and submitochondrial mode of action of Bcl-2-like oncoprotins[J]. Oncogene,1998,16(17); 2265-2282.
    220 Zhang Y, Wang W, Sun Z, et al. Granulocyte colony stimulating factor treatment prevents cognitive impairment following status epilepticus in rats[J]. Biol Pharm Bull, 2010,33 (4):572-579.
    221Wnag HQ, Nakaya Y, Du ZY, et al. Interaction of presenilins with FKBP38 promotes apoptosis by reducing mitochondiral Bcl-2[J]. Hum Mol Genet,2005,14 (13):1889-1892.
    222 Kondratyev A, Selby D, Gale K. Status epilepticus leads to the degradation of the endogenous inhibitor of caspase activated DNase in rats[J]. Neurosci Lett,2002,319 (3):145-148.
    223 Tsukamoto E, Hashimoto Y, Kanekura K., et al. Characterization of the toxic mechanism triggered by Alzheimer's amyloid-beta peptides via p75 neurotrophin receptor in neuronal hybrid cells [J]. Neurosci Res,2003,73 (5):627-636.
    224王昌正,曹诚,马清钧.凋亡诱导因子(AIF)对细胞凋亡的调控[J].生命的化学,2005,25(6):454-456.
    225 Thornberry NA, Lazebnik Y. Caspase:enemies within[J]. Scicence,1998,281 (5381):1312-1316.
    226 Cho BB, Toledo-Pereyra LH. Caspase-independent programmed cell death following ischemic stroke[J]. J Invest Surg,2008,21 (3):141-147.
    227 Verdier Y, Zarandi M, Penke B. Amyloid β-peptide interactions with neuronal and glial cell plasma membrane:biding sites and implications for Alzheimer's disease[J]. J Pept Sci,2004,10 (5):229-248.
    228 Schbitz WR, Sommer C, Zoder W, et al. Intravenous brain-derived neurotrophic factor reduces infarct size and counterregulates Bax and Bcl-2 expression after temporary focal cerebral ischemia[J]. Stroke,2000,31 (9):2212-2217.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700