用户名: 密码: 验证码:
真菌毒素及潜藏性产毒真菌液相芯片多重测试方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能够产生真菌毒素的真核细胞型微生物即为产毒真菌,真菌毒素是其产生的具有毒性的二级代谢产物。产毒真菌及其产生的毒素对农作物产品、食品及饲料的污染日趋严重,造成了危害与损失,其中,黄曲霉毒素和玉米赤霉烯酮及其产毒真菌问题比较突出,因此研发上述两类毒素和产毒真菌的快速检测新技术十分必要。液相芯片是美国Luminex公司开发出的将流式检测技术与芯片技术有机结合了的一种新技术,该技术具有高通量性、灵活性大、敏感性高、重复性好、检测速度快等优点。本文针对目前在产毒真菌和真菌毒素检测领域里未见液相芯片技术的研究报道的问题,开展了如下研究。
     一、成功使用小分子真菌毒素OVA偶联物为免疫抗原,制备出了可以满足液相芯片检
     测实验的AFB1和ZEN多克隆抗体,具有一定的先进性。
     分别以人工合成抗原AFB1-OVA和ZEN-OVA为免疫原免疫新西兰大白兔,收集效价达标的抗血清;用改进的辛酸-饱和硫酸铵沉淀法纯化,SDS聚丙烯凝胶电泳纯度鉴定,其抗体显示出泳带数减少但泳带更明显清晰。经测定,纯化的AFB1和ZEN多克隆抗体效价分别为1:32000和1:700;蛋白浓度分别为6.97mg/mL和6.42mg/mL;亲和常数分别为6.89×108L/mol和1.64×107L/mol;交叉反应试验证明:AFB1多克隆抗体分别与黄曲霉毒素B2、G1的交叉反应率为16.05%和6.66%;ZEN多克隆抗体与AFB1无交叉反应。
     二、首次将液相芯片技术引入真菌毒素检测领域,利用AFB1多克隆抗体和单克隆抗体、
     ZEN多克隆抗体和单克隆抗体,通过对近万个实验样本的分析测试,优化得到了
     AFB1、ZEN液相芯片反应体系,建立了AFB1、ZEN免疫液相芯片单重、二重测
     试方法,填补了液相芯片在真菌毒素研究领域的空白。
     1.研究确定了AFB1液相芯片最佳反应体系为:偶联抗原AFB1-BSA为100μg,AFB1与抗体孵育时间为24h,AFB1单抗和多抗的临界饱和浓度分别为0.75μg/mL和6.0μg/mL;ZEN液相芯片最佳反应体系为:偶联抗原ZEN-BSA为100μg,ZEN与抗体孵育时间为15h,ZEN单抗和多抗的临界饱和浓度分别为2.0μg/mL和10.0μg/mL。
     2.1采用AFB1单克隆抗体,14号微球所建立的AFB1检测标准曲线R2为0.9734,IC50为2.33ng/mL,最低检测量为0.1165ng,线性范围为0.06-11.25ng/mL;采用AFB1单克隆抗体,28号微球所建立的AFB1检测标准曲线R2为0.9762,IC50为3.00ng/mL,最低检测量为0.1500ng,线性范围为0.03-11.25ng/mL;两种微球之间无显著性差异。2.2采用AFB1多克隆抗体,14号微球所建立的AFB1检测标准曲线R2为0.9842,IC50为1.33ng/mL,最低检测量为0.0665ng,线性范围为0.03-11.25ng/mL;采用AFB1多克隆抗体,28号微球所建立的AFB1检测标准曲线R2为0.9906,IC50为1.43ng/mL,最低检测量为0.0715ng,线性范围为0.03-11.25ng/mL;两种微球之间无显著性差异。
     3.1采用ZEN单克隆抗体,36号微球所建立的ZEN检测标准曲线R2为0.9936,IC50为1.3846ng/mL,最低检测量为0.0692ng,线性范围为0.05-10.0ng/mL;3.2采用ZEN多克隆抗体,36号微球所建立的ZEN检测标准曲线R2为0.9988,IC50为3.2500ng/mL,最低检测量为0.1625ng,线性范围为0.05-10.0ng/mL。
     4.采用AFB1多克隆抗体、ZEN单克隆抗体,28号和36号微球建立AFB1、ZEN二重定量检测方法,其中检测AFB1标准曲线R2为0.9842,IC50为2.3333ng/mL,最低检测量为0.0583ng,线性范围为0.06-4.80ng/mL;检测ZEN标准曲线R2为0.997,IC50为3.2000ng/mL,最低检测量为0.0800ng,线性范围为0.10-10.0ng/mL。
     5.以脱脂牛奶和全脂牛奶为实验样本,选择AFB1多克隆抗体反应体系,进行AFB1添加回收试验,结果显示:所有样本回收率均大于75%,变异系数均小于5%。
     6.以脱脂牛奶和全脂牛奶为实验样本,选择ZEN单克隆抗体反应体系,进行ZEN添加回收试验,结果显示:所有样本回收率均大于75%,变异系数均小于5%。
     7.以脱脂牛奶和全脂牛奶为实验样本,选择AFB1、ZEN液相芯片二重定量检测反应体系,同时进行AFB1、ZEN添加回收试验,结果显示:所有样本回收率均大于75%,变异系数均小于5%。
     三、研制建立了潜藏性产黄曲霉毒素产毒真菌和产玉米赤霉烯酮产毒真菌液相芯片多重检测方法,其灵敏度比传统方法提高了5-500倍,并首次实现了同时检测两种产毒真菌的目标理想,填补了该领域的研究空白。
     1.通过NCBI进行DNA序列比对和分析,分别针对产黄曲霉毒素产毒真菌产毒控制基因nor-1、ver-1、omtA,产玉米赤霉烯酮产毒真菌产毒控制基因PKS4、ZEB2和真菌ITS基因片段的保守区域,利用Primer Premier5.0软件设计、在线序列比对工具多重序列比对,得到了序列特异性好、交叉反应率很小的6种探针引物。并以黄曲霉(AS3.4408)菌株DNA和禾谷镰刀菌(AS3.4598)菌株DNA为摸板,采用单重PCR技术,进行扩增验证。
     2.回收nor-1、ver-1、omtA、PKS4、ZEB2和ITS6个目的片段,进行克隆构建、阳性克隆子测序。测序结果显示该nor-1基因片段与Genbank中黄曲霉nor-1和寄生曲霉nor-1的同源性分别达100%和>98%;ver-1基因片段与黄曲霉ver-1和寄生曲霉ver-1的同源性分别达100%和97%;omtA基因片段与黄曲霉omtA和寄生曲霉omtA的同源性分别达100%和>94%。PKS4和ZEB2的基因片段分别与Genbank中禾谷镰刀菌PKS4和ZEB2的同源性均达100%。ITS片段与黄曲霉、烟曲霉、黑曲霉等序列同源性达100%。以上均证实所设计的引物特异性好。
     3.根据液相芯片检测方法原理,对下游引物进行生物素修饰,以使PCR扩增产物生物素化;对探针进行氨基化修饰,以便于探针与羧基化微球偶联;合成与核酸探针完全互补的偶联质控序列,并对其5’端进行生物素标记,以有效报告核酸探针与荧光编码微球偶联结果。
     4.采用自主设计的特异性探针与引物,建立多重PCR反应体系,建立了潜藏性产黄曲霉毒素和玉米赤霉烯酮产毒真菌液相芯片多重检测方法。结果表明:用该方法检测产黄曲霉毒素的黄曲霉、寄生曲霉,产玉米赤霉烯酮的禾谷镰刀菌的检测结果为阳性;检测不产上述两种真菌毒素的构巢曲霉、土曲霉、烟曲霉、黑曲霉的检测结果为阴性,表明所建立方法特异性好。采用阳性克隆子质粒DNA评价该方法的灵敏性,实验结果表明:该方法可对nor-1、ver-1、omtA、PKS4、ZEB2、ITS基因进行1重、2重、3重、4重、5重、6重检测,其检测灵敏度分别为:0.20ng/μL、2.00pg/μL、0.20ng/μL、0.02ng/μL、2.00pg/μL、2.00pg/μL。
The toxins produced by fungi,the eukaryotic microorganisms,are called mycotoxins thatbelong to poisonous secondary metabolites. The contamination of toxin producing fungi andtheir mycotoxins on agricultural products, food stuffs as well as animal feeds becomeincreasingly severe and lead to healthy harms and economic losses. Among them, theproblems caused by aflatoxin B1(AFB1) and zearalenone (ZEN) and these toxin producingfungi are more obvious. Therefore, developing newly fast detection methods for abovetoxins and fungi is very necessary. Multi-Analyte Suspension Array(MASA) was firstdeveloped by American Luminex Company in1990’s. This new technology has theadvantages of high throughout, flexible, highly sensitive, well repeatable and rapidcharacteristics for detection. The present paper aims to develop new detection methods for thetwo toxins and the toxin-producing fungi with the microsphere based suspension arraytechnology platform, the related reports has yet to be seen, the studies conducted as it follows:
     1. Succeeding in synthesizing artificial antigen: AFB1-OVA and ZEN-OVA by usingmycotoxin hapten and preparing the AFB1and ZEN polyclonal antibodies that meet therequirement of the multiply quantitative microsphere array technology.
     The AFB1-OVA and the ZEN-OVA have been used for immunizing New Zealand whiterabbits and collecting compliance titer antiserum. After using the improved the bitterness-saturated ammonium sulfate precipitation purification, the SDS polyacrylamide gelelectrophoresis for identifying the purity of the antibody showed that electrophoretic bandswas reduced but became more clear and obvious. After testing, the titers of the purified AFB1and ZEN polyclonal antibodies were1:32000and1:700; the protein concentrations were6.97mg/mL and6.42mg/mL; the affinity constants of6.89×108L/mol and1.64×107L/mol,respectively. The results of the cross-reactivity test indicated that the cross-reactivity ratebetween AFB1polyclonal antibody and aflatoxin B2was16.05%, the cross-reactivity ratebetween AFB1polyclonal antibody and zearalenone(ZEN) was6.66%. No cross reactivityhas been found between the ZEN polyclonal antibody and the AFB1.
     2. For the first time in the world, the technology was introduced into the detection field for toxin producing fungi and the hapten toxins produced. Using the AFB1polyclonal andmonoclonal antibodies, the ZEN polyclonal and monoclonal antibody, more than10,000experimental samples were tested and analyzed, and a model established was shown that itcould be used to optimize the reaction of AFB1and ZEN in the microsphere arraytechnology for the single quantitative detection and the multiple quantitative detection ofAFB1and ZEN.
     1) The best reaction system for the AFB1detection with the technology was described below:the coupled antigen of AFB1-BSA was100μg, the AFB1and antibody incubation time was24h, the signal and multiple critical saturated concentration of AFB1were0.75μg/mL and6.0μg/mL respectively. The best reaction system for the ZEN was described below: thecoupled antigen of AFB1-BSA was100μg, the AFB1and antibody incubation time was15h,the signal and multiple critical saturated concentrations of AFB1were2.0μg/mL and10.0μg/mL, respectively.
     2) A. Using the AFB1monoclonal antibody, the AFB1: R2value of the standard curvecreated by the14thcoding microsphere was0.9734, the IC50,2.33ng/mL, the minimumdetection value,0.1165ng, with the linear range of0.06-11.25ng/mL. Using the AFB1monoclonal antibody, the AFB1: R2value of the standard curve created by the28thcodingmicrosphere was0.9734, the IC50,3.00ng/mL, the minimum detection value,0.1500ng, withthe linear range of0.03-11.25ng/mL. The results of the two microspheres were notstatistically significant. B. Using the AFB1polyclonal antibody, the AFB1: R2value of thestandard curve created by the14thcoding microsphere was0.9842, the IC50,1.33ng/mL, theminimum detection value,0.0665ng, with the linear range of0.03-11.25ng/mL. Using theAFB1monoclonal antibody, the AFB1:R2value of the standard curve created by the28thcoding microsphere was0.9906, the IC50,1.43ng/mL, the minimum detection value,0.0715ng, with the linear range of0.03-11.25ng/mL. The results of the two microsphereswere not statistically significant.
     3) A. Using the ZEN monoclonal antibody, the ZEN: R2value of the standard curve createdby the36thcoding microsphere was0.9936, the IC50,,1.3846ng/mL, the minimum detectionvalue,0.0692ng, with the linear range of0.05-10.0ng/mL. B. Using the ZEN polyclonal antibody, the ZEN: R2value of the standard curve created by the36thcoding microsphere was0.9988, the IC50,3.2500ng/mL, the minimum detection value was0.1625ng, with the linearrange of0.05-10. ng/mL.
     4) Using the AFB1polyclonal antibody and the ZEN monoclonal antibody, the28thand the36thcoding microspheres were tested by the multiple quantitative detection. As a result, theAFB1: R2value of the standard curve created was0.9842, the IC50,2.3333ng/mL, theminimum detection value,0.05833ng, with the linear range of0.06-4.8ng/mL. The ZEN: R2value of the standard curve created was0.997, the IC50,3.2000ng/mL, the minimum detectionvalue,0.0800ng, with the linear range of0.10-10.0ng/mL.
     5) Using the AFB1polyclonal antibody response system, the recovery rates of the imitatingcontaminated skim milk and full milk were all greater than75%, with the coefficient ofvariation less than5%.
     6) Using the ZEN monoclonal antibody response system, the recovery rates of the imitatingcontaminated skim milk and full milk were all greater than75%, with the coefficient ofvariation less than5%.
     7) Using the multiply quantitative detection of AFB1and ZEN established on the microspherearray technology platform to test the APFB1and ZEN simultaneously, the recovery rates ofthe imitating contaminated skim milk and full milk were all greater than75%, with thecoefficient of variation less than5%.
     3. This study established the multiple detection system for the hidden aflatoxin andzearalenone producing fungi, which was5to500times sensitive than the traditionaldetection method, filling the blank of simultaneous detection of these fungi.
     1) The NCBI identified the conservative DNA region in the aflatoxin producing control genenor-1, ver-1, omt-A and ZEN producing control gene PKS4, ZEB2as well as the genes ITS.Then, the conservative DNA regions were then tested using the Premier5.0software, anonline alignment tool for multiple sequence alignment. The results generated six primers andprobes that have valid sequence and specificity and low cross reactivity rate.
     2) The six target fragments, nor-1, ver-1in omtA, PKS4, ZEB2, and ITS, were recollected,clone constructed, positively clones sequenced. The results of sequencing showed that: the similarity of the nor-1in target fragments and in Genbank Aspergillus flavus and A.parasiticus was100%and98%, respectively. The homology of the ver-1in target fragmentsand in A. flavus and A. parasiticus,100%and97%, respectively. The similarity of the nor-1intarget fragments and in A. flavus and A. parasiticus.100%and94%, respectively. Thesimilarity of the PKS4and ZEB2in target fragments and in Genbank Fusarium graminearumwas100%. The homology of the ITS in target fragments and in A. flavus, A.fumigatus and A.niger were100%. The results above demonstrated the good specificity the primers and theprobes.
     3) Based on the microsphere array technology, the downstream primer was biotin-modified tomake the PCR amplification products biotinylated. The probes were aminated to coupleprobes with carboxylated coding microspheres. Coupling quality control sequences matchingthe nucleic probes were synthesized and their5’end was biotin-labeled for the results ofeffectively coupling between nucleic acid probe and fluorescent coded microspheres.
     4) By using the self-designed primers and probes, this study established multiple PCRreaction system, and the multiple detection of the aflatoxin and zearalenone producing hiddenfungi. The positive results were generated in A, flavus, A, parasiticus and F,graminearum.The negative results were found in A. nidulans, A. terreus, A. fumigatus and A. niger. Theresults above demonstrated the good specificity the primers and the probes. The method couldsimultaneously detect single, double, triple, tetra-, quinta-,hexa-targets of the permutationand combination of the nor-1, ver-1, omt-A, PKS4, ZEB2and ITS. Sensitivity tests usingpositive clones plasmid showed that the detection sensitivity of nor-1, ver-1, omt-A, PKS4,ZEB2and ITS was0.20ng/PCR,2.00pg/PCR,0.20ng/PCR,0.02ng/PCR,2.00pg/PCR,2.00pg/PCR respectively.
引文
1.鲍蕾,梁成珠,刘学惠等.2005.出入境农产品中真菌毒素的污染、检测及控制.中国食品工业,18(1):60-61.
    2.包勇,陈清英,李莎等.2004.聚合酶链反应快速检测多重耐药葡萄球菌实验研究.华西医学,12(1):109-110.
    3.陈丽星.2006.真菌毒素研究进展.河北工业科技,23(2):124-126.
    4.陈明洁,方倜,柯涛等.2005.多重PCR-一种高效快速的分子生物学技术.武汉理工大学学报,27(10):33-36.
    5.陈玮.2008.液相芯片技术的原理与应用进展.成都医学院学报,3(29):225-231.
    6.陈玮莹.2002.蛋白芯片的基本原理及技术研究现状.国外医学,临床生物化学与检验学分册,23(1):5-6.
    7.陈新建,陈梅英,赵会杰.1998.免疫学技术在植物科学中的应用.北京:中国农业大学出版社.
    8.陈远聪,袁士龙(主编).1988.毒素的研究和利用.北京:科学出版社,17.
    9.程冬婉.2007.人巨噬细胞抑制因子-1(MIC-1)在毕赤酵母中的优化表达、蛋白纯化及多克隆抗体的制备.中国协和医科大学,北京.
    10.程知义,周佳敏.1981.微生物快速诊检新技术.上海:上海科学技术文献出版社,33-35.
    11.池晓菲,舒庆尧.2001.生物芯片技术的原理与应用.遗传,23(4):370-374.
    12.邓瑞春.1999.两种不同方法纯化抗血清IgG的效果比较.免疫学杂志,15(1):64-66.
    13.董邦全,雷祚荣.1992.葡萄球菌肠毒素的检测方法研究进展.中国公共卫生,8(5):228-230.
    14.董国伟,王沫,刘贤进等.2001.兔抗甲胺磷多克隆抗体的制备.华中农业大学学报,20(4):340-343.
    15.樊晓博.2010.黄曲霉毒素B1免疫分析方法研究.西北农林科技大学,杨凌.
    16.方中达.1998.植病研究法(第三版).北京:农业出版社,62-67.
    17.冯靓,蔡增轩,谭莹等. HPLC同时测定食品中黄曲霉毒素B1、B2、G1、G2.中国卫生检验杂志,2007,17(3):511-513.
    18.冯永建,何学超,郭道林等.2008.玉米赤霉烯酮的液相色谱法检测技术研究.粮食储藏,37(4):45-48.
    19.宫慧芝,计融,杨军等.2006.伏马菌素B1免疫学检测方法的建立.中国公共卫生,22(7):840-842.
    20.高志贤.2004.蛋白芯片技术研究进展及其应用.现代仪器,10(3):1-5,14.
    21.何庆华,许杨.2005.玉米赤霉烯酮毒性研究及检测方法进展.卫生研究,34(4):502-504.
    22.胡娜,徐玲.2007.真菌毒素检测方法研究进展.食品科学,28(8):563-565.
    23.贺晓蓉.2005.食品安全概论.江西:科学技术出版社.
    24.洪孝庄,荣康泰,韩树森等.1990.“桥抗体”对酶免疫分析的影响.军事医学科学院院刊,14(3):203-207.
    25.黄银君.1992.真菌毒素的检测技术.动物毒物学,1992,7(1):29-32.
    26.贾红.2005.玉米赤霉烯酮单克隆抗体的研制及初步应用.扬州大学,扬州.
    27.江汉湖.2005.食品免疫学导论.北京:化学工业出版社,87-89.
    28.焦奎,张书圣.2004.酶联免疫分析技术及应用.北京:化学工业出版社.
    29.赖卫华,许杨,熊勇华等.2008.赭曲霉毒素A无毒体系胶体金试纸条的研制及与传统胶体金试纸条的比较.食品科学,29(9):465-468.
    30.李凤琴,计融.2003.赭曲霉毒素A与人类健康关系研究进展.卫生研究,32(2):172-175.
    31.李华,徐剑宏,王裕中等.2007.赤霉菌素脱氧雪腐镰刀菌烯醇(DON)酶联免疫检测方法研究.中国农业科学,40(4):721-726.
    32.李会娜,曹远银.2006.2,4-二氯苯氧乙酸完全抗原和抗体的制备.现代农业科技,(3):28-29.
    33.李季伦,朱彤霞,张箎等.玉米赤霉烯酮的研究.北京农业大学学报,1980,(1):13-28.
    34.李军,于一茫,田苗等.2006.免疫亲和柱净化-柱后光化学衍生-高效液相色谱法同时检测粮谷中的黄曲霉毒素、玉米赤霉烯酮和赭曲霉毒素A.色谱,24(6):581-581.
    35.李培武,马良,杨金娥等.2005.粮油产品黄曲霉毒素B1检测技术研究进展.中国油料作物学报,27(2):77-81.
    36.李鹏,赖卫画,金晶.2005.食品中真菌毒素的研究.农产品加工.学刊,(3):12-15.
    37.李群伟,王绍萍,鲍文生.2001.真菌毒素与人类疾病的研究进展与展望.中国地方病防治杂志,16(1):24-25.
    38.李荣芳,邬静,袁莉芸等.2009.玉米赤霉烯酮的遗传毒性研究进展.上海畜牧兽医通讯,(6):26-27.
    39.李荣涛,谢刚,付鹏程等.2004.小麦和玉米中玉米赤霉烯酮污染情况初探.粮食储藏,32(5):36-38.
    40.李书国,陈辉,李雪梅等.2009.粮油食品中黄曲霉毒素检测方法综述.粮油食品科技,17(2):62-65.
    41.李岩松,周玉,潭建华.2006.真菌毒素快速分析方法研究进展.中国卫生检验杂志,16(1):126-127.
    42.李卫岗,鲁长豪,肖志芳等.1992.黄曲霉毒素B1人工抗原及抗体的制备研究.华西医大学报,23(3):264-267.
    43.李伟群.2004.真菌毒素与人畜健康的研究现状及展望.中国预防医学杂志,5(5):409-412.
    44.李兴霞.2006.乐果酶联免疫试剂盒的研制.沈阳农业大学,沈阳.
    45.李秀芳,温世凡,罗雪云等.1989.黄曲霉毒素B1抗体的制备研究,卫生研究,18(4):31-33.
    46.林柏玲.2004.黄曲霉毒素B1快速检测试剂盒的研究.天津商业大学,天津.
    47.柳其芳,黎雪慧.2004.酶联免疫吸附法测定黄曲霉毒素B1.海南医学,15(7):57-58.
    48.柳洁,何碧英,孙俊红.2005.ELISA和免疫亲和柱HPLC方法测定粮油食品中黄曲霉毒素B1.现代预防医学,32(6):653-656.
    49.刘仁荣,余宙,何庆华等.2005.噬菌体展示肽库筛选赭曲霉毒素A模拟表位的研究.卫生研究,34(4):448-450.
    50.刘兴介,尹秀英,李玉伟等.1981.我国各地区食量中黄曲霉菌株性能的调查研究.中国医学科学院学报,3(4):266-269.
    51.刘彦华,陶基敏.2000.生物芯片技术及其应用前景.中国检验医学杂志,23(3):177-179.
    52.刘一平.1990.黄曲霉毒素检测方法简介.中国兽医科技,(1):46-48.
    53.刘正斌,高庆荣,王瑞霞等.2005.多重PCR技术在植物生物学研究中的应用.分子植物育种,3(2):261-268.
    54.刘作新,高军侠.2004.黄曲霉毒素的检测方法研究进展.安徽农业大学学报,31(2):223-226.
    55.雷祚荣.1990.细菌毒素的分子生物学的研究进展.微生物学免疫学进展,(3):14-17.
    56.路戈,刘宝顺,刘春霞等.1995.抗黄曲霉毒素B1单克隆抗体的制备及特性.生物工程学报,1l(4):337-342.
    57.路戈,刘春霞,计融.1996.玉米赤霉烯酮单克隆抗体酶联免疫测定方法的建立及初步应用.真菌学报,15(4):292-296.
    58.罗超.2008.基于Ver-1基因LAMP法检测饲料产黄曲霉毒素真菌的研究.湖南农业大学,长沙.
    59.罗超,李逢慧,程天印.2008.黄曲霉毒素检测方法研究概况动物医学进展.29(增):37-39.
    60.罗小虎.2007.高效液相色谱法测定玉米赤霉烯酮的方法研究.西华大学,成都:10.
    61.罗雪云,刘宏道,周桂莲等.1995.食品卫生微生物检验标准手册.北京:中国标准出版社,368-375.
    62.马良.2007.黄曲霉毒素B1高灵敏度检测技术研究.中国农业科学院.
    63.马良,李培武,张文.2007.高效液相色谱法对农产品中黄曲霉毒素的测定研究.分析测试学报,26(6):774-78.
    64.聂晶,刘兴介.1993.酶联免疫吸附法检测黄曲霉毒素M1的研究.中华预防医学,27(4)L233-235.
    65.潘中华,徐燕芳,成恒蒿.1995.黄曲霉毒素分析方法进展.农业环境与发展,44(2):30-33.
    66.彭志英.1999.食品生物技术.北京:中国轻工业出版社,32-35.
    67.秦文彦.2007.潜藏性产黄曲霉毒素真菌的多重PCR检测体系构建及真菌DNA提取技术的改进.浙江大学,杭州,1.
    68.荣康泰,徐勤惠,李根令等.1985.半抗原与载体的最佳分子结合比.生物化学杂志,1(2):27-31.
    69.邵碧英,王传得,郑晶,黄晓蓉.2008.黄曲霉DNA提取及PCR-RFLP检测方法的建立.食品科学,29(12):393-396.
    70.宋世平.2003.免疫芯片研究的现状及未来.中华检验医学杂志,26(8)515-517.
    71.苏福荣,王雪松,孙辉等.2007.国内外粮食中真菌毒素限量标准制定的现状与分析.质量控制,15(6):57-59.
    72.孙林超,黄亚东.2008.食用油中AFB1含量测定方法研究.食品工业科技,30(4)318-321
    73.孙秀兰.2005.食品中黄曲霉毒素B1金标免疫层析检测方法研究.江南大学,无锡.
    74.唐宁.2009.玉米赤霉烯酮单抗的制备及初步应用.扬州大学,扬州.
    75.田禾菁,刘秀梅.2004.粮食中杂色曲霉素酶联免疫吸附测定方法.卫生研究,33(1):111.
    76.万亮.2008.三种真菌毒素蛋白质微阵列检测方法的初步研究以及抗四环素多克隆抗体制备.南昌大学,南昌.
    77.王峰莹.2002.高效液相色谱法测定花生中的黄曲霉毒素.现代仪器,(3):16,22-23.
    78.王丹.2010.建立同时检测三种真菌毒素膜免疫芯片方法的研究与抗庆大霉素多克隆抗体的制备.南昌大学,南昌.
    79.王光建,鲁长豪,王道若等.1995.黄曲霉毒素B1人工抗原的高效率合成方法及抗体制备的研究.中国公共卫生研究,(2):116-119.
    80.王光建,牟家琬.黄曲霉毒素B1单克隆抗体的制备和鉴定.华西医科大学学报,26(3):275-278.
    81.王海花,汪德刚,张晓锋.2006.黄曲霉毒素检测技术研究进展.食品研究与开发,27(4)176-178.
    82.王宏亮.1998.薄层层析法测定饲料中黄曲霉毒素B1方法的改进.粮食与饲料工业,(1):40-42.
    83.王红星,陶正国.2000.饲料中的真菌毒素的危害性及其防治措施.兽药与饲料添加剂,5(3):19-20.
    84.王剑霓.2004.生物芯片技术.生物制品快讯,(3):16-18.
    85.王晶,王林,黄晓荣.2002.食品安全快速检测技术.北京:化学工业出版社,11.
    86.王景琳,张志东,李忠润等.1994.玉米赤霉烯酮单克隆抗体和免疫酶技术研究.真菌学报,13(4):303-309.
    87.王蕾,吴英松,李明.2005.液相芯片分析技术及其应用简介.热带医学杂志,5(4):562-564.
    88.王照鹏.2009.玉米赤霉烯酮单克隆抗体的制备及ELISA检测方法的建立.吉林大学,长春.
    89.王雄,王艳斐,果旗等.2010.黄曲霉毒素直接竞争法ELISA试剂盒的研制及其在花生和花生制品中的应用.中国饲料,(16):37-39.
    90.王艳,何为.2002.蛋白芯片的研究进展及其临床应用·国外医学,微生物学全册,25(2):7-9,36.
    91.王彦波,许梓荣,汪以真.2002.真菌毒素研究进展.饲料博览,(8):26-28.
    92.王怡净,张立实.2002.玉米赤霉烯酮毒性研究进展.中国食品卫生杂志,14(5):40-43.
    93.王玉平.2005.玉米赤霉烯酮ELISA定量检测试剂盒研制高效液相色谱法的建立及标准比对研究.河北医科大学,太原:10.
    94.王玉平,计融,江涛等.2006.玉米赤霉烯酮ELISA定量检测试剂盒研制.卫生研究,35(2):221-224.
    95.吴斌,王芳,秦成等.2004.蛋白芯片的研究及其在生物毒素检测方面的应用.卫生毒理学杂志,(4):44-46.
    96.吴浩杨,冯继宏.2002.生物芯片技术.科学(上海),54(3):7-11.
    97.吴健敏.1992.几种危害性大的真菌毒素.广西畜牧兽医,(1):41-42.
    98.吴颂如,万寅生,周燮.1989.植物小分子物质的免疫测定技术.植物生理通讯,(5):68-72.
    99.吴艳萍,靳慧霞.2002.植物产品中真菌毒素的危害及其检测方法.粮食与饲料工业,(7):43-45.
    100.夏红民,岳宁,张鹏.2000.出入境农产品安全卫生检验的重要对象-真菌毒素.检验检疫科学,10(5):56-59.
    101.谢光洪,陈承祯,徐闯等.2007.黄曲霉毒素检测方法的研究.饲料工业,28(6):53-55.
    102.谢光洪,于光,肖成蕊等.2007.黄曲霉毒素B1免疫检测方法的新进展.中国畜牧兽医,34(7):145-146.
    103.徐顺清,刘蘅川.2006.免疫学检验.北京:人民卫生出版社,120.
    104.严继承,郑一凡,曾群力等.2004.玉米赤霉烯酮对细胞间隙连接通讯的影响.卫生毒理学杂志,18(3):160-162.
    105.阳传和,罗雪云.1991.抗T-2毒素单克隆抗体的制备及特征.科学通报,36(9):697-700.
    106.阳传和,刘畅.1994.小麦中脱氧雪腐镰刀菌烯醇酶联免疫吸附测定方法的研究.微生物学报,34(1):65-70.
    107.阳传和,刘畅,罗雪云等.1992.抗赭曲霉毒素A单克隆杂交瘤细胞系的建立及特性.单克隆抗体通讯,8(2):17-21.
    108.杨国粹,李智涛,李振勇等.2002.多重PCR-核酸探针杂交法同时检测沙眼衣原体、解脲支原体和淋病奈瑟菌.临床检验杂志,20(1):21-23.
    109.杨汉春.1996.动物免疫学.北京:中国农业大学出版社.
    110.杨利国.1998.酶免疫测定技术.南京:南京大学出版社.
    111.杨建伯.2002.天然毒素与人类疾病.中国地方病学杂志,21(4):314-317.
    112.杨洁彬,王晶,王柏琴等.1999.食品安全性.北京:中国轻工业出版社,23-24.
    113.杨洋,汤华.2007.液相芯片技术在检验医学和生物医学中的应用.中国生物化学与分子生物学报,23(4):256-261.
    114.杨焱,宓晓黎,成恒嵩等.1996.薄层扫描法测定饲料中黄曲霉毒素B1的含量.饲料工业,17(10):36-37.
    115.叶雪珠,王小骊,赵燕申等.2003.黄曲霉毒素B1检测方法的分析.食品与发酵工业,29(10):90-92.
    116.亦梅.2008.食品中潜藏农药问题普遍存在.山东农药信息(2):22.
    117.曾红燕,黎源倩,敬海泉.2006.高效液相色谱法测定粮食中玉米赤霉烯酮及其代谢物.分析化学,34(3):351-354.
    118.赵红庆,苑锡铜,黄留玉.2007.多重PCR技术在病原检测中的应用.生物技术通讯,18(5):863-865.
    119.赵献军.2002.串珠镰刀菌素研究进展.动物医学进展,23(4):19-21.
    120.赵晓联,赵春城,蔡建荣等.2000.酶联免疫吸附测定法在饲料毒素检测中的应用.中国饲料,(3):21-22.
    121.张国柱,贾珍珍,齐祖同,孙曾美.1983.黄曲霉群菌种产生黄曲霉毒素B1的调查研究.菌物学报,04:67-70.
    122.张黎明,朱明.2003.几种重要的海洋生物毒素.中国药理学与毒理学杂志,17(4):319.
    123.张立勇,张学工,李衍达.2004.生物芯片技术.世界华人消化杂志,12(4):955-958.
    124.张瑞芳,马青,王晓鸣.2009.禾谷镰孢菌产生玉米赤霉烯酮毒素zearalenone的PCR检测.植物保护,35(6):94-98.
    125.张淑珍.2001.植物病原菌毒素研究进展.黑龙江农业科学,(2):42-43.
    126.张艺兵,张鹏,赵卫东等.1999.荧光光度法快速检测食品中的黄曲霉毒素.现代商检科技,(6):5-6.
    127.张甄,郑丽娜,裴世春.2010.同时检测AFB1和ZEN免疫层析试纸条的研制.食品研究与开发,22(2)69-73.
    128.章元寿.1991.植物病原真菌毒素的研究现状.真菌学报,10(3):169-181.
    129.朱立平,陈学清.2000.免疫学常用实验方法.北京:人民军医出版社.
    130.朱平,冯书章.1994.抗体实验技术.长春:长春出版社.
    131.朱延书,康宁.2003.生物技术在植物检疫检测中的应用.江苏林业科技,30(3):42-46.
    132.中华人民共和国国家标准,2004.饲料中玉米赤霉烯酮的测定.GB/T19540-2004.
    133.朱孟丽,彭聪,洪振涛.2007.高效液相色谱法对饲料中玉米赤霉烯酮的测定.饲料工业,28(1):37-38.
    134.朱彤霞,张篪.1991.玉米赤霉烯酮产生菌在我国的分布及其特性,菌物学报,10(2):141-148.
    135. Allen E H.1985.Review of chromatographic methods for chloramphenicol residues in milk, egg andtissue from food-producing animals.Assocn Off Anal Chem,68(5):990-999.
    136. Amold D,Somogyi A.1990.Trace analysis of chloramphenicol residues in eggs milk and meatcomparison of gas chromatography and radioimmunoassay.J Assoc Off Anal Chem,73(4):534-540.
    137. Anklam E,Berg H, Mathiasson L,et al.1998. Supercritical fluid extraction (SFE) in food analysis: Areview. Food Additives and Contaminants,15(6):729-750.
    138. Azcona Olivera,Mohamed M A,Ronald D Plattner,et al.1992.Production of monoclonal antibodies tomycotoxins Fumonisins B1,B2,B3.J Agric Food Chem,40(1):531-534.
    139. Bennett GA,Nelsen TC,Miller BM.1994.Enzyme-linked immunosorbent assay for detection ofzearalenone in corn,wheat,and pig feed:collaborative study.J AOAC Int,77(6):1500-1509.
    140. Biagini RE,Schlttman SA,Sammons DL.2003.Method for simultaneous measurement of antibodies to23pneumococcal capsular polysaccharides.Clin and Diagnos Immunol,10:744-750.
    141. Bii CC,Taguchi H,Ouko TT,et al.2005.Detection of virulence-related genes by multiplex PCR inmultidrug-resistant diarrhoeagenic Escherichia coli isolates from Kenya and Japan. EpidemiolInfect,133(4):627-633.
    142. Bllis,M.B.,1957.Some Species of Corynespora. Commonwealth Mycological Institute.Kew, Surrey.Mycological Paper,65:1-15.
    143. Boison J O,Keng L J Y.1995.Detemination of sulfadimethoxine and sulfamethazine residues in animaltissues by liquid chromatography and thermospray mass spectrometry.AOAC Int,78(3):651-658
    144. Borwn M.P.,Brown-Jeneo C.S.,Payne G. A.1999.Genetic and MoleucLar Analysis of AflatoxinBiosynthesis.Fungal Genetics and Biology,26(2):81-98.
    145. Byrne F. R.,Grant S.,Porter A. J.,et al.1996,Cloning expression and characterization of single-chainantibody specific for the herbicide atrazine.Food Agric Immuol,8(1):19-29.
    146. Carson RT,Vignali DAA.1999.Simultaneous quantitation of15cytokines using a multiplexed flowcytometric assay.J of Immunol Meth,227:41-52.
    147. Centeno E.R..1970, Antibodies to two common pesticides, DDT and malathion. Int ArchAllergy.37(1):1-13.
    148. Chamberian J S,Gibbs R A,Ranier J E,et al.1988.Detection Screening of the Duchenne MuscularDystrophy Locus via Multiplex DNA Amplification.Nucl Acids Res,16(23):1141-1156.
    149. Chang P K.2003.The Aspergillus parasiticus protein AFLJ interacts with the aflatoxinpathway-specific regulator AFLR.Mol Gen Genet,268(6):711-719.
    150. Chen Q.2004.Promoter Methylation Regulates Cadherin Switching in Squamous CellCarcinoma.Biochem Biophys Res Commun,315(4):850-856.
    151. Chiavaro E,Lepiani A,Colla F,et a1.2002.Ochratoxin A determination in ham by immunoaffinityclean-up and a quick fluorometric method.Food Addit Contam,19(6):575-581.
    152. Christine Debouck,Peter N.Goodfellow.1999.DNA microarray in drug discovery anddevelopment.Nature Genetics,21(Supplement):48-50.
    153. Chu F.S.,Ueno L.1977.Production of antibody against afLatoxin B1.Applied and environmentmicobiology,23(6):1125-1128.
    154. Clark,M.F.,A.N.,Adams,1977.Characteristics of the microplate method of enzyme-linkedimmunosorbent asssy for the detection of plant viruses.Journal of General Virology,34;475-483
    155. Degolal F,Berni E,DallAsta,C,et al.2007.A multiplex RT-PCR approach to detect aflatoxigenic strainsof Aspergillus flavus.Journal of Applied Microbiology,103(2):409-417.
    156. Desjardins A.E.,Proctor R.H..2007.Molecular biology of Fusarium mycotoxins.International Journalof Food Microbiology,119(1-2):47-50.
    157. Devlin.J,Panganiban L.C,Devlin P.E.1990.Random peptidel ibraries:a source of specific proteinbinding molecules.Science,249(4967):404-406.
    158. Dinges M,Orwin PM,Schlievert PM.2000.Exotoxins f Staphylococcus aureus.Clin MicrobiolRev,13(1):16-34.
    159. Dragaeei S,Grosso F,Gilbert J.2001.Immunoaffinity Column Cleanup with Liquid Chromatographyfor Determination of Aflatoxin M1in Liquid Milk: Collaborative Study.J AOAC Lnt,84(2):437-443.
    160. Dunbar B.,Riggle B.,Niswender G.1990.Development of enzyme immunoassay for the detection oftriazine herbicides.J.Agric.Food Chem.,38(2):433-437.
    161. Duncan J M,TorranceL(ed.),1993.Techniques for the rapid detection of General Virology,34:475-483.
    162. Earley MC,Vogt RF Jr,Shapiro HM,et al.2002.Report from a workshop on multianalyte microsphereassays.Cytometry,50:239-242.
    163. Engval L,E.,P.Perlman,1971.enzyme-linked immunosorbent asssy(ELISA).Quantitative assay ofimmunoglobulin G.Immunochemistry,8(9):871-874.
    164. Enrlich KC,Yu J,Cotty PJ.2005.Aflatoxin biosynthesis gene clusters and flanking regions.J ApplMicrobiol,99(3):518-527.
    165. Ereegovich C D,Vallejo R P,Getting R R,et al.1981.Development of a radioimmunoassay forparathion.Agric Food Chem,29(3):559-563.
    166. Erkauskas R F,Dhingra O D.1983.Effect of three desiccant type herbicides on fruiting structure ofColletotrichum truncatum and Phomopsis speies on soybean stems..Plant Disease,67:600-605.
    167. Erkanskas R F,Sinclair J B.1980.Use of paraquat to aid detection of fungi in soybeantissues.Phtopathology,70:1036-1039.
    168. Erlanger B F.1980.The preparation of antigenic hapten-carrier conjugates:a survey. Methods ofEnzymology,70:85-104
    169. Feng P.C.C.,Horton S.R.,Sharp C.R.A.1992.General method for developing immunoassays tochloroacetanilide herbicides.J Agric.Food Chem.,40(2):211-214.
    170. Forgacs,T.Cserhati,I.Barta.2000.The binding of amino acids to the herbicide2,4-dichlorophenoxyacetic acid.Amino Acids,18:69-79
    171. Forlani F.,Arnoldi A.,Pagani S.1992.Development of an enzyme-linked immunosorbent assay fortriazole fungicides.J.Agric.Food Chem.,40(2):328-331.
    172. Geisen, R..1996.Multiplex polymerase chain reaction for the detection of potential aflatoxin andsterigmatocystin producing fungi.Systematic and applied microbiology,19(3):388-392.
    173. Grondahl B,Puppe W,Hoppe A,et al.1999.Rapid identification of nine microorganisms causing acuterespiratory tract infections by ingle-tube multiplex reverse transcription-PCR: feasibility study.J ClinMicrobiol,37(1):1-7.
    174. Gordon RF,McDade RL.1997.Multiplexed quantification of human IgG, IgA, and IgM with theFlowmetrix system.Clin Chem,43:1799-1801.
    175. Halámeck J,Hepel M,Skládal P.2001.Investigation of highly sensitive piezoelectric immunosensors for2,4-dichorophenoxyacetic acid. Biosen&Bioelectrol,16(4-5):253-260.
    176. Hampson DR,XP Huang JW Wells JA Walter,JL Wright.1992.Interaction of domoic acid and severalderivatives with kainic acid and AMPA binding sites in rat brain.Eur.J.Pharmacol,218:1-8.
    177. Hanly W C,Artwohl J E,Bennett B T.1995.Review of polyclonal antibody production procedures inmammals and poultry.ILAR J,37(3):93-118.
    178. Hoerr,F.J.,'Andrea G.H.1983.Biological effects of aflatoxin in swine. Southern cooperative seriesbulletin,279:51-55.
    179. Huber S J.1985.Improved solid-phase immunoassay systems in the ppt range for atrazin in freshwater.Chemosphere,14(11-12):1795-1803.
    180. Hulse RE,Kunkler PE,Fedynyshyn JP.2004.Optimization of multiplexed bead-based cytokineimmunoassays for rat serum and brain tissue.J of Neurosicience Meth,136:87-98.
    181. Iffa Gaffoor,Frances Trail.2006.Characterization of Two Polyketide Synthase Genes Involved inZearalenone Biosynthesis in Gibberella zeae.APPLIED AND ENVIRONMENTALMICROBIOLOGY,72(3):1793-1799.
    182. Itak J.A.1993.Validation of a paramagnetic particle-based ELISA for the quantitative determination ofcarbaryl in wate.Bull.Environ,Contam,Toxicol,51:260-267.
    183. Jeong Ah S,Robert H P,Ronald D P.2001.Characterization of four clustered and coregulated genesassociated with fumonisin biosynthesis in Fusarium verticillioides.Fungal Genet andBiology,34(3):155-165.
    184. Jung F.,Szekacs A.,Li Q.X.,Hammock B.D.1991,Immunochemical approach to the detection ofaminotriazoles using selective amino group protection by chromophores. J.Agric.FoodChem.,39(l):129-136.
    185. Kawamura O,Sato S,Kajii HA,ea al.1989.A sensitive enzyme-linked immunosorbent assay ofOchratoxin A based on monoclonal antibodies.Toxin,8:887-897.
    186. Kellar K L,Iannone M A.2002.Multiplexed microsphere-based flow cytometrie Assays.ExpHematol,30:1227-1237.
    187. Kelley M.M.,Zahnow E.W.,Petersen W.C.,et al.1985.Chlorsulfuron determination in soil extracts byenzyme immunoassay.J. Agric.Food Chem.,33(5):962-965.
    188. Kim Y T,Lee Y R,Jin J,et a1.2005.Two different polyketide synthase genes are required for synthesisof zearalenone in Gibberella zeae.Molecular Microbiology,58(4):1102-1113.
    189. Kimata K,Shima T,Shimizu M,et al.2005.Rapid categorization of pathogenic Escherichia coli bymultiplex PCR.Microbiol Immunol,49(6):485-492.
    190. Klich M.A., Montalbano B., EhrlihcK.1997.Northern analysis of aflatoxin biosynthesis genes inAspergillus parasiticus and Aspergrillus sojae. APPL Microbiol Biotechnol,47(3):246-249.
    191. Korde A,Pandey U,Banerjee S,et al.2003.Development of a Radioimmunoassay Proeedure forAflatoxin B1Measurement.JAgric Food Chem,51(4):843-846.
    192. Kramer K.,Hock B.1996.Recombinant single-chain antibodies against atriazines.Food Agric.Immuol.,8:97-109.
    193. Kristensen R,Gauthier G, BerdalKG,etal.2007.DNA microarray to detect and identify trichotheceneand moniliformin producing Fusarium species.J.App.l Microbiol,102(4):1060-1070.
    194. Kun Meng,Yaru Wang,Peilong Yang,et a1.2010.Rapid detection and quantification ofzearalenone-producing Fusarium species by targeting the zearalenone synthase gene PKS4. FoodControl,21(2):207-211.
    195. Lacey J,Ramakrishna N,Candlish A A.1991.Immunoassay of ochratoxin and other mycotoxins from asingle extract of cereal grains utilizing monoclonal antibodies. ARC Sci Publ,115:97-103.
    196. Lange L,Heide M,Hobolth L.1989.Serological detection of Plasmodiophora brassicae by dot immurbinding and bisualization of the serological reaction by scanning electronmicroscopy.Phytopathology,79:1066-1071.
    197. Lawruk T.S.,Lachman C.E.,Jourdan S.W.,et al.1993.Quantification of cyanazine in water and soil by amagnetic particle-based ELISA.J. Agric. Food Chem.,41(5):747-752.
    198. Lee N.,Skerritt J.H.,McAdam D.P.1995.Hapten synthesis and development of ELISA for detection ofendosulfan in water and soil.J. Agric. Food Chem.,43(6):1730-1739.
    199. Ludwing Niessen.2007.PCR-based diagnosis and quantification of mycotoxin producingfungi.International Journal of Food Microbiology,119:38-46.
    200. Malcov M,Schwartz T.2004.Multiplex Nested PCR for Preimplantation Genetic Diagnosis of SpinalMuscular Atrophy.Fetal Diagn Ther,19(2):199-206.
    201. Marrack P,Kapple J.1990.The staphylococcal enterotoxins and their relatives.Science,248(4956):705-711.
    202. Michael J.S,Alan D.W.D.1999.Molecular biology of mycotoxin biosynthesis.FEMS MicrobiologyLetters,175(2):149-163.
    203. Mirocha C J,Pathre S V.1979.Mycotoxins their biosynthesis in fungi:zearalenone biosynthesis. Journalof Food Protection,42(3):821-824.
    204. M T Liu,B P Ram,L P Hart and J J Pestka.1985.Indirect enzyme-linked immunosorbent assay for themycotoxin zearalenone.Appl Environ Microbiol,50(2):332-336.
    205. Nats M,Hashiyada M.2004.Analysis of the single nucleotide polymorphisms of mitochondrial DNAby liquid bead array technology.Int Congr Ser,1261:369-371.
    206. Newsome W.H.,Yeung J.M.,Collins P.G.,1993.Development of enzyme immunoassay for captan andits degradation product cetrabydrothaliumide in foods.J AOAC int,76:381-386.
    207. OBrina G.R., Fakhoury A.M., Payne G..A.2003.Identifieation of genes dieffrentially expressed duringaflatoxin biosynthesis in Aspergillus flavus and Aspergillus parasiticus. Fungal Genetics and Biology,39(2):118-127.
    208. Placinta C M.1999.A review of worldwide contamination of cereal grains and animal feed withFusarium mycotoxins.Animal Feed Science and Technology,31:21-37.
    209. Ren K, Bannan JD, Pancholi V.1994.Characterization and biological properties of a newstaphylococcal exotoxin.J Exp Med,180(5):1675-1683.
    210. Scott PM.1993.Gas chromatography of mycotoxins.Journal of Chromatography Library,54:373-425.
    211. Seong SY.2002.Micro immunoassay using a protein chip; optimizing conditions for proteinimmobilization.Clin Diagn Lab Immunol,9(4):927-930.
    212. Shapira,R.,Paster,N.,Eyal,O.,et al.1996.Detection of aflatoxingenic molds in grains by PCR. Appliedand Environmental Microbiology,62(9):3270-3273.
    213. Sharma, R.P.,.1991.Mycotoxins and Phytotoxins. Boca Raton:CRC Press,81.
    214. Smith PL,WalkerPeach CR,Fulton RJ,et al.1998.A rapid, sensitive, multiplexed assay for detection ofviral nucleic acids using the flow metrix system.Clin Chem,44:2054-2056.
    215. Soltil,Salamon F,Bama-Vetrol,et al.1997.Ochratoxin A content of human sera determined by asensitive ELISA. J Anal Toxicol,21:44-48.
    216. Stob M,Baldwin R S,Tuite J,et al.1962.Isolation of an anabolic, uterotrophic compound from cominfected with Gibberella zeae.Nature,196:1318.
    217. Torsten Berg.2003.How to establish international limits for mycotoxins in food and feed?.FoodControl,14:219-224.
    218. Thirumala K,Miller J.S, Reddy G,et al.2001.Phage-displayed peptides that mimic aflatoxin B1inSerological reactivity.Journal of Applied Microbiology,90:330-336.
    219. Urry W H,Wehrmeis H L,Hodge E B,et a1.1966.Structure of zearalenone.Tetrahedronletters,27(7):3109-3114.
    220. USFDA.Draft guidance for industry:fumonisin levels in human foods and animal feeds[EB/OL].http://www.cfsan.fda.gov/~dms/fumongui.html,2006-06-20.
    221. Ushway BJ,Fan TS.2001.Pesticide anaLysis using immunoassay.AOAC international,84(1):123.
    222. Van Emon J.,Hammock B.D.,Seiber J.N..1986,Enzyme-linked immunosorbent assay for paraquat andits application to exposure analysis.Anal.Chem,58(8):1866-1873.
    223. Vidyasagar T,Vyjayanthi V.1997.Quantitation of aflatoxin Bl-N7-guanine adduct in urine byenzyme-linked irmmnosorhent assay coupled with immunoaffinity chromatography.J AOACInt,80(5):1013-1022.
    224. Vignali D A.2000.Multiplexed particle-based flow cytometric assays.J Immunol Methods,243(1-2):243-255.
    225. Voller A,Bidwell D E,Bartlett A,1976.Enzyme immunoassays in diagnostic medicine:Theory andpractice.Bulletin of the World Health Organization,53(1):55-65.
    226. William L Casale,James J Pestka,Patrick Hart L.1988.Enzyme-linked Immunosorbent assayemploying monoclonal antibody specific for deoxyniralenol (Vomitoxin) and several analogues. JAgric food chem,36:663-668.
    227. Wnag J.S.,John D.1999.Groopman DNA damage by myeotoxins.Mutation Research,424(1-2):167-181.
    228. Woloshuk C.P.,Prieto R.1998.Genetic organisation and function of the aflatoxin B1biosyntheticgenes.FEMS Microbiology Letters,160(2):169-176.
    229. Yuan Q,Pestka J.J,Hespenheide B.M,et al.1999.Identification of Mimotope Peptides Which Bind tothe Mycotoxin Deoxynivalenol-Specific Monoclonal Antibody.Applied and EnvironmentalMicrobiology.65:3279-3286.
    230. Zheng M Z,Richard J L,Binder J.2006.A review of rapid methods for the analysis of mycotoxins161(5):261-273.
    231. Zheng Z,Hanneken J,Houchins D,et al.2005.Validation of an ELISA test kit for the Detection ofochratoxin A in several food commodities by comparison with HPLC.Mycopathologia,159(2):65-72.
    232.欧盟2010年直接供人类使用的食品中黄曲霉毒素B1的限量标准:http://www.foods-info.com/ArticleShow.asp?ArticleID=30891
    233.中国2011年食品中黄曲霉毒素B1的允许量标准:http://news.vivijk.com/jk/201201/187428.html
    234.中国2005年食品中玉米赤霉烯酮的允许量标准:http://www.jsgrain.gov.cn/default.php?mod=article&do=detail&tid=149635

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700