用户名: 密码: 验证码:
中国东南部晚古生代以来典型盆地沉积构造环境演化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以中国东南部为研究对象,以“三个典型盆地”为工作区,通过野外地质与构造调查、样品的薄片鉴定、地球化学定量值判识以及室内文献资料整合分析,对金衢盆地、永安盆地及萍乐盆地进行了重点研究,研究内容涉及岩石物性、层序地层、盆地构成要素、主元素与稀土元素特征、有机碳同位素特征等方面;以此为基础,在确定各盆地区沉积构造、沉积中心、岩相变化以及构造环境演化史的前提下,对中国东南部晚古生代-中新生代区域性盆地形态分布格局及构造环境演化进行了对比研究。
     金衢盆地是中国东南部晚中生代断陷盆地之一,发育在前中生代变质褶皱基底之上,主要山北部浅凹陷带、中央隆起带以及南部深凹陷带三个构造单.元组成:①以地层岩石所蕴含的物质信息为主线,通过稀土元素、微量元素及同位素地球化学分析,辅以野外地质调查,从垂向深部和横向表层两方面综合考察,研究了该盆地中新生代的地层岩石及构造演化特征。结果表明:a)金衢盆地内部的不整合、向斜等构造现象反映了盆地的动态形成,盆地接受沉积的同时伴随着横向拉张;双峰式火山岩体现为流纹岩与玄武岩的SiO2含量差异超过18%,稀土元素配分曲线展示出玄武岩无铕亏损和流纹岩铕亏损明显,微量元素蛛网图表现出玄武岩和流纹岩的Nb、Ta均为槽,Zr、K较富集,Ti较贫化,据此判断研究样品为地壳部分熔融的产物;b)早白垩世晚期,盆地局段地层中夹有橄榄玄武岩,其岩石地球化学特征表明为板内快速拉张环境的碱性玄武岩,盆地西端的广丰盆地早白垩世晚期至晚白垩世红层中的玄武岩特征基本一致。②运用盆地原型分析方法,对该盆地的构造事件、深部构造、蚀源区、沉降史、沉积中心、盆地边界构造和沉积问断等进行了研究。盆地经历了早期陆内挤压(NW-SE)、早白垩世晚期伸展拉张(NW-SE)、晚白垩世拗陷、白垩世末萎缩以及后期改造几个演化阶段。研究认为:盆地沉积物主要来自于早期褶皱隆升的前中生代地层的剥蚀以及晚期拉张背景的山体风化剥蚀,证实了金衢盆地经历过由挤压向拉张机制转换所致抬升剥蚀事件,这些事件对断陷箕状盆地的形成起了很大作用;盆地沉积沉降中心主要在衢州附近,而在不同的古岩相期又有一定位移的迁移。研究表明,盆地具有良好的含油气前景,钱家、水亭、杨塘和蒋塘4个构造圈闭具有较大的勘探潜力。③进一步综合分析后发现,中新生代金衢盆地的地层岩性特征是其构造环境演化的物质记录,总体呈现“北断南超”,反映了拉张背景下的盆地迁移;根据重力资料及部分钻孔推断的基底形态,按照汤姆逊提出的三角形计算方法估算,金衢盆地在早白垩世晚期至晚白垩世的拉张量大约为2100m,沉降量约为5100m。④鉴于金衢盆地是中国东南部中新生代复杂陆相盆地的一个典型代表,盆地所处构造环境具有横向和纵向应力场相叠合的多阶段复杂演化特征,故这些认识有助于供同类陆相盆地研究时参考。
     萍乐盆地沿萍乡至乐平一带出露的晚古生代至早三叠纪地层是原地系统;附近的“板溪群”,既包含有前震旦纪变质岩系,也可能含中生代构造混杂岩的成分,属于外来系统。综合前人研究表明:①萍乐坳陷海相含油气系统的烃源岩包括二叠系、三叠系碳酸盐岩、泥岩和煤,具有有机质丰度高、分布面积广、成熟度适中、油气显示较好的特点;②坳陷具有中白垩统-古近系红色岩系和元古界-三叠系推覆岩系两套区域性盖层;③坳陷内中西部以找气为主,东部以找油为主,勘探有利区为余干区和萍乡区;④具有在推覆体之下寻找油气藏的潜力。
     永安盆地发育在前泥盆纪基底之上,位于华夏古陆南缘,沿NE向新元古代政和-大埔断裂带展布,是在其基础上由早寒武世永安-龙岩海湾经伸展作用而成的一个沉积断陷盆地。利用层序地层学方法,辅之以野外调查,研究了永安盆地的地层序列和岩石组合:①对晚古生代至早三叠世地层格架及柱状剖面的分析表明,伴随海平面的升降,海相沉积序列具有旋回性,不同沉积相在盆地东、中、西区段分布不均,盆地沉积沉降中心大致位于龙岩和梅县地区;②对横贯盆区的地质剖面及盆内辅助剖面的研究表明,中新生代,盆内以断块作用为主,改造了晚古生代地层,代之以断褶复合地层;③有机碳质层为盆地的海陆变迁作了时域界定,并且其赋存部位和形态也在空间上表征了盆地构造演化的力学机制。通过分析构造事件、古地理及物源区、深部构造、边界构造等盆地要素,研究了盆地的沉积构造环境演化及其应力机制,结果表明:①盆地具有隆起-伸展构造发育的特点,主要经历了华力西期海陆交互相巨厚沉积阶段,印支期稳定的准地台向活动大陆边缘转变阶段并伴随挤压隆升,以及印支期后中新生代由挤压向拉张机制转换的构造改造阶段。②晚古生代,海进海退的快慢受控于不同时期构造事件的强弱变化,由此产生的沿岸隆起区的剥蚀以及拉张背景的山体风化剥蚀为盆地提供了物源,存在北、南两个物源区。以海侵与海退为标志,晚古生代的古地理环境及各时段沉积相的展布和变化各具特色,沉积相相带分布处于重复变化之中,演化序列比较清晰;海退时期,沿NE-SW方向展布河流相-三角洲相-滨海相-海相,缺少边缘相,海侵时期的盆地沉积环境分为潮坪泻湖、台地边缘浅滩、台地前缘斜坡及陆棚边缘盆地几个沉积相带;中新生代,盆地总体为火山活动背景下的山前及河湖相沉积环境。另外,盆内不同时代含碳层位样品δ13Corg值的变化及其与邻区样品δ13Corg值的对比研究佐证了盆地本身乃至整个中国东南部沉积环境在不同地质时期以及同一时期不同区段沉积相变化的异同特征;永安盆地晚古生代沉积物有机碳δ13Corg值区主要为(-15~-25‰),与同时期金衢盆地北缘沉积物有机碳δ13Corg值区间(-20~30‰)较为相似,盆地有机碳TOC与同时期萍乐盆地TOC也有相似之处,这些特征表明,永安盆地成盆时期的沉积环境在区域范围内与其它盆地具有相同之处,即海陆过渡环境;同时,又有定的区别,ZM(浙闽沿海)地区含碳层位多为中新生代,分析认为,在晚古生代永安盆地成盆地成盆期,ZM地区为一隆起区,该隆起区和武夷山隆起区共同构成了永安盆地的主要物源区。这一认识与区域古流向调查结果基本一致。对该盆区的认识为中国东南部盆地的薄弱基础研究提供了新的基础参考信息。
     鉴于几前述“三个典型盆地”研究内容,可知中国东南部前泥盆纪基底之上发育的晚泥盆世-早中三叠世稳定的海相沉积序列以印支事件为标志经构造改造与中新生代陆相沉积序列复式叠合。为了恢复各阶段海相沉积地层对应的盆地面貌,揭示沉积作用在时空演化上的差异变化特征,以期在中国东南部海相油气勘探的理论和技术层面寻求新思路,通过建立由30个代表性柱状图组成的层序地层格架并形成9个时期地层厚度等值线图(地层年代从晚古生代到早中生代,涉及区域包括广东省、湖南省、浙江省、安徽省、江西省以及福建省),从地层对比所展示的规律性特征、烃源岩发育的环境及空间分布规律、主要盆地的基本特征与残余露头的分布规律、早古生代以来构造环境演化史与油气关系等方面进行了研究,研究表明:①受江绍、赣江和政和-大埔三大断裂带的控制,中国东南部形成了包括江南盆地区、华南(武夷-南岭)盆地区、东南沿海盆地区、武夷山古隆起、江绍拗陷带、永梅拗陷带在内的盆-隆-拗构造格局;②单位地层具(?)区域连续性,岩石地层厚度大对应区段水体深,生物化含量多对应水体稳定性好,反之则水体浅且活动性强;③石炭系、二叠系及三叠系对于研究中国东南部油气潜力具有重要意义,其中龙潭组(或童子岩组,或茅口组)是最有利的烃源岩层位。
     研究取得了有价值的成果和创新认识。包括如下方面:①首次完成晚泥盆世古近纪残余地层露头分布图编制;②建立了晚古生代以来一个古隆起、四个盆地区的构造格局;③特提斯构造域向太平洋构造域的转换对于研究区沉积构造环境的变迁具有标志作用;④龙潭组是最有利的烃源岩层位,次为坂头组;⑤利用层序地层中的生物刘比,反映了区域性沉积特征变化,建立了研究区各剖面岩石地层单位之问的时代对比关系;⑥通过对野外盆区主干剖面、辅助剖面的特征描述,并结合前人成果的综合分析,根据露头层序地层学方法,并结合生物地层、层序的碳同位素特征等,较为清晰地把盆区古环境的变迁与区域性古环境及构造环境有机结合起来;⑦详细阐述了中国东南部石炭系、二叠系和三叠系层序地层特征。⑧金衢盆地是中国东南部典型的中新生代陆相盆地之一,水安盆地则是中国东南部兼具晚古生代海相特征和中新生代陆相特征的典型复合盆地之一,两者在演化过程中所受内驱力和所经历的机制转换具有相似性,即中新生代古亚洲动力学体制向古太平洋体制的转换,晚白垩世之初的由挤压向拉张的机制转换,以及垂向地幔物质的上涌,由此首次提出了能量源团分形设想,即盆地的轮廓是横向与垂向分布不均匀的点能量源团组成的能量源团面传播推进叠合的外在表现;该设想不仅为研究盆地构造环境演化机制提供了新视角,而且对地震灾害预测具有借鉴意义。
Southeast China as a research object and "three representative basins" as working space, Jinhua-Quzhou basin, Yong'an basin and Pingle basin were specifically studied, by means of field survey of geology and structure, thin section analysis of samples, discrimination of geochemical quantification and synthetical analysis of interior references and documents. And there were such research subjects as petrophysics, sequence strata, constituents of basin, features of major elements and REE(rare-earth elements), characteristics of organic carbon isotopes. In view of what was mentioned, and under the prerequisite of recognizing sedimentary structure, depocenter, facies change and tectonic setting evolution of every basinal region, writers had comparatively studied morphological distribution framework of regional basins and structural environment evolution from Late Paleozoic to Meso-Cenozoic in Souteast China.
     Jinhua-Quzhou Basin is one of the late Mesozoic rifted basins in Southeast China. It developed on the Pre-mesozoic metamorphosed fold basement, mainly including three structural units of northern shallow depression zone, central uplift belt and southern hollow zone:①Looking on material information contained in strata rocks as master line, features of the basin's Meso-cenozoic formation-litho and structural evolution had been studied by means of geochemical analysis on rare-earth elements, trace elements and isotopic elements, being supplemented by field investigating and synthetically surveying two aspects of vertical deep position and horizontal surface level. The findings suggest as follows:a) Tectonic phenomena of unconformity, syncline et cetera in the inner Jinhua-Quzhou basin had reflected the dynamic building of the basin, with the basin's receiving deposition accompanied by horizontal pulling; bimodal volcanic rock was displayed by the deviation of SiO2content overtaking18%between rhyolite and basalt, rare-earth element (REE) partitioning curves had exhibited not having europium depletion in basalt and obviously having europium depletion in rhyolite, and trace element cobweb figure had manifested being as trough curves of Nb and Ta, comparatively concentrating of Zr and K and relatively depleting of Ti in basalt and rhyolite, from which could be drawn a judgement that specimen studied were the products of Earth crust melted, b) During the late period of early Cretaceous, in the formations of part of the basin, there was alkaline basalt with the geochemical characteristics showing its being formed within plate environment by fast extension. Those basalts in red layers from late period of early Cretaceous to late Cretaceous in the Guangfeng basin in the western part of Jinhua-Quzhou basin fundamentally had the same features.②Making use of analytic approach of basin prototype, tectonic events, deep seated structure, provenance, subsiding history, depocenter, basin bonndary structure and cessation of deposition, etc were studied. J-Q basin had undergone several evolutionary phases of early intracontinental compressing (NW-SE), late early Crataceous extending and drafting (NW-SE), late Crataceous depression, suppression of last stage of Crataceous and reformation of later stage. From research above, basin filling material was coming from ablation due to incipient fold and uplift of pre-Mesozoic formation and weathering denudation of mountain mass with the background of late period drafting, confirming that J-Q basin had experienced uplifting and denuding events attributing to the mechanism conversion from extruding to pulling. These events had important affection on the shaping of rifting and half graben-like basin. Sedimentation and subsidence center was in the vicinity of Quzhou with more or less translational migration during the three palaeo-lithofacies stages. From the study above, we can see that J-Q basin has favorable oil and gas foreground, and these four structural traps of Qianjia, Shuiting, Yangtang and Jiangtang have major prospecting potentiality.③rom the further multidisciplinary analysis, we can see that the features of formation lithology of Meso-cenozoic Jinhua-Quzhou basin were material records of its tectonic environment evolution, totally presenting "fault structure in the northern part and overlap construction in the southern part", reflecting the basin migration under the background of extension; Based on the deducing morphological feature of the basement of Jinhua-Quzhou Basin by gravity surveying and geological drilling, using trigonometric algorithm method, we have made the extension estimation of Jinhua-Quzhou Basin during late Cretaceous. The quantity of extension is about2100m, and the amount of subsidence is around5100m.④In connection with one typical representative of Meso-cenozoic land facies basins of South-east China, the tectonic setting which J-Q basin had been situated in had complex evolution characteristics of multi-phase with the stress field superimposed by vertical and horizontal stress fields. These cognitions are helpful to provide references for the study of synchronizing continental facies basins.
     In the Pingle basin, the formations from Late Paleozoic to Early Triassic outcropping along the zone from Pingxiang to Leping was in-situ system. And Banxi Group of adjacent areas had both Pre-Sinian metamorphics series and probably the composition of Mesozoic tectonic melange, being external system. From synthesizing the research results of predecessors, we could see:①Hydrocarbonaceous mother rocks of oil and gas system in Pingle depression include carbonatite, mudstone, and coal of Permian and Triassic, having the features of high abundance of organic substance, vast distribution area, moderate maturity and preferable show of oil and gas.②There are two kinds of capping formations which are respectively red petrographic series from Middle Crataceous to Paleogene and overriding petrographic series from Proterozoic to Triassic.③The middle-and-western part of Pingle depression has the priority of gas location with the eastern part being preferable for oil detection. The favorable areas for prospecting are Yugan and Pingxiang.④Having the potentiality of prospecting oil and gas reservoir above the nappe.
     The Yong'an basin developed on the Pre-Devonian basement, locating on the southern margin of the Cathaysian block, distributing along the NE-SW and Neoproterozoic Zhenghe-Dapu fault zone which was the background of the deposition-rifted basin formed from early Cambrian Yong'an-Longyan gulf by extending action. Making use of the method of sequence stratigraphy and being supplemented by field investigation, writers studied the stratigraphic sequences and rock assemblages of the basin:①An analysis on the stratigraphic framework and geological column from Late Paleozoic to Early Triassic shows that marine deposit sequence is episodic with the fluctuation of sea level, and different sedimentary facies have disproportion in the eastern part, central part and western part of the basin. The center of deposition and subsidence is approximately in the areas of Longyan and Meixian.②A research on the cross sections traversing the basin and the intrabasinal auxiliary sections shows that the block faulting has played a main part during Meso—Cenozoic, reformed the Late Paleozoic strata and formed compound fault—fold strata.③The layers with organic carbon provide the time limits for the land—sea changes in the basin, and their locations and shapes can demonstrate the dynamic mechanism of the tectonic evolution in the basin. Based on analyzing tectonic events, paleogeography and provenances, deep seated structures, boundary structures, and so on, studying the tectonic setting evolution and its stress mechanism, we can get the conclusions as follows:①The basin is characterized by devoloping uplift—extension structures, and it has mainly undergone phases of Variscan paralic tremendous thick deposition, Indosinian transition from sustained platform to active continental margin accompanied by compressing and uplifting and Meso—Cenzoic tectonic reworking with the conversion from compressing to pulling after Indosinian.②During Late Paleozoic, the speed of incursion and regression of the sea was controlled by the strong and weak alternation of tectonic events in different time, for this reason, the ablation of coastal uplifting areas and weathering denudation of mountain mass with the drafting background provided sedimentary source materials for the basin, and there were two provenance areas in the north and south of the basin. Taking marine ingression and recession as a label, the paleo-geographic environment of late Paleozoic and the spreading and changing of sedimentary facies of every stage had their own special characteristics. The distribution of sedimentary facies belts was in repeated change. The evolutionary series was obvious. During the period of marine regression, the sequence of river-facies, delta-facies, offshore-facies,marine-facies was along NE-SW direction, with the absence of marginal facies. The basin's depositional environment of ingression period was divided into several sedimentary facies belts of tidal flat lagoon, platform edge shallow, platform foreslope, continental shelf peripheral basin. During Meso—Cenozoic, the basin had totally the piedmont and river—lake sedimentary facies on volcanic environment. In addition, during different geologic epoch and in distinct districts of the same period, the features of similiarities and differences of facies transition of the basin itself and even the whole depositional environment of southeast China are proved by δ13Corg. value alternation of samples from these stratigraphic positions of different era in the basin and the comparative study of δ13Corg. value between the basin and its neighborhood areas. The δ13Corg. value interval of Yong-an basin's palaeozoic sediment is mainly (-15~-25‰), relatively having similarities compared with the δ13Corg.value interval (-20~-30‰) of Jinhua-Quzhou basin's northern margin sediment; and the organic carbon TOC value of Yong-an basin also has similar points with the synchronous Ping-Le basin; these features demonstrate that the sedimentary environment of Yong-an Basin's forming phase had the same points as other basins to the regional extent, being the environment of land-and-sea transition;at the same time, to some extent, there are differences that stratigraphic positions containing carbon are far more Meso-Cenozoic in ZM (Zhejiang-Fujian coast) area; analyses have made it known that ZM area had been one uplifted area, constituting the main provenance of Yong-an Basin together with Wuyi Mt. upwelling area. This cognition is fundamentally unanimous with the findings of regional palaeocurrent direction. The knowledge from above could provide new fundamental referential information for the weak basic research of the basins in southeast China.
     On the basis of the above research content of "three representative basins", we know that, in Southeast China, sustained Marine depositional sequence from Late Devonian to Early-Middle Triassic developed above the pre-Devonian basement; and after tectonically reworked, it was complexly folded with Meso-cenozoic land depositional sequence, looking on Indosinian event as a symbol. By means of building up sequence strata framework made up of thirty representative columnar sections with nine contour maps made from them (chronologic age from Neopalaeozoic to Early Mesozoic, related areas including provinces of Guangdong, Hunan, Zhejiang, Anhui, and Fujian), to reconstitute the basin shape correspondent with the Marine depositional formation of every stage, describe the features of difference and change about the time and space evolution due to deposition, and explore new thinking on the aspect of theory and technique in the marine oil and gas prospecting of Southeast China, could be realized in the research work including such aspects as regular characteristics showing by strata correlation, distribution regularities of the environment and space developing hydrocarbon source rocks, essential characteristics of the main basins and the distribution regularities of residual outcrops, the relation between structural environment evolution history since Eopaleozoic and oil-gas, and so on. From the study we can see:①Controlled by three major fault zones of Jiangshan-Shaoxing, Ganjiang and Zhenghe-Dapu, the Southeast China Block has the basin-uplift-depression framework consisting of basin districts of south of the River, South China (Wuyi to Nanling), and southeast coast, palaeohigh of Wuyi Mountain, depression zones of Jiangshan-Shaoxing and Yong'an-Meixian.②Unit formation has regional continuance, with the high lithologic stratum depth matching deep water district, the much content of fossil organisms matching good water stability, and on the contrary, matching shallow and strongly active water.③Carboniferous System, Permian System and Triassic System have significant denotation for researching the oil-gas potentiality in Southeast China, among which Longtan Group (or Tongziyan Group, or Maokou Group) is the most optimal hydrocarbon source rock formation.
     From above research, valuable fruits and innovative recognitions have been acquired, including as follows:①elic basset map from Late Devonian to Paleogene have been first completed;②The structure framework of one paleohigh and four basin areas since Late Paleozoic have been built;③The transformation from Thetis structural domain to Pacific structural domain has labeling function for the changing of sedimentary and structural environment in the interest region;④Longtan Group is the most optimum formation of hydrocarbon source rock, while Bantou Group is secondary;⑤Making use of biology comparison in the sequence strata, the change of regional sedimentary features have been made known, and the relation of time correlation between rock stratigraphic units of different sections in the interest areas has been built up;⑥By means of describing the features of field primary and auxiliary cross profiles and referring to multidisciplinary analysis of predecessors' fruits, and according to the method of outcrop sequence stratigraphy and referring to the features of biostratum, sequence carbon isotopes, et cetera, paleo-environmental change of the basin domain and regional paleo-environment and tectonic setting have been relatively and obviously combined together;⑦The sequence formation features of Carboniferous, Permian and Triassic in Southeast China has been represented in detail.⑧Jinhua-Quzhou (JQ) basin is one of the typical Meso-cenozoic land facies basins in Southeast China, Meanwhile, Yong'an (YA) basin is one of the representative composite basins not only having the features of Late Palaeozoic marine facies but also having the features of Meso-cenozoic land facies in Southeast China. During the evolutionary process, there are similarities between the two basins about the inner driving force and mechanism transition undergone by them including the conversion from Meso-cenozoic paleo-Asian kinetics framework to paleo-Pacific system, the mechanism transition from compressing to pulling at the early stage of Late Crataceous and the upwelling of mantle materials in the vertical direction. Thus the fractal assumption of energy source mass has come out, that is to say, basin's outline is the extrincic display of propagating, advancing and folding of the energy source mass surface made up by spot energy source masses distributing with nonhomogeneity along horizontal and vertical direction. The idea has provided not only for the research on the basin structural environment evolution mechanism with new visual angle but also for the prediction of earthquake catastrophe with significant references.
引文
1. Allen P A, Allen J R.1990. Basin Analysis:Principles and Application. Oxford:Blackwell Sci. Pub., 1-456.
    2. Ballentine D C, Macko S A & Turekian V C.1998. Variability of stable carbon isotopic compositions in individual fatty acids from combustion of C4 and C3 plants:implications for biomass burning. Chemical Geology,152(1-2):151~161.
    3. Barghoorn E S, Knoll A H, Dembicki H Jr & Meinschein W G.1977. Variation in stable carbon isotopes in organic matter from the Gunflint Iron Formation. Geochimica Cosmochimica Acta,41(3): 425-430
    4. Beaumont C.1981. Foreland basins. Geophysics Journal Review of Astronomy Society,65:291~329.
    5. Carter A, Roques D, Bristow C, Kinn P.2001. Understanding Mesozoic accretion in southeast Asia: significance of Triassic thermotectonism (Indosinian orogen) in Vietnam. Geology,29(3):211~214.
    6. Charvet J, Cluzel D, Faure M, et al.1999. Some tectonic aspects of the pre-Jurasic accretionary evolution of East Asia. In:Metcalfel. Ren J. Charvet. J, Hada S, ed. Gondwana dispersion and Asian accretion, A. A. Balkema/Rotterdam/Brookfield.37~65.
    7. Charvet J, Shu L S, Shi Y S, Guo L Z & Faure M.1996. The building of South China:collision of Yangzi and Cathaysia block, problems and tentative answers. Journal of Southeast Asian Earth Sciences,13(3-5):223~235
    8. Chen Aigen.1999. Mirror-image thrusting in the South China Orogenic Belt:tectonic evidence from western Fujian, southeastern China. Tectonophysics,305(4):497~519.
    9. Dean W E, Arthur M A & Claypool G E.1986. Depletion of 13C in Cretaceous marine organic matte source, diagenetic, or environmental signal. Marine Geology,70(1-2):119~157
    10. Ehiro M.2001. Origins and drift histories of some microcontinents distributed in the eastern margin of Asian Continent. Earth Science,55(2):71~81.
    11. Emerson S & Hedges J I.1988. Processes controlling the organic carbon content of open ocean sediments. Paleoceanography,3(5):621-634
    12. Engebretson D C, Cox A, Gordon R G.1986. Relative motions between oceanic and continental plates in the Pacific basin. Geol. Soc. Am. Special Paper,1~59.
    13. Faure M, Lin W, Sun Y.1998. Doming in the southern foreland of the Dabieshan (Yangtse block, China). Terra Nova,10(6):307~311.
    14. Faure M, Natal'in B.1992. The geodynamic evolution of the eastern Eurasian margin in Mesozoic times. Tectonophysics,208(4):397~411.
    15. Faure M, Sun Y, Shu L S, et al.1996. Extensional tectonics within a subduction-type orogen. The case study of the Wugongshan dome (Jiangxi Province, southeastern China). Tectonophysics,263(1-4): 77~106.
    16. Gearing J N.1991. The study of diet and trophic relationships through natural abundance 13C. In: Coleman D C & Fry B. Carbon isotope techniques. San Diego:Academic Press.201~218
    17. Gilder S A, Keller G R, Luo M, Goodell P C.1991. Eastern Asia and the western Pacific timing and spatial distribution of rifting in China. Tectonophysics,197(2-4):225~243.
    18. Gilder S A, Robert S C, Wu H R, et al.1993. Cretaceous and Tertiary paleomagnetic results from southeast China and their tectonic implications. Earth and Planetary Science Letter.,117:637~652.
    19. Grabau A W.1924. Stratigraphy of China. Part Ⅰ, Paleozoic and older. The Geological Survey of Agriculture and Commerce, Peking,1~528.
    20. Guo L Z, Shi Y S, Lu H F, Ma R S, Dong H G & Yang S F.1989. The pre-Devonian tectonic patterns and evolution of South China.J. SE Asian Earth Sci,3(1-4):87~93
    21. Hag B U, Hardenbol J, Vail P R.1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change. In:Wilgus C.K., Hastings B.S., Kendall C.G. St C, et al. eds.. Sea-level changes:an integrated approach. Soc. Econ. Paleontol. Mineral Spec. Publ.,42:71~108.
    22. Hatch M D & Slack C R.1966. Photosynthesis by sugar-cane leaves. Biochem J,101(1):103~111
    23. Hattersley P W.1982.δ13C values of C4 types in grasses. Aust J Plant Physiol,9(2):139~154
    24. Hill R L, Campbell I H, Davies G F, et al.,1992. Mantle plumes and continental tectonics. Science, 256:186~193.
    25. Huang Qi, Meng Zhao-qiang & Liu Hai-ling.1990. The study of palaeoclimatology fluctuation pattern in Chaerhan Lake, Qaidam Basin. Science in China (series B),20(6):652~663
    26. Hu J F, Peng P A, Jia G D, Fang D Y, Zhang G, Fu J M & Wang P X.2002. Biological markers and their carbon isotopes as an approach to the paleoenvironmental reconstruction of Nansha area, South China Sea, during the last 30 ka. Organic Geochemistry,33(10):1197~1204
    27. Keeley J E & Sandquist D R.1992. Carbon:freshwater plants. Plant, Cell & Environment,15(9): 1021~1035
    28. Kingston D R, Dishroom C P, Williams P A.1983. Global basin classification sysetm. AAPG Bull.,67: 2175-2193.
    29. Klemme H D.1980. Petroleum basin:classifications and characteristics. Journal of Petroleum Geology.27:30~66.
    30. Krapez B.1997a. Sequence-stratigraphic concepts applied to the identification of depositional basins and global tectonic cycles. Australian Journal of Earth Sciences,44(1):1-36.
    31. Krapez B.1997b. Sequence-stratigraphic concepts applied to the identification of basin filling rhythems in Precambrian successions. Australian Journal of Earth Sciences,43(3):355~380.
    32. Le Maitre R W, Bateman P, Dudek A, et al.1989. A classification of igneous rocks and glossary of terms [M]. Oxford:Blackwell.
    33. Liang D G, Zhang S C, Chen J P, Wang F Y & Wang P R.2003. Organic geochemistry of oil and gas in the Kuqa depression, Tarim Basin, NW China. Organic Geochemistry,34(7):873~888
    34. Li Jianwei, Zhou Meifu, Li Xianfu, Fu Zhaoren, Li Zijin.2001. The Hunan-Jiangxi strike-slip fault system in southern China: southern termination of the Tan-Lu fault. Journal of Geodynamics,32(3): 333~354.
    35. Li X H.1997. Timing of the Cathaysia Block formation:constraints from SHRIMP U-Pb zircon geochronology. Episodes,20(3):188~192
    36. Li X H.1999. U-Pb zircon ages of granites from the southern margin of the Yangtze Block:timing of Neoproterozoic Jinning:Orogeny in SE China and implications for Rodinia Assembly. Precamb Res, 97(1-2):43~57
    37. Li X H, Li Z X, Ge W C, Zhou H W, Li W X, Liu Y & Wingate M T D.2003. Neoproterozoic granitoids in South China:crustal melting above a mantle plume at ca.825 Ma? Precamb Res, 122(1-4):45~83
    38. Li X H, Li Z X, Li W X, et al.2006. Initiation of the Indosinian orogeny in South China:evidence for a permian magmatic arc on Hainan Island. Journal of Geology,114 (3):341~353.
    39. Li Z X, Li X H, Zhou H W & Kinny P D.2002. Grenvillian continental collision in South China:new SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology,30(2): 163-166
    40. Li Z X, Li X H, Kinny P D, Wang J, Zhang S & Zhou H.2003. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precamb Res,122(1-4):85~109
    41. Li Z X, Zhang L, Powell C M.1996. Positions of the East Asian cratons in the Neoproterozoic supercontinent Rodinia. Australian Journal of Earth Sciences,43(6):593~604.
    42. Li W X, Li X H & Li Z X.2005. Neoproterozoic bimodal magmatism in the Cathaysia Block of South China and its tectonic significance. Precamb Res,136(1):51~66
    43. Lockheart M J, Poole I, van Bergen P F & Evershed R P.1998. Leaf carbon isotope compositions and stomatal characters:important considerations for palaeoclimate reconstructions. Organic Geochemistry,29(4):1003~1008
    44. Mark Person, Grant Garven.1994. A sensitivity study of the driving forces on fluid flow during continental-rift basin evolution. Geological Society of America Bulletin,106(4):461~475.
    45. Martel S J.1990. Formation of compound strike-slip fault zones, Mount Abbot guadrangle, California. Journal of Structural Geology,12(7):869~882.
    46. Maruyama S, Seno T.1986. Orogeny and relative plate motions;example of the Japanese islands. Tectonophysics,127(3-4):305~329.
    47. Maruyama S.1994. Plume tectonics. Journal of Geological Society, Japan,100:24~49.
    48. Maruyama S, Isozaki Y, Kimura G, Terabayashi M.1997. Paleogeographic maps of the Japanese islands:plate tectonic synthesis from 750 Ma to the present. The Island Arc,6(1):121~142.
    49. Masayuki Ehiro.2001. Origins and drift histories of some microcontinents distributed in the eastern margin of Asian Continent. Earth Science,55(2):71~81.
    50. Mayer B & Schwark L.1999. A 15,000-year stable isotope record from sediments of Lake Steisslingen, Southwest Germany. Chemical Geology,161(1-3):315-337.
    51. McQuoid M R, Whiticar M J, Calvert S E & Pedersen T F.2001. A post-glacial isotope record of primary production and accumulation in the organic sediments of Saanich Inlet, ODP Leg 169S. Marine Geology,174(1-4):273-286.
    52. Mckenzie D P.1978. Some remarks on the development of sedimentary basins. Earth and Planetary Science Letters,40:35~32.
    53. Miall A D.1990. Principles of sedimentary basin analysis. New York:Springer-Verlag,1-668.
    54. Morgan W J.1972. Plate motions and deep mantle convection. Geol Soc Am Mem,132:7-22.
    55. Mueller-Lupp T, Bauch H A., Erlenkeuser H, Hefter J, Kassens H & Thiede J.2000. Changes in the deposition of terrestrial organic matter on the Laptev Sea shelf during the Holocene:evidence from stable carbon isotopes. Int J Earth Sciences,89(3):563~568.
    56. Naidu A S, Cooper L W, Finney B P, Macdonald R W, Alexander C & Semiletov I P.2000. Organic carbon rations (δ13C) of Arctic Amerasian Continental shelf sediments. Int J Earth Sciences,89(3): 522~532
    57. Nelson D R.1992. Isotopic characteristics of potassic rocks:Evidence for the involvement of subducted sediments in the magma genesis. Lithos,28:403~420.
    58. O' Leary M H.1988. Carbon isotopes in photo synthesis Fraction techniques may reveal new aspects of carbon dynamics in plants. Bio-Science,38(5):328-336
    59. Perrodon A.1980. Geodynamigue Petroliere, Genese et repartition des gisements dhydrocarbures. Masson, Elf-Aquitaint, Mem,5,1~57.
    60. Perrodon A.1992. Petroleum system:models and applications. Journal of Petroleum Geology,15(3): 319~325.
    61.Person M, Garven G.1994. A sensitivity study of the driving forces on fluid flow during continental-rift basin evolution. Geological Society of America Bulletin,106(4):461~475.
    62. Pirajno F, Bagas L, Hickman A H, Gold Research Team.1997. Gold mineralization of the Chencai-Suichang uplift and tectonic evolution of Zhejiang Province, southeast China. Ore Geology Reviews,12(1):35~55.
    63. Qing Lin, Cheng Guo-dong & Peng Ping-an.2002. The record of atmospheric CO2 derived from the stable carbon isotopic composition of buried plant in perennial frozen lacustrine sediments. Cold Regions Science and Technology,35(1):15~25
    64. Rau G H, Froelich P N, Takahashi T& Marais D J D.1991 a. Does sedimentary organic delta 13C record variations in quaternary ocean [CO2(aq)]? Paleoceanography,6(3):335-347
    65. Rau G H, Takahashi T & Marais D J D.1989. Latitudinal variations in plankton δ13C; implications for CO2 and productivity in past oceans. Nature,341(6242):516~518
    66. Rau G H, Takahashi T, Marais D J D & Sullivan C W.1991b. Particulate organic matter delta 13C variations across the Drake Passage. Journal of Geophysical Research,96(C8):15,131~15,135
    67. Schouten S, Hartgers W A, Lopez J F, Grimalt J O & Damste J S S.2001. A molecular isotopic study of 13C-enriched organic matter in evaporitic deposits:recognition of CO2-limited ecosystems. Organic Geochemistry,32(2):277~286
    68. Sengor A M C.1985. The story of Tethys:how many wives did Okeanos have. Episodes,8(1):3~12.
    69. Sengor A M C.1987. Tectonics of the Tethysides:orogenic collage development in a collisional setting. Ann. Rev. Earth Planet. Sci.,15:213~244.
    70. Shu L S, Charvet J.1996. Kinematic and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone (Jiangnan region, South China). Tectonophysics,267(1-4):291~302.
    71. Shu L S, Faure M, Jiang S Y, Yang Q & Wang Y J.2006. SHRIMP zircon U-Pb age, litho- and biostratigraphic analyses of the Huaiyu Domain in South China: Evidence for a Neoproterozoic orogen, not Late Paleozoic-Early Mesozoic collision. Episodes,29(4):244~252.
    72. Shu L S, Sun Y, Wang D Z, et al.1998. Mesozoic extensional tectonics in the Wugongshan area, South China. Science in China (Series D),41 (6):601~608.
    73. Shu Liangshu, Faure M, Wang Bo, Zhou Xinmin, Song Biao.2008. Late Paleozoic-Early Mesozoic geological features of South China:response to the Indosinian Collision Event in Southeast Asia. C R Geosciences,340(2-3):151~165.
    74. Shu Liangshu, Wang Yan, Sha Jingeng, Jiang Shaoyong, Yu Jinhai, Wang Yanbin.2009a. Jurassic sedimentary features and tectonic settings of southeastern China. Science in China Series D:Earth Sciences,52(12):1969~1978.
    75. Shu Liangshu, Zhou Xinmin, Deng Ping, Wang Bo, Jiang Shaoyong, Yu Jinhai, Zhao Xixi.2009b. Mesozoic tectonic evolution of the southeast china block:New insights from basin analysis. Journal of Asian Earth Sciences,34(3):376~391.
    76. Shu Liangshu, Faure M, Yu Jinhai, Jahn B.2011. Geochronological and geochemical features of the Cathaysia block (South China):new evidence for the Neoproterozoic breakup of Rodinia. Precambrian Research,187(3-4):263~76.
    77. Shu L S, Zhou X M, Deng P, et al.2009. Mesozoic tectonic evolution of the Southeast China Block: New insights from basin analysis. Journal of Asian Earth Sciences.34:376~391.
    78. Simpson P R, Gong Y, Gao B.1987. Metallogeny, magamatism and structure in Jiangxi Province, China:A new interpretation. Trans. Inst. Min. Metall, B 96, B7-B83.
    79. Struck U, Emeis K C, Voss M, Christiansen C & Kunzendorf H.2000. Records of southern and central Baltic Sea eutrophication in delta 13C and delta 15N of sedimentary organic matter. Marine Geology, 164(3-4):157-171
    80. Sun S-s, McDonough W F.1989. Chemical and isotopic systematics of oceanic basalt:Implications for mantle compositions and processes. Geol Soc Spec Publ,42:313~345.
    81. Taylor H P.1977. Water/rock interactions and the origin of H2O in granitic batholiths. Journal of tbe Geological Society. London,133:509~558.
    82. Tuo J C, Wang X B, Chen J F & Simoneit B R T.2003. Aliphatic and diterpenoid hydrocarbons and their individual carbon isotope compositions in coals from the Liaohe Basin, China. Organic Geochemistry,34(12):1615~1625
    83. Wang De-zi, Shu Liang-shu, Faure M, et al.2001. Mesozoic magmatism and granitic dome in the Wugongshan Massif, Jiangxi Province and their genetical relationship to the tectonic events in southeast China. Tectonophysics,339:259~277.
    84. Xiao W J, He H Q.2005. Early Mesozoic thrust tectonics of the Northwest Zhejiang region (Southeast China). Geological Society of America,117(7-8):945~961.
    85. Wang Hongzhen, Mo Xuanxue.1995. An outline of the tectonic evolution of China. Episodes,18(1-2): 6~16.
    86. Wang K, Chatterton B D E & Wang Y.1997. An organic carbon isotope record of Late Ordovician to Early Silurian marine sedimentary rocks, Yangtze Sea, South China; implications for CO2 changes during the Hirnantian glaciation. Palaeogeography, Palaeoclimatology, Palaeoecology, 132(1-4):147~58.
    87. Wang Q, Li J W, Jian P, et al.2005. Alkaline syenites in eastern Cathaysia (South China):Link to Permian-Triassic transtension. Earth and Planetary Science Letters,230(3-4):339~354.
    88. Wilson J T.1963. A possible origin of the Hawaiian Islands. Can J Phys,41:863~870.
    89. Yan Danping, Zhou Meifu, Song Honglin, Wang Xinwen, Malpas J.2003. Origin and tectonic significance of a Mesozoic multi-layer over-thrust system within the Yangtze Block (South China). Tectonophysics,361(3-4):239~254.
    90. Zhou D, Graham S A.1996. The Songpan-Ganzi complex of the western Qinling Shan as a Triassic remnant ocean basin[C]. In:Yin, A.& Harrison, T.M. (eds) The Tectonic Evolution of Asia. Cambridge University Press, Cambridge,281~299.
    91. Zhou Xin-min, Li Wu-xian.2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics,326(3-4): 269-287.
    92. Zhou X M, Sun T, Shen W Z, et al.2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in south China: A response to tectonic evolution. Episodes,29(1):26~33.
    93. Zhou X M & Zhu Y H.1992. Magma mixing in the Jiang-Shao fault zone and the Precambrian geology of both side of the Jiang-Shao zone. Science in China (B),22(3):298~303.
    94.安徽省地质矿产局.1987.安徽省区域地质志.北京:地质出版社,1-721.
    95.柏道远,周亮,王先辉,张晓阳,马铁球.2007.湘东南南华系-寒武系砂岩地球化学特征及对华南新元古代—早古生代构造背景的制约.地质学报.81(6):755-771.
    96.包超民,兰翔.1997.浙江中生代陆内造山的基本特点和几次重要地质事件.浙江地质,13(2): 1-4.
    97.边效曾,高天钧.1982.“永梅坳陷”铁矿成矿类型系群的探讨与找矿.福建地质,(2):53-68.
    98.边效曾,褚志贤,周伟栋.1993.福建省古生代至中生代大地构造演化的格架.福建地质,12(4):280-291.
    99.曹双林,潘家永,马东升,夏菲.2004.湘西北早寒武世黑色岩系微量元素地球化学特征.矿物学报,24(4):415-419.
    100.陈繁荣,王德滋,刘昌实.1995.赣杭地区中生代两类不同成因火山—侵入杂岩的对比研究.地球化学,24(2):169-179.
    101.陈发景.1993.伸展盆地分析.天然气地球科学,(2-3):109-131.
    102.蔡止全,俞云文.2001.浙江白垩系上部地层的划分与对比.地层学杂志,25(4):259-266.
    103.陈贵华,杨卫明.2001.中国近东西向中生代火山岩带及其铀成矿作用.铀矿地质,17(1):18-23.
    104.陈发景,汪新文,张光亚,等.1996.中国中、新生代前陆盆地的构造特征和地球动力学.地球科学,21(4):366-372.
    105.陈建文.1999.沉积盆地深部过程的研究方法.海洋地质动态,(8):5-6.
    106.陈金秀.1984.福建省永安盆地第四纪冰川遗迹的探讨.福建地质,(1):61-67.
    107.陈科,林伟,王清晨.2008.扬子地块东南缘多期构造变形及其油气意义.地质学报,82(3):308-315.
    108.陈不基.1997.晚白垩中国尔南沿海沿岸山系与中南地区的沙漠化和盐湖化.地层学杂志,21(3):203-213.
    109.陈不基.2000.中国陆相侏罗、白垩系划分对比评述.地层学杂志,24(2):114-119.
    110.陈文强.2007.玉水铜多金属矿床的成矿地质条件及其成因分析.有色金属(矿山部分),59(1):18-21.
    111.陈文森.1991.永梅坳陷的两类氧化锰矿床.中国锰业,9(4):10-16.
    112.陈溥鹤.1998.断裂系统在油气成藏中的应用.海相油气地质.3(4):1-2.
    113.程日辉,白云风,李艳博.2004.下扬子区三叠纪古地理演化.吉林大学学报,34(3):367-371.
    114.邓家瑞.1997.张志平.赣杭构造带前寒武纪构造格局的探讨.铀矿地质,13(6):321-326.
    115.邓家瑞,张志平.1999.赣杭构造带区域大地构造背景的探讨.铀矿地质,15(2):71-76.
    116.邓平,舒良树,肖旦红.2002.中国东南部晚中生代火成岩的基底探讨.高校地质学报,8(2):169-179.
    117.邓荣敬,徐备,张立勤,李瑞江,高勇,杨桦,杜玉梅,时云珠,梁锋.2005.萍乐坳陷西部上古生界—下三叠统烃源岩评价.天然气工业,25(3):23-28
    118.丁学仁,黄向荣,林树,黄声明.1998.福建永安Ms5.2级地震活动特征、影响场及应急对策.华南地震,18(3):52-57.
    119.杜旭东,薛林福,邬光辉.1999.中国东部大陆内部中生代盆地分布特征与地球动力学背景探讨.长春科技大学学报,29(2):138-143.
    120.方轶,舒福明.2003.阜阳地区盆地模拟分析.安徽地质,13(3):174-179.
    121.福建省地质矿产局.1985.福建省区域地质志.北京:地质出版社,1-671.
    122.冯有良,李思田,解习农.2000.陆相断陷盆地层序形成动力学及层序地层模式.地学前缘,7(3):119-132.
    123.高长林,单翔麟,秦德余.2005.中国古生代盆地基底大地构造特征.石油实验地质,27(6):551-564.
    124.高玉巧.2009.中国东南部二叠系和三叠系烃源岩分布规律及油气潜力研究.(南京大学)博士后出站报告,1-162.
    125.广东省地质矿产局.]988.广东省区域地质志.北京:地质出版社,1-921.
    126.甘克文.2000.特提斯域的演化和油气分布.海相油气地质,5(3-4):21-29.
    127.郭令智,施央中,马瑞士.1983.西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化.地质学报,57(1):11-21.
    128.郭水良,刘鹏.1994.浙江金衢盆地的野生牧草资源.国土与自然资源研究,(1):61-65.
    129.何登发,贾承造,童晓光,王桂宏.2004.叠合盆地概念辨析.石油勘探与开发,31(1):1-7.
    130.何科昭,赵崇贺,乐吕硕,等.1999.“板溪群”构造属性的再认识与思考.地学前缘,6(4):353-362.
    131.黄麒,孟昭强,刘海玲.1990.柴达木盆地察尔汗湖区古气候波动模式的初步研究.中国科学(B辑),20(6):652-663.
    132.胡德昭,徐鸣洁,黄钟谨.1996.安徽无为盆地平衡地质剖面研究.高校地质学报,2(4):431-436.
    133.湖南省地质矿产局.1988.湖南省区域地质志.北京:地质出版社,1-718.
    134.胡受奚,叶瑛.2006.对“华夏古陆”、“华夏地块”及“扬子——华夏古陆统一体”等观点的质疑.高校地质学报,12(4):432-439.
    135.火山地质与矿产编辑部.1998.永梅会矿集区论文选编.火山地质与矿产,19(4):269-356.
    136.江民忠,谢迎春,石岩等.2002.萍乐坳陷西部地区航测遥感油气预测研究.21(4):60-64.
    137.江西省地质矿产局.1984.江西省区域地质志.北京:地质出版社,1-921.
    138.梁狄刚,陈建平.2005.中国南方高、过成熟区海相油源对比问题.石油勘探与开发,32(2):8-14.
    139.李成,王良书,杨春.2001.下扬子区岩石圈双层脆韧性过渡带叠置的流变学证据.地质论评,47(3):245-219.
    140.李春昱.1982.亚洲地质构造图.北京:地图出版社.
    141.李凤杰,郑荣才,周小进,等.2009.中国南方晚古生代构造演化与盆地原型.沉积与特提斯地质,29(2):93-99.
    142.李观富.1989.福建晚古生代地层中推覆构造成因机制.福建地质,8(1):35-45.
    143.李会军,张立勤,梁锋,杨桦,高树海.2003.江西萍乐坳陷海相含油气系统特征.新疆石油地质,24(3):210-213.
    144.李继亮.1992.中国东南地区大地构造基本问题[A],中国东南岩石圈结构与演化研究论文集[C].中国科学技术出版社,3-16.
    145.李思田,1992.论沉积盆地分析领域的追踪与创新.沉积学报,10(3):10-15.
    146.李思田.1995.沉积盆地的动力学分析——盆地研究领域的主要趋向.地学前缘,2(3-4):1-8.
    147.刘隆光.1990.略论“萍乐坳陷”地质发展.江西煤炭科技,(1):15-19
    148.李玉伟.1994.江西省油气远景及其勘探方向.天然气地球科学,(3):34-38.
    149.廖群安,李吕年,王京名.1999b.江绍断裂带晚侏罗世S型酸性火山岩特征及其地质意义.地球科学,24(1):63-68.
    150.廖群安,王京名,薛重生,李吕年.1999a.江西广丰白垩系盆地中两类玄武岩的特征及其与盆地演化的关系.岩石学报,15(1):116-123.
    151.刘和甫.1993.沉积盆地地球动力学分类及构造样式分析.地球科学,18(6):699-724.
    152.刘和甫,李小军,刘立群.2003.地球动力学与盆地层序及油气系统分析.现代地质,17(1):80-86.
    153.刘和甫.1996.中国沉积盆地演化与旋回动力学环境.地球科学,21(4):345-356.
    154.刘和甫.1997.盆地演化与地球动力学旋回.地学前缘,4(3-4):233-240.
    155.刘平华,吴仁贵,余达淦,等.2007.广丰盆地早白垩世火山-侵入杂岩稀土元素地球化学特征及成因探讨.东华理工学院学报,30(4):321-327.
    156.刘绍文,王良书,刘波.2001.拉张盆地伸展量的分形分析—以渤海盆地为例.地质论评,47(3):229-233.
    157.刘文均.1998.海西-印支期华南板块的沉积特点.成都理工学院学报,25(2):328-336.
    158.罗志立.2000.从华南板块构造演化探讨中国南方碳酸盐岩含油气远景.海相油气地质,5(3-4):1-19.
    159.陆克政,朱筱敏,漆家福,等.2001.含油气盆地分析.东营:石油大学出版社,1-424.
    160.陆苏.1996.江西南波阳迭凹二叠系烃源岩地球化学特征及对油气勘查的意义.江西地质.10(4):296-303.
    161.马金清,王文腾,张顺金.1997.试论闽西南西溪超单元组合的建立及岩体构造特征.福建地质,16(4):151-158.
    162.马文璞.1996.华南陆域内古特提斯形迹、二叠纪造山作用和互换构造域的尔延.地质科学, 31(2):105-113.
    163.马力,陈焕疆,甘克文,等.2004.中国南方大地构造和海相油气地质.北京:地质出版社.
    164.马瑞土.2006.华南构造演化新思考兼论”华夏古陆”说中的几个问题.高校地质学报,2(4):448-456
    165.马武平.1994.论浙江中生代晚期地层划分.地层学杂志,10(2):91-101.
    166.马杏垣,刘和甫,王维襄,等.1983.中国东部中、新生代裂陷作用和伸展构造.地质学报,57(1):22-32.
    167.聂童春,朱根灵.2004.政和—大埔深(大)断裂带中段地质构造特征及其演化探讨.福建地质,(4):186-194.
    168.漆家福,张一伟,陆克政,等.1995.渤海湾新生代裂陷盆地的伸展模式及其动力学过程.石油实验地质,17(4):316-323.
    169.饶雪峰,范德廉.1990.湘中桃江中奥陶统黑色岩系岩石学地球化学及成因.岩石学报,6(3):78-86.
    170.沈忠悦,方大钧,叶瑛,等.1999.江山—绍兴碰撞带的磁组构特征及其构造地质意义.科学通报,44(10):1093-1098.
    171.舒良树,卢华复,Charvet J, Faure M.1997.武夷山北缘断裂带运动学研究.高校地质学报,3(3):282-292.
    172.舒良树,卢华复,贾东,夏菲,福赫.1999.华南武夷山早古生代构造事件的40Ar-39Ar同位素年代研究.南京大学学报[自然科学),35(6):668-674.
    173.舒良树,于津海,王德滋.2000.长乐-南澳断裂带晚中生代岩浆活动与变质-变形特征.高校地质学报,6(3):368-378.
    174.舒良树,周新民.2002.中国东南部晚中生代构造作用.地质论评,48(3):249-260.
    175.舒良树,周新民,邓平,余心起,王彬,祖辅平.2004.中国东南部中、新生代盆地特征与构造演化.地质通报,23(9-10):876-884.
    176.舒良树.2006.华南前泥盆纪构造演化:从华夏地块到加里东期造山带.高校地质学报,12(4):418-431.
    177.舒良树,邓平,余心起,王彬,祖辅平.2007.华南中生代盆地分布.周新民主编:南岭地区晚中生代花岗岩成因与岩石圈动力学演化.北京:科学出版社,161-178.
    178.水涛,刘昌林.1979.广东及其邻区的华夏系方向构造.地质科学,3:195-204.
    179.宋鸿林,朱忠,颜丹平.2003.赣北萍乐坳陷是对冲构造还是巨型构造窗.地质通报,22(2):124-129.
    180.田启发.1983.对“永梅坳陷”和“闽北加里东隆起区”的异议.福建地质,(5):73-80.
    181.田在艺,韩屏.1990.渤海断陷盆地拉张量分析与油气潜力.石油学报,11(2):1-2.
    182.田在艺、张庆春.1993.沉积盆地控制油气赋存的因素.石油学报,14(4):1-19.
    183.唐国军,陈衍景.2004.有机碳同位素示踪古环境变化研究.矿物岩石,24(3):110-115.
    184.许效松,汪正江.2003.对中国海相盆地油气资源战略选区的思路.海相油气地质,8(1):1-9.
    185.王博,舒良树.2001.对赣东北晚古生代放射虫的初步认识.地质论评,47(4):337-344.
    186.王登红,许建祥,张家菁,李水如,许以明,曾载淋,陈郑辉.2008.华南深部找矿有关问题探讨.地质学报,82(7):865-872.
    187.王德滋,刘昌实,沈渭洲,陈繁荣.1991.江西东乡-相山中生代S型火山岩带的发现及其地质意义.科学通报,36(19):1491-1493.
    188.王德滋,刘昌实,沈渭洲,陈繁荣.1993.桐庐Ⅰ型和相山S型两类碎斑熔岩对比.岩石学报,9(1):44-54.
    189.王德滋,刘昌实,沈渭洲,等.1994.华南S型火山杂岩与成矿.南京大学学报(自然科学),30(2):322-333.
    190.王果胜,马文璞,朱卫平.2009.闽西南晚古生代-早三叠世沉积特征及其大地构造意义.成都理工大学学报(自然科学版),36(1):87-91.
    191.王鹤年,凌洪飞,周丽娅,杨凤根,王银喜.2003.福建马面山群Sm-Nd同位素年龄及其地质意义.高校地质学报,9(4):566-572.
    192.王鹤年,周丽娅.2006.华南地质构造的再认识.高校地质学报,12(4):457-465.
    ]93.王剑,刘宝珺,潘桂棠.2001.华南新元古代裂谷盆地演化——Rodinia超大陆解体的前奏.矿物岩石,21(3):135-145.
    194.王培宗,陈耀安,曹宝庭,潘金滇,王长炎.1993.福建省地壳-上地慢结构及深部构造背景的研究.福建地质,12(2):79-158.
    195.王谦身,江为为,周文虎,等.1993.屯溪—温州地区的重力场特征和岩石圈结构与构造.见:李继亮主编:东南大陆岩石圈结构与地质演化.北京:冶金工业出版社,234-237.
    196.王绍雄.2003.闽西南坳陷内石炭纪海相火山岩类的空间分布及其意义.福建地质,24(4):217-220.
    197.王英民,钱奕中,王成善,等.1991.海拉尔叠合盆地类型及构造演化.石油与天然气地质文集:第三集.北京:地质出版社,153-167.
    198.王勇,管太阳,黄国夫,等.2002.赣东北地区燕山晚期火山岩同位素年代学研究.地球学报,23(3):233-236.
    199.王勇,余达淦.2000.赣东北早白垩世中酸性火山-侵入杂岩微量元素地球化学特征及成因探讨.江西地质,14(4):251-255.
    200.巫建华,周维勋,章邦桐.2000.赣南-粤北晚中生代火山岩系划分和时代讨论.地质论评,46(4):362-370.
    201.吴承健,吴延之.1997.永梅坳陷带铜银矿床区域控矿规律与成矿模式.中南工业大学学报,28(6):514-518.
    202.吴朝东,杨承远,陈其英.1999.湘西黑色岩系地球化学特征生成因意义.岩石矿物学杂志,18(1):26-39.
    203.吴岐,郑云钦.1993.福建石炭纪岩相古地理分析.福建地质,12(4):300-319.
    204.吴永森,刘汉忠.1993.永梅坳陷带锰矿水系沉积物地球化学异常特征及其找矿效果.地质与勘探,(1):47-51.
    205.肖文交、李继亮、孙枢.1998.浙西北地区反转构造初步研究.地质科学,33(2):158-165.
    206.解习农.1998.中国东部中新生代盆地形成演化与深部过程的耦合关系.地学前缘,5(增刊):162-165.
    207.熊绍柏,赖明惠,刘宏宾,于桂生.1993.屯溪—温州地带岩石圈结构与速度分布.李继亮主编:东南大陆岩石圈结构与地质演化.北京:冶金工业出版社,250-256.
    208.薛博,严重玲,傅强.2007.水体沉积物中有机碳和有机分子碳稳定同位素研究进展.海洋科学,31(6):87-91.
    209.薛冈,卢华复,朱成宏,等.2001.伸展区域平衡剖面法及其在构造分析中的应用.高校地质学报,7(4):427-434.
    210.许靖华.1987.中国南方大地构造的几个问题.地质科技情报,6(2):13-27.
    211.许顺山,吴淦国.2000.福建上杭-尤溪地区岩浆岩的分形特征.地球学报,21(1):17-22.
    212.许效松.1998.盆山转换与造盆、造山过程分析.岩相古地理,18(6):1-10.
    213.许效松,汪正江.2003.对中国海相盆地油气资源战略选区的思路.海相油气地质,8(1):1-9.
    214.杨瑞东,朱立军,王世杰,姜立君,张位华,高慧.2005.贵州寒武系底部碳同位素负异常的地层学和生物学意义.地质学报,9(2):157-164.
    215.杨永鹏.2001.金衢盆地红层浅埋引水隧洞工程地质研究.浙江地质,17(2):40-43.
    216.杨遵仪,李子舜,曲立范,等.1982.中国的三叠系.地质学报,56(1):1-21.
    217.姚金炎.1994.永梅晚古生代坳陷带南段铜多金属矿床成因类型.地质与勘探,(4):5-11.
    218.叶舟.2006.中、下扬子区盆地发育特征及其含油气性研究——以洞庭、鄱阳、弋阳及金衢盆地为例.(西南石油大学)博士研究生毕业论文,1-347.
    219.俞剑华,方一亭,梁诗经,等.1984.江西武宁奥陶系与志留系界线.南京大学学报(自然科学版),(3):533-544.
    220.俞剑华,方一亭,张大良.1988.陕西西乡三郎铺龙马溪组的笔石.古生物学报,27(2):150-168.
    221.于津海,魏震洋,王丽娟.2006.华夏地块——一个由古老物质组成的年轻陆块.高校地质学报,12(4):440-447.
    222.俞云文,徐步台.1999.浙江中生代晚期火山-沉积岩系层序和时代.地层学杂志,23(2):136-145.
    223.余心起,舒良树,颜铁增,祖辅平.2005.赣杭构造带红层盆地原型及其沉积作用.沉积学报,23(1):12-20.
    224.余心起,舒良树,颜铁增,等.2004.江山-广丰地区早白垩世晚期幺武岩的岩石地球化学及其构造意义.地球化学,33(5):465-476.
    225.余心起.2004.浙闽赣粤地区中生代沉积盆地构造演化特征.(南京大学)博十研究生毕业论文,1-130.
    226.中国石油地质志编辑委员会.1991.中国石油地质志(卷9.江汉油田).北京:石油工业出版社.
    227.张达.1999.闽西南地区构造演化与锡多金属区域成矿作用,(中国地质科学院)博士研究生毕业论文,1-145.
    228.张恩楼,沈吉,夏威岚,朱育新,王苏民.2002.青海湖沉积物有机碳及其同位素的气候环境信息.海洋地质与第四纪地质,22(2):105-108.
    229.张惠民,赵风清.1994.试论前寒武纪变质岩古地磁研究的可行性——以闽北地区的研究为例.地质论评,40(4):312-321.
    230.张平中,王先彬,陈践发,李春园,王苏民.1995.青藏高原若尔盖盆地RH孔沉积有机质的δ13C值和氢指数记录.中国科学(B辑),25(6):631-638.
    231.张平中,王先彬,王苏民,沈永平,刘光秀,羊向东,薛滨,吴锡浩.1998.江西九江地区晚更新世生态变迁的土壤有机质碳同位素证据.冰川冻土,20(2):150-156.
    232.张位华,姜立君,高慧,杨瑞东.2003.贵州寒武系底部黑色硅质岩成因及沉积环境探讨.矿物岩石地球化学通报,22(2):174-178.
    233.张星蒲.1999a.赣杭构造带中生代火山盆地的形成和演化.铀矿地质,15(1):18-23.
    234.张星蒲.1999b.赣杭构造带中生代红色碎屑沉积盆地的形成和演化.铀矿地质,15(2):77-85.
    235.张岩.1996.浙江金衢盆地地层层序构成及层序地层格架特征.江西地质科技,23(supp1):41-45.
    236.张勇,江来利,吴维平.2003.也谈郯庐断裂带的构造性质和演化.安徽地质,13(4):257-260.
    237.章雨旭.2001.试论华北板块寒武纪地层的穿时性.沉积与特提斯地质,21(1):78-87.
    238.张渝吕.1997.中国含油气盆地原型分析.南京:南京大学出版社,1-450.
    239.浙江省地质矿产局.1989.浙江省区域地质志.北京:地质出版社,1-688.
    240.浙江省地质矿产局.1996.浙江省岩石地层.武汉:中国地质大学出版社,128-174.
    241.浙江师范大学地理系.1993.金衢盆地的地理研究.气象出版社,1-169.
    242.钟建华,郭泽清,杨树锋,等.2004.柴达木盆地茫崖坳陷古近系-新近系Ro分布特征及地质意义.地质学报,78(3):407-415.
    243.周小进,杨帆.2007.中国南方新元古代-早古生代构造演化与盆地原型分析.石油实验地质,29(5):446-451.
    244.周新民,李武显.2000.中国东南部晚中生代火成岩成因:岩石圈消减和玄武岩底侵相结合的模式.自然科学进展,10(3):240-247.
    245.朱炳泉.1997.地球化学急变带及对中国南方油气勘探的思考.海相油气地质,2(4):1-3.
    246.朱夏.1986.论中国含油气盆地构造.北京:石油工业出版社,1-132.
    247.祖辅平,李成,王彬.2004.金衢盆地的沉积相.沉积学报,22(3):417-424.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700