用户名: 密码: 验证码:
地面防护工程抗爆复合材料与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对大当量杀伤性常规武器的爆炸破坏效应,地面防护工程的抗力设计和施工技术都已经不能满足工程防护的要求,而地面防护工程没有地下防护工程可以提供的坚实厚重的岩土层作为防护层,完全依靠自身结构抵抗武器破坏效应。因此,选取当前防护工程领域内亟待解决的前沿课题——地面防护工程的抗爆技术研究作为论文选题。针对地面防护工程的抗爆防护技术,对双掺混凝土、聚氨酯泡沫铝复合材料和聚氨酯蜂窝纸板复合材料等三种复合材料进行研究,从材料强度、吸能特性、本构关系和复合吸能抗爆结构型式等四方面进行了研究,提高地面防护工程的抗爆防护能力。主要取得以下研究进展:
     (1)研究掺加硅粉和粉煤灰混凝土的动态抗压强度及最佳掺量。针对当前地面防护工程结构使用的普通C50混凝土,在节约资金、减轻自重的前提下提高混凝土的强度,通过SHPB动态冲击试验发现:双掺混凝土的动态抗压强度从120MPa提高到180MPa,显著提高了结构抗力。通过正交试验分析方法,找到不同冲击条件下的最佳掺量,低速冲击的最优组合为J2G3F1S3;中速冲击的最优组合为J2G2F1S2;高速冲击的最优组合为J1G3F1S3。
     (2)研究聚氨酯泡沫铝复合材料力学性能和吸能性能。通过对聚氨酯泡沫铝结构的静、动态力学性能的研究,得出结论:聚氨酯泡沫铝的屈服强度与应变率、相对密度和聚氨酯含量成正比。随着相对密度增加和聚氨酯含量增加,屈服强度均可提高10%以上。随着应变率的增加,泡沫铝的屈服强度可提高45%以上,聚氨酯泡沫铝的屈服强度可提高30%以上,因此认为,泡沫铝和聚氨酯泡沫铝具有非常明显的应变率效应。聚氨酯含量的提高可使聚氨酯泡沫铝吸能量提高50%以上,吸能效率提高30%以上。聚氨酯泡沫铝的吸能效率可以达到0.7,是一种很好的吸能材料。
     (3)研究聚氨酯蜂窝纸板复合材料力学性能和吸能性能。填充聚氨酯材料的蜂窝纸板在静态受压时使本来会有的失稳阶段消失,从而提高了蜂窝纸板复合材料的弹性极限水平(从0.2240MPa提高到0.5422MPa,增长了41.3%)和屈服应力(约为填充前的3-4倍),提升了蜂窝纸板材料的缓冲性能。复合材料静、动态吸能性能大幅提高,吸能量约为复合前两种材料吸能量总和的1-2倍;吸能效率E和理想吸能效率I均在0.6以上,是很好的缓冲吸能材料。
     (4)建立抗爆复合材料的动态本构模型。基于现有的研究基础,分别对以上三种材料建立了动态本构模型。分别建立了双掺混凝土基于ZWT本构模型的低应变率本构模型和非线性条件下随机损伤本构模型:
     建立了聚氨酯泡沫铝基于硬质聚氨酯泡沫塑料本构关系的包含相对密度、应变、应变率和聚氨酯含量等影响因素的泡沫金属本构模型:
     建立了聚氨酯蜂窝纸板基于Sherwood-Frost本构关系的本构模型:
     (5)获得不同抗爆结构的最优化组合型式。通过LS-DYNA有限元程序对SAFFC-聚氨酯泡沫铝复合结构进行抗爆吸能数值计算,对复合结构进行优化分析。结果表明:同等抗爆条件下,SAFFC(50cm)-聚氨酯泡沫铝(20cm)-SAFFC(50cm)的抗爆性能为最佳。对填充SAFFC、聚氨酯泡沫铝和聚氨酯蜂窝纸板的三种钢板防护门结构进行抗爆吸能计算,优化分析在不同条件下的复合结构抗爆性能。结果表明:聚氨酯蜂窝纸板的自重较轻,便于维护,但爆炸后防护门变形较大,因此适于防护等级不高的情况;防护等级较高时,聚氨酯泡沫铝首选,混凝土也可以考虑,但是考虑二次打击的情况下,混凝土填充物因破碎不能继续使用。
This article selects the frontier subject need to be addressed within the currentdefense engineering field-the ground defense engineering antiknock technologyresearch as a thesis topic selection and researches new defense materials and thecombination of hard and soft composite defense structure to improve the groundresistance defense engineering itself.
     (1) Study of dynamic compressive strength of doped silicon powder and fly ashconcrete. The common C50concrete is mixed with silicon powder and fly ash toimprove the strength of concrete. Through the SHPB dynamic impact test, the doublemixing concrete was found that the dynamic compressive strength from120MPa to180MPa, the structural resistance is improved significantly.
     (2) Research on mechanical properties and energy absorption performance ofpolyurethane foam aluminum composite material. Polyurethane foam aluminumcomposite material is used to be energy absorption layer. Based on the static anddynamic mechanical properties of polyurethane foam aluminium structure research,conclusions is drawn: polyurethane foam aluminum energy absorption efficiency canreach0.7, which is a kind of good energy absorption material.
     (3) Research on polyurethane composite mechanical properties and energyabsorption properties of honeycomb paperboard. In the static compression phasehoneycomb paperboard filled with polyurethane materials has some instability phasedisappeared, thus improve the elastic limit level of the honeycomb cardboardcomposite. The study found that the energy absorption efficiency E and ideal energyabsorption efficiency I of Polyurethane honeycomb paperboard is above0.6, whichshows it is a good energy absorption material.
     (4) Based on the research of kinds of materials and previous research results,three kinds of material dynamic constitutive model are established. The LS-DYNAfinite element program is used for antiknock energy absorption and optimizationanalysis of composite structure of SAFFC-polyurethane foam aluminum compositestructure and three kinds of steel doors filled with SAFFC, polyurethane foamaluminum and polyurethane honeycomb board.
引文
[1]毕义明等.基于生存能力的战场建设.西安:第二炮兵科研报告,1994.
    [2] M.MSwisdak Hardened Aircraft Shelter Test Program.-Final rept.AD-A249645/3NavalSurface War fare Center,Silver Sprin g,MD.Nov1991.
    [3] D.MZallen, J.Marquis Response of Semihardend Aircraft Shelter Fire Protection System toBomb Blast Loading.–Final rept. Aug87-Mar89. AD-A230359/2New Mexico EngineeringResearch Inst., Albuquerque.; Air Force Engineering and Services Center, Tyndall AFB,FL.Engineering and Services Lab. Feb1990.
    [4] S.P.Wells, K.S.Cozart, M.B.Mitchell, R.D.Dodsworth、Aircraft Hangar Fire Threat Study andAnalysis.–Final rept.5Mar-24Jul97.AD-A344628/3Air Force Research Lab Tyndall AFBFl. Dec1997.
    [5] Michael M.Swisdak. Jr; NAVAL SURFACE WARFARE CENTER SILVER SPRING MDHardened Aircraft Shelter Test Program.27NOV91A546942.
    [6] E.H.Bultmann, B.A.Schneide Norway/United States Protective Aircraft Shelter(PAS)Quantity-Distance Propram1/3-Scale Test Series. AD-A271430/1、AD-A271431/9、AD-A271432/7、AD-A271433/5、AD-A271434/3; New Mexico Engineering Research Inst.,Albuquerque. Aug1993.
    [7]空军设计局地面防护工程建设数据库,内部资料.
    [8]谢永亮,王瑞,林振荣,卢玉松,陈磊.泡沫铝/改性环氧树脂复合材料压缩力学性能的试验研究[J].兵器材料科学与工程,2010.33(5):49-51.
    [9] Deshpande VS, Fleck NA. Isotropic constitutive models for metallic foams [J]. J Mech PhysSolids,2000,48:1253-1283.
    [10] Miller RE. A continuum plasticity model of the constitutive and indentation behavior offoamed metals [J]. Int J MechSci,2000,42:729-754.
    [11]赵华,王敏杰,张磊,赵书德,段晓婷.聚氨酯弹性体粘弹性本构建模[J].大连理工大学学报,2009.49(4):512-517.
    [12] Houssam A.Toutanji, Ziad Bayasi. Effect of curing procedures on properties of silica fumeconcrete [J]. Cement and Concrete Research,1999(29):497-501.
    [13] M.H.Zhang, C.T.Tam, M.P.Leow. Effect of water-to-cementitious materials ratio and silicafume on the autogenous shrinkage of concrete [J]. Cement and Concrete Research,2003(33):1687-1694.
    [14]丁琳,王立海.硅粉混凝土的抗压强度的试验研究[J].黑龙江大学自然科学学报,2007(3):336-339.
    [15]赵国藩.高等钢筋混凝土结构学[M].机械工业出版社,2008.05.
    [16]孙伟,缪昌文.现代混凝土理论与技术[M].科学出版社,2012.03.
    [17]高龙士.基于FEM的不规则纸芯结构的蜂窝纸压缩性能分析[J].包装工程,2008.29(1):53-55.
    [18]许红平.基于MSC. Marc的蜂窝纸板抗压性能分析[J].杭州师范大学学报,2008.7(6):465-480.
    [19]言利容,谢勇.蜂窝纸板/EPE组合材料的动态缓冲性能[J].包装工程,2010.31(19):27-31.
    [20] YOSHIAKI YASUI. Dynamic axial crushing of multi-layer honeycomb panels and impacttensile behavior of the component members. International Journal of impact engineering [J].2000.24:659-671.
    [21] SHAFIZADEH J.E., SEFERIS J.C. Scaling of honeycomb compressive yield stresses [J].Smitubted to Composite: Part A, Applied Science and Manufacturing.2000.31:681-688.
    [22]朱若燕,尹琪,李厚民.组合蜂窝纸板缓冲性能的静态试验研究[J].湖北工业大学学报,2010.25(4):105-107.
    [23]李鹏芳,张珏,卢朝晖,等.蜂窝纸板静态压缩试验研究及其模拟分析[J].包装工程,2010.31(1):34-37,41.
    [24] HIROAKI N, TADAHARU A, WAKAKO A. In-plane impact behavior of honeycombstructures randomly filled with rigid inclusions [J]. International Journal of ImpactEngineering,2009,(36):73-80.
    [25] CHEN D.H., OZAKI S. Analysis of in-plane elastic modulus for a hexagonal honeycombcore: Effect of core height and proposed analytical method [J].Composite Structures,2009(88):17-25.
    [26]孔德森,孟庆辉,张伟伟.地铁结构的内爆炸效应与防护技术[D].冶金工业出版社色,2012:82.
    [27]赵群,吴东海,郭自力.硅粉、粉煤灰作掺合料的C80高性能混凝土研究[J].工业建筑,2006.36(增刊):854-856,870.
    [28] Thanongsak Nochaiya, Watcharapong Wongkeo, Arnon Chaipanich. Utilization of fly ashwith silica fume and properties of Portland cement-fly ash-silica fume concrete [J]. Fule,2010.89(3):768-774.
    [29]李清富,孙振华,张海洋.粉煤灰和硅粉对混凝土强度影响的试验研究[J].混凝土,2011(5):77-79.
    [30]雷文晗,彭小芹,谢永江,等.硅微粉对混凝土性能的影响[J].混凝土,2011(6):100-101,107.
    [31]王社良,于洋,张博,等.粉煤灰和硅粉对再生混凝土力学性能影响的试验研究[J].混凝土,2011(6):53-55.
    [32] Kazim Turk. Viscosity and hardened properties of self-compacting mortars with binary andternary cementitious blends of fly ash and silica fume [J]. Construction and BuildingMaterials.2012(37):326-334.
    [33] Z.D. Rong, W. Sun, H.J. Xiao, et al. Effect of silica fume and fly ash on hydration andmicrostructure evolution of cement based composites at low water binder ratios [J].Construction and Building Materials.2014,51(31):446-450.
    [34]刘晓华,盖国胜.微硅粉在国内外应用概述[J].铁合金,2007(5):41-44.
    [35]泰伦斯·C·赫兰.关于硅灰和高性能混凝土的一些思考[J].混凝土,2004(9):10-13.
    [36] JE McDonald.“Maintenance and Preservation of Concrete Structures: Report2, Repair ofErosion Damaged Structure,” Technical Report No. C-78-4, U.S. Army Engineer WaterwaysExperiment Station, Vicksburg,1980.
    [37] Liu, T.C.,“Abrasion Resistance of Concrete,” Journal of ACI, Vol.78, No.5, pp.341-30,1981
    [38] ASTM C1138, Standard Test Method for Abrasion Resistance of Concrete (UnderwaterMethod).
    [39] Zia, p, Ahamd, S, Leming, M. High-Performance Concrete, A State-of-the-ArtReport(1989-1994). Report No. FHWA-RD-97-030. Transportation Research Board of theNational Academies,1997.
    [40]丁琳.硅粉混凝土配合比优化研究[D].东北林业大学,2007.
    [41] Houssam A.Toutanji, Ziad Bayasi. Effect of curing procedures on properties of silica fumeconcrete [J]. Cement and Concrete Research,1999(29):497-501.
    [42] M.H.Zhang, C.T.Tam, M.P.Leow. Effect of water-to-cementitious materials ratio and silicafume on the autogenous shrinkage of concrete [J]. Cement and Concrete Research,2003(33):1687-1694.
    [43] O.Kayali, B.Zhu. Corrosion performance of medium-strength and silica fume high-strengthreinforced concrete in a chloride solution [J]. Cement Concrete Composites,2005(27):117-124.
    [44] Ha-Won Song, Jong-Chul Jang, Velu Saraswathy. An estimation of the diffusivity of silicafume concrete [J]. Building and Environment,2007(42):1358-1367.
    [45] Askari Ahmad, Sohrabi Mohammad Reza, Rahmani Yousef. An investigation into mechanicalproperties of self compacting concrete incorporating fly ash and silica fume at different agesof curing [J]. Advanced Materials Research,2011,Vol.261-263:3-7.
    [44] Tongyan Pan, Ph.D., P.E., M.ASCE1and Kaiming Xia, Ph.D., M.ASCE. MicromechanicalEvaluation of the Damping Behavior of Modified Silica Fume Admixed Concrete [J]. Journalof Engineering Mechanics.2012,138(12):1411-1419.
    [45] P. Zhang; Q. Li. Fracture properties of high performance concrete containing silica fume [J].Australian Journal of Structural Engineering.2013,14(3):320-327.
    [46] Debabrata Pradhan, D. Dutta, Partha Ghosh. Influence of Silica Fume on DifferentMechanical Properties of Concrete [J]. International Journal of Engineering Innovations andResearch.2013,2(5):443-446.
    [47]范沈抚.强硅粉混凝土抗冻性及气泡结构的试验研究[J].水利学报,1990(7):20-25.
    [48]丁雁飞,孙景进.硅粉混凝土抗冻性研究[J].混凝土,1991(3):41-45.
    [49]王文军,朱向荣,方鹏飞.纳米硅粉水泥上固化机理研究[J].浙江大学学报,2005(1):148-153.
    [50]王铁锋,张燕坤.硅粉对轻骨料混凝土耐久性能影响的研究[J].新型建筑材料,2006(3):53-55.
    [51]王新杰,马星.矿物掺合料对混凝土抗压强度的影响[J].粉煤灰综合利用,2009(6):36-37.
    [52]刘茉莉,杨万斌,刘永清,李帅,李凯,白金剑.硅灰裹砂法对混凝土性能的影响研究[J].混凝土,2011(6):149-150.
    [53]莫志凡,林春姣,傅根根,唐双美,郭磊磊.拉会大桥高性能硅粉混凝土试验研究[J].混凝土,2012(7):71-73.
    [54]温和哲,丁琳,王丹.硅粉掺量对混凝土抗拉强度影响的试验研究[J].黑龙江大学工程学报,2013.4(2):9-11.
    [55]林宝玉,吴绍章主编.混凝土工程新材料设计与施工[M].中国水利水电出版社,1998:73-95.
    [56]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].清华大学出版社,1996.
    [57]覃维祖.大掺量粉煤灰混凝土与高性能混凝土[J].混凝土与水泥制品,1995(2):22-26.
    [58] V M.Malhotra, R.T.Hemmings. Blended Cement in North America-A Review [J]. Cementand Concrete Composites,1995.17(1):23-35.
    [59] L. Vandewalle and F. Mortehnans, The effect of curing on the strength development of mortarcontaining high volume fly ash [J], In: Fly Ash, Silica Fume, Slag&Natural Pozzolans inConcrete, Proceedings Fourth International Conference, Milwaukee, Wisconsin, CSA,1995:531-548.
    [60] H. N. Swamy and H. H. Hung, Engineering properties of high volume fly ash concrete [J], In:Fly Ash, silica fume, Slag&Natural Pozzolans in Concrete, Proceeding sixth CANMET/ACIInternational Conference,1998:331-359.
    [61] Fran ois de Larrard,Thierry Sedran. Mixture-proportioning of high-performance concrete [J].Cement and Concrete Research.2002.32(11):1699-1704.
    [62] Halit Yaz c.The effect of silica fume and high-volume Class C fly ash on mechanicalproperties, chloride penetration and freeze–thaw resistance of self-compacting concrete [J].Construction and Building Materials..2008.22(4):456-462.
    [63] Cengiz Duran Ati. Strength properties of high-volume fly ash roller compacted and workableconcrete, and influence of curing condition. Cement and Concrete Research [J].2005.35(6):1112-1121.
    [64] Isamu Yoshitakea, Wenbo Zhangb,Yoichi Mimurac, et al. Uniaxial tensile strength andtensile Young’s modulus of fly-ash concrete at early age [J]. Construction and BuildingMaterials.2013(40):514-521.
    [65] Mohammad Soleymani Ashtiani, Allan N.Scott, Rajesh P. Dhakal. Mechanical and freshproperties of high-strength self-compacting concrete containing class C fly ash. Constructionand Building Materials.2013(47):1217-1224.
    [66]袁原.唐桥梁.大掺量粉煤灰高性能混凝土在码头与护岸工程中的应用[J].水运工程,1998(11):37-40.
    [67]钱觉时.粉煤灰特性与粉煤灰混凝土[M].科学出版社,2002.
    [68]穆大鹏,阎培渝.高钙粉煤灰混凝土的强度和干缩性能[J].混凝土,2004(11):31-34
    [69]金祖权,孙伟,张云升,蒋金洋.粉煤灰混凝土的多因素寿命预测模型[J].东南大学学报(自然科学版),2005.35Sup(I):149-154.
    [70]王强,陈志城,阎培渝.等强度条件下水胶比和粉煤灰掺量对混凝土自收缩的影响[J].混凝土,2006(12):1-3.
    [71]宋少民,邢锋,李红辉.中低等级大掺量粉煤灰混凝土性能研究[J].武汉理工大学学报,2007.29(6):39-42,68.
    [72]黄山.粉煤灰混凝土力学性能研究及早期预测[D].武汉理工大学,2008.
    [73]刘志勇.不同温湿度环境粉煤灰混凝土与基准混凝土收缩性能试验研究[J].土木工程学报,2009.42(5):69-73.
    [74]郭峰.基于分形理论的HVFAC抗冲磨性能研究[D].西北农林科技大学,2010.
    [75]何淅淅,郑学成,林社勇.粉煤灰混凝土强度统计特性的试验研究[J].土木工程学报,2011..44(增刊):59-65.
    [76]胡晓鹏,牛荻涛,张永利.粉煤灰混凝土早期强度的现场调查与试验研究[J].河海大学学报(自然科学版),2012.40(6):676-680.
    [77]孙庆巍,高磊,赵华民.大掺量粉煤灰混凝土强度的Ls-svM预测[J].辽宁工程技术大学学报(自然科学版),2013.32(7):930-933.
    [78] Weijun Yang, Qiusheng Li. Study on Dynamic Performance of Silica Fume Concrete [J].Applied Mechanics and Materials (2012)(Volumes204-208):3782-3785.
    [79] Ming Wu. SHPB Dynamic Experiment on Silica Fume Concrete [J]. Advanced MaterialsResearch (2012)(Volumes631-632):771-775.
    [80] Technical Manual (TMS-1300). To resist the effect of accidental explosions [M]. Washington,DC: Department of the Army, Navy and the Air force,1990.
    [81]卢国强.钢筋混凝土-钢板组合结构抗爆作用的试验研究与动力分析[D].同济大学结构理论研究所,1997.
    [82] Mark K. Spall Damage of Concrete Structures.SL-88-82, USAEWES,1988.
    [83]郑全平,钱七虎,周早生等.钢筋混凝土震塌厚度计算公式的对比研究[J].工程力学,2003.20(3):47-53.
    [84]柳锦春,方秦,龚自明.爆炸荷载作用下钢筋混凝土梁的动力响应及破坏形态分析[J].爆炸与冲击,2003.23(1):25-30.
    [85]方秦,陈力,张亚栋等.爆炸荷载作用下钢筋混凝土结构的动态响应与破坏模式的数值分析[J].工程力学,2007.24(增刊):135-144.
    [86]柳锦春,方秦,张亚栋,赵晓兵.爆炸荷载作用下内衬钢板的混凝土组合结构的局部效应分析[J].兵工学报,2004.25(6):773-776.
    [87]胡金生,杨秀敏,周早生,邓国强,唐德高.接触爆炸对底部有土垫层纤维混凝土板破坏效应试验研究[J].爆炸与冲击,2005.25(2):157-162.
    [88]王德荣,王再晖,曹奇.钢纤维混凝土、钢纤维钢筋混凝土抗接触爆炸试验研究[J].混凝土,2006(8):8-11.
    [89]刘海峰,宁建国.强冲击荷载作用下混凝土材料动态本构模型[J].固体力学学报,2008.29(3):231-238.
    [90]孙文彬.钢筋混凝土板的爆炸荷载试验研究[J].辽宁工程技术大学学报(自然科学版),2009.28(2):217-220.
    [91]李晓军,郑全平,杨益.钢纤维钢筋混凝土板爆炸局部破坏效应[J].爆炸与冲击,2009,29(4):385-389.
    [92]张景飞,冯明德,陈金刚.泡沫混凝土抗爆性能的试验研究[J].混凝土,2010.22(10):10-12.
    [93]张海英,段卓平,刘彦,欧卓成,黄风雷.有限厚混凝土靶内部爆炸震塌贯穿研究[J].北京理工大学学报,2013.33(5):441-444,550.
    [94]周风华,王礼立,胡时胜.有机玻璃在高应变率下的损伤型非线性粘弹性本构关系及破坏准则[J].爆炸与冲击,1992(4):333-342.
    [95]陈江瑛,王礼力.水泥砂浆的率型本构方程[J].宁波大学学报(理工版),2000.13(增刊):82-85.
    [96] Gebbeken N, Ruppert M. A new material model for concrete in high-dynamic hydrocodesimulations [J]. Archive of Applied Mechanics,2000.70:463-478.
    [97]王明洋,国胜兵.岩石覆盖层抗震塌机理研究[J].解放军理工大学学报(自然科学版),2001.2(4):53-57.
    [98]胡时胜,王道荣.冲击荷载下混凝土材料的动态本构关系[J].爆炸与冲击,2002.22(3):242-246.
    [99]李秀地,郑颖人,徐干成.爆炸荷载作用下地下结构的震塌破坏模型研究[J].爆破,2006.23(1):6-9.
    [100]刘传雄,李玉龙,吴子燕,郭伟国,鬲钰焯.混凝土材料的动态压缩破坏机理及本构关系[J].振动与冲击,2011.30(5):1-5.
    [101]陈士海,张安康,杜荣强,张子华.混凝土正交各向异性动态损伤本构模型研究[J].振动与冲击,2012.31(3):23-26.
    [102]张晓伟,汪庆桃,张庆明,施鹏,周旭.爆炸冲击波作用下混凝土板的荷载等效方法[J].兵工学报,2013.34(3):263-268.
    [103]谢理想,赵光明,孟祥瑞.软岩及混凝土材料损伤型黏弹性动态本构模型研究[J].岩石力学与工程学报,2013.32(4):857-864.
    [104] Xu K., Lu Y Numerical simulation study of spallation in reinforced concrete platessubjected to blast loading [J]. Computers&Structures,2006.84(5-6):431-438.
    [105]李利莎,张洪海,梁大伟.接触爆炸钢筋混凝土板的数值模拟分析[J].工业建筑,2008.38:870-873.
    [106]冷冰林,许金余,孙惠香,徐杰.内部爆炸荷载作用下混凝土动力响应的数值模拟[J].高压物理学报,2009.23(2):111-116.
    [107]刘彦,谷鸿平,黄风雷.柱形装药在混凝土中爆炸破坏效应数值模拟研究[J].北京理工大学学报,2010.30(6):635-638.
    [108]李晓静.泡沫铝/纳米环氧树脂新型复合材料设计[J].机械工程师,2003.10:55-57.
    [109]程和法.含硅橡胶的泡沫铝应变率敏感性研究[J].合肥工业大学学报,2003.26(4):1157-1160.
    [110]王永刚,胡时胜,王礼立.爆炸荷载下泡沫铝材料中冲击波衰减特性的试验和数值模拟研究[J].爆炸与冲击,2003.23(6):516-522.
    [111] Cheng He-fa, Huang Xiao-mei, Xue Guo-xian, Li Jian-rong, Han Fu-sheng. Compressivedeformation behavior and energy absorption characteristic of aluminum foam with elasticfiller [J]. Trans. Nonferrous Met. Soc. China,2004.14(5):928-933.
    [112]康颖安,张俊彦.开孔与闭孔泡沫铝的压缩力学行为[J].材料导报,2005.19(8):122-124.
    [113]于英华,梁冰,张建华.泡沫铝基高分子复合材料制备及其性能[J].辽宁工程技术大学学报,2005.24(6):903-905.
    [114]罗彦茹,于思荣.陶瓷颗粒增强泡沫铝基复合材料的制备与性能[J].中国材料科技与设备.2006(2):5-8.
    [115]林森.硅橡胶填充泡沫铝吸能性能和层合梁抗弯性能研究[D].合肥工业大学,2007.
    [116]石少卿,刘仁辉,汪敏.钢板-泡沫铝-钢板新型复合结构降低爆炸冲击波性能研究[J].振动与冲击,2008.27(4):143-146.
    [117]张东新.新型复合泡沫铝夹层板抗爆性能研究[D].哈尔滨工业大学,2011.
    [118]刘颖芳,刘仁辉,石少卿,汪敏,赵永兵.应用泡沫铝降低地下爆炸冲击波的数值分析[J].地下空间与工程学报,2008.4(2):230-233.
    [119]杨志,于英华,周文龙,侯红亮.泡沫铝复合材料动态压缩过程数值模拟[J].航空制造技术,2007(增刊):102-105.
    [120]刘建英,方月.泡沫铝夹芯柱体汽车保险杠碰撞的计算机仿真[J].河南工程学院学报(自然科学版),2008.20(1):37-39.
    [121]阎石,黎伟.爆炸荷载下泡沫铝复合结构耗能性能分析[J].水利与建筑工程学报,2010.8(1):12-14,22.
    [122]杨智春,袁潘.填充泡沫铝的多层铝管动态压溃吸能特性研究[J].振动工程学报,2012.25(1):12-16.
    [123]倪小军,马宏昊,沈兆武,李磊.泡沫铝爆炸冲击特性的数值研究[J].爆炸与冲击,2013.33(2):120-125.
    [124] YOSHIAKI YASUI. Dynamic axial crushing of multi-layer honeycomb panels and impacttensile behavior of the component members [J]. International Journal of impact engineering.2000,24:659-671.
    [125] SHAFIZADEH J.E., SEFERIS J.C. Scaling of honeycomb compressive yield stresses [J].Smitubted to Composite: Part A, Applied Science and Manufacturing,2000.31:681-688.
    [126]高龙士.基于FEM的不规则纸芯结构的蜂窝纸压缩性能分析[J].包装工程,2008.29(1):53-55.
    [127] WANG Liang, SUN Ling. Application of Double-Vaccum-Bag Process to the SplicingTechnology for Honeycomb Sandwich Structure [J]. Journal of Wuhan University ofTechnology,2009.31(21):52-55.
    [128]言利容,谢勇.蜂窝纸板/EPE组合材料的动态缓冲性能[J].包装工程,2010.31(19):27-31.
    [129]王志伟,姚著.蜂窝纸板冲击压缩的试验研究和有限元分析[J].机械工程学报,2012.48(12):49-55.
    [130]贺丹华.蜂窝/瓦楞复合纸板力学性能的研究[D].广西大学,2008.
    [131]王梅,李克天,赵荣丽.蜂窝纸板力学模型的建立和缓冲性能的研究[J].包装工程,2008.29(8):29-31.
    [132]李鹏芳,张珏,卢朝晖,曾志新.蜂窝纸板静态压缩试验研究及其模拟分析[J].包装工程,2010.31(1):34-37,41.
    [133] W. Scott Burton, Ahmed K. Noon Assessment of computational models for sandwich panelsand hells[J]. ComputMethods Appl. Meeh. Engrg,1995.124:125-151.
    [134] W. Scott Burton, Ahmed K. Noon Assessment of continue models for sandwich panels andhoneycomb cores[J]. ComputMethods Appl. Meeh. Engrg,1997.145:341-360.
    [135] N. S. Bardell, J.M. Dunsdon, RS. Lanley. Free vibration analysis coplanar sandwich panels[J]Composite Structure,1997.38(1):463-475.
    [136]许红平.基于MSC. Marc的蜂窝纸板抗压性能分析[J].杭州师范大学学报,2008.7(6):465-480.
    [137]李厚民,朱若燕,周金枝,姜久红.蜂窝纸板与瓦楞纸板组合结构的缓冲特性[J].湖北工业大学学报,2005.20(5):110-112.
    [138] P.C.Calcaterra. Design Guide for Polyurethane Foam Isolation Systems. U.S. Naval AirDevelopment Center, Report No.NADC-AE-6522. AD0625816.1965.
    [139] Hironaka, M. C., Brownie, R. B., Tuccillo, S. Expedient Structural Sandwich Soil surfacingof Fiberglass Reinforced Polyester and Polyurethane Foam. Civil Engineering Laboratory,Naval construction Battlion Center, Port Hucneme, California. ADA038417.1977.
    [140] Smith, Alvin. Construction with Field Moldable Polyurethane Foam Blocks. ConstructionEngineering Research Laboratory, ADA054440.1978.
    [141] Goods, S.H.,Neuschwanger, C.L., Henderson, C.,Skala, D.M. Mechanical Properties andEnergy Absorption Characteristics of a Polyurethane Foam [J]. Sandra National Laboratories,1997.
    [142] F Scarpa, J R Yates, L G Ciffo, S Patsias. Dynamic crushing of auxetic open-cellpolyurethane foam [J]. Journal of Mechanical Engineering Science.2002.216(12):1153-1156
    [143] Eva Kasparek, Uwe Zencker, Robert Scheidemann, Holger V lzke, Karsten Müller.Numerical and experimental studies of polyurethane foam under impact loading [J].Computational Materials Science,2011.50(4):1353-1358.
    [144] Zhang Lan-zhu.Measurement and identification of dynamic properties of flexiblepolyurethane foam [J]. Journal of Vibration and Control,2011.17(4):517-526.
    [145] E.Zaretskya, Z.Asafb, E.Ranb, F.Aizikb. Impact response of high density flexiblepolyurethane foam [J]. International Journal of Impact Engineering,2012.39(1):1-7.
    [146]王嵩,卢子兴.聚氨酯复合泡沫塑料压缩本构关系[J].强度与环境,2005.32(4):22-26,59.
    [147]叶梅.聚氨酯弹性体复合材料的制备及结构性能研究[D].苏州大学,2006.
    [148]廖祖伟.钢板_支撑钢筋_聚氨酯复合材料结构的性能及其在地下防护工程中的应用研究[D].西南交通大学,2007.
    [149]李路遥,王林.船用钢-聚氨酯复合夹层板的冲击性能分析[J].江苏船舶,2012.29(2):42-44.
    [150] GB/T50081-2002《普通混凝土力学性能试验方法标准》.
    [151] GB/T50080-2002《普通混凝土拌合物性能试验方法标准》.
    [152] JGJ55-2000《普通混凝土配合比设计规程》.
    [153]李为民,许金余,翟毅.冲击荷载作用下碳纤维混凝土的力学性能[J].土木工程学报,2009(2):24-30.
    [154]巫绪涛,胡时胜.钢纤维高强混凝土冲击压缩的实验研究[J].爆炸与冲击,2005(2):125-131.
    [155]陈德兴,胡时胜,张守保.大尺寸Hopkinson压杆及其应用[J].实验力学,2005(3):398-402.
    [156]巫绪涛,胡时胜. SHPB技术研究混凝土动态力学性能存在的问题和改进[J].合肥工业大学学报(自然科学版),2004(1):63-66.
    [157]谭柱华,盖秉政,庞宝君.影响Hopkinson压杆实验结果因素的数值模拟分析[J].哈尔滨工业大学学报,2007(3):363-366.
    [158] Verleysen P, Degrieck J. Non-homogeneous and mufti-axial stress distribution in concretespecimens during split Hopkinson tensile tests [J]. Computers and Structures,2000(6):669-676.
    [159] Meng H, Li Q M. Correlation between the accuracy of a SHPB test and the stress uniformitybased on numerical experiments [J]. International Journal of IMPact Engineering,2003(5):537-555.
    [160]朱珏,胡时胜,王礼立. SHPB试验中粘弹性材料的应力均匀性分析[J].爆炸与冲击,2006.26(4):315-322.
    [161]冯明德,彭艳菊,刘永强,牛海成,李然. SHPB实验技术研究[J].地球物理学进展,2006.21(1):273-278.
    [162]朱珏,胡时胜,王礼立.率相关混凝土类材料SHPB试验的若干问题[J].工程力学,2007.24(1):78-87.
    [163]毛勇建,李玉龙. SHPB试验中试件的轴向应力均匀性[J].爆炸与冲击,2008.28(5):448-454.
    [164]巫绪涛,孙善飞,李和平.用HJC本构模型模拟混凝土SHPB实验[J].爆炸与冲击,2009.29(2):137-142.
    [165]丁国博,许金余.早强EPS混凝土动态压缩力学行为的SHPB试验研究[J].混凝土.2011.1:28-33.
    [166]陈滔,李庆斌,管俊峰.混凝土压缩性对SHPB试验中惯性效应的影响[J].固体力学学报,2013.34(5):515-520.
    [167] J. Miltz, G. Gruenbaum. Evaluation of Cushion properties of Plastic Foams CompressiveMeasurement [J]. Polymer Eng Sci,1981.21(15):1010-1014.
    [168]曾斐,潘艺,胡时胜.泡沫铝缓冲吸能评估及其特性.爆炸与冲击,2002.22(4):358-362
    [169]何顶顶,黄跃平,韩晓林.泡沫铝芯体冲击力学性能试验研究[J].工程与试验,2008(3):32-51.
    [170]李彰明,王武林.内时理论简介与岩土内时本构关系研究展望.岩土力学,1986(1):103-108.
    [171] Chaboche J. L. Time Independent Constitutive Theories for Cyclic Plasticity. Int. J.Plasticity.1986.2(2)149-188.
    [172卓家寿.工程材料的本构演绎[M].科学出版社,2009.
    [173]俞茂宏.双剪理论及其应用[M].科学出版社,1998.
    [174]徐世烺.混凝土断裂力学[M].科学出版社,2011.
    [175]李建雄.冲击荷载下混凝土材料损伤破坏的分形试验研究[D].武汉理工大学,2008.
    [176]林育梁.岩土与结构工程中不确定性问题及其分析方法[M].科学出版社,2009.
    [177]钱七虎,王明洋.高等防护结构计算理论[M].江苏科学技术出版社,2009.
    [178]赵丽红.混凝土弹-粘塑性动力本构模型及其在有限元分析中的应用[D].河海大学,2005
    [179]陈书宇,沈成康.基于OTTOSEN准则的混凝土粘塑性力学模型[J].固体力学学报,2005(1):67-71.
    [180] Holomquist T J, Johnson G R, Cook W H. A computational constitutive model for concretesubjective to large strains, high strain rates, and high pressures[A]. Jackson N, Dickert S. The14th International Symposium on Ballistics[C]. USA: American Defense PreparenessAssociation,1993.591-600.
    [181] Johnson G R,Cook W H. A constitutive model and data for metals subjected to large strain,high strain rates and high temperatures [A]. In: Proc.7th. Ballistics[C]. the Netherlands: theHague,1983.
    [182] Sherwood J. A and Frost C. C. Constitutive modeling and simulation of energy absorbingpolyurethane foam [J]. Polymer Eng. Sci.,1992.32(16):1138-1146.
    [183]胡时胜,刘剑飞,王悟.硬质聚氨酯泡沫塑料本构关系的研究[J].力学学报,1998.30(2):151-156.
    [184]林玉亮,卢芳云,王晓燕.低密度聚氨酯泡沫压缩行为试验研究[J].高压物理学报,2006.20(1):88-91.
    [185]尚晓江,苏建宇. ANSYS LS-DYNA动力分析方法与工程实例[M].中国水利水电出版社,2006.
    [186]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析[M].清华大学出版社,2005.
    [187] Kyriakides S. Propagating instabilities of structures [J]. Advances in Apylied Mechanics,Boston:Academic Press,1993(30):67-189.
    [188]世界攻击机场弹药手册[M].空军后勤部机场营房部:134-136.
    [189]常规武器破坏效应与工程防护技术[M].总参工程兵科研三所,2011(6):5-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700