用户名: 密码: 验证码:
生物扰动对河口沉积物中多环芳烃环境行为的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境中常见污染物,因其在环境中难降解、持久性和具有较强的“三致”效应,其生物地球化学行为倍受关注。作为一类典型的憎水性有机污染物,PAHs特别易于被颗粒物吸附,因此进入水环境中的PAHs最终富集于沉积物中。河口作为海陆的交错地区,汇集海、陆两个来源的污染物。与此同时,河口拥有大量的底栖动物,它们的摄食、爬行、避敌、掘穴和建造栖所等活动会改变沉积物结构,这一过程称为生物扰动。生物扰动显著改变沉积物的物理、化学和生物性质,从而改变沉积物中污染物的生物地球化学行为。本论文采用野外调查与室内微宇宙模拟实验相结合的方法系统研究了生物扰动对河口沉积物中PAHs环境行为的影响,并对有关机理进行了探讨。
     利用微宇宙示踪技术,定量研究了天津北塘河口优势底栖动物,天津厚蟹(Helice tientsinensis)、沙蚕(Nereis diversicolor)、青蛤(Cyclina sinensis)和泥螺(Bullacta exarata)对沉积物的扰动作用。结果表明,不同底栖动物的扰动作用不同,对表层沉积物的扰动强度(扩散系数,10-3cm2/d)大小依次为沙蚕(2.95)>天津厚蟹(1.00)>青蛤(0.78)>泥螺(0.35)>对照(0.05);对深层沉积物则是天津厚蟹(3.10)>沙蚕(2.33)>青蛤(0.28)>泥螺(0.15)>对照(0.05)。可见,在北塘河口,对沉积物扰动强度最大的是天津厚蟹。
     在天津北塘河口附近采集代表不同扰动程度的不同类型的沉积物,包括来自没有厚蟹活动的对照区和有厚蟹活动的扰动区(又分蟹洞内和蟹洞外),研究生物扰动对河口沉积物中PAHs分布的影响。结果表明,3种类型的沉积物中总PAHs含量为蟹洞外(2722 ng/g)>蟹洞内(1239 ng/g)>对照区(1173 ng/g),单个PAHs(InP和BgP除外)也呈现同样的变化趋势。根据质量平衡计算了扰动区蟹洞内和蟹洞外沉积物PAHs含量的差异,结果表明,生物扰动造成了蟹洞内50%总PAHs的消失,除了Fla、InP和BgP之外,各PAHs也有不同程度的消失。生物扰动一方面增强沉积物中PAHs向间隙水释放,由此造成沉积物中PAHs向海洋输送;另一方面,生物扰动促进微生物降解PAHs.此外,厚蟹还富集部分PAHs.因此,生物扰动显著影响沉积物中PAHs的分布。
     为了验证野外研究发现的生物扰动促进PAHs从沉积物相向水相释放的结论,利用室内微宇宙研究生物扰动对河口沉积物PAHs释放的影响。结果表明,生物扰动促进沉积物再悬浮,在此过程中向水相释放PAHs;与此同时,生物活动提高上覆水中的溶解性有机质含量,促进PAHs从悬浮物及表层沉积物发生解吸,从而显著提高上覆水中溶解态PAHs含量.由此证明了野外研究的结论,生物扰动促进沉积物中PAHs向水体释放。
     由于溶解态PAHs能被生物所利用,因此这些被释放出来的溶解态PAHs具有潜在的生态风险。在室内微宇宙,利用半透膜被动采样技术(Semi-permeable membrane device,SPMD)评价了生物扰动对沉积物中PAHs生物有效性的影响。结果发现,在生物扰动的沉积物中,SPMD富集的总PAHs量显著高于没有生物扰动的,各单个PAHs具有同样的规律。SPMD-沉积物累积因子(SSAF)结果表明,低、中环PAHs的SSAF值在生物扰动处理中高于无生物扰动的;而高环PAHs的则在生物扰动处理中低于无生物扰动的。由此可见,生物扰动增加了低、中环PAHs的生物有效性,而对高环PAHs,影响不显著,这是因为溶解性有机质结合态的PAHs不具有生物有效性。
     在室内微宇宙中研究生物扰动对沉积物中PAHs生物降解的影响,发现厚蟹通过排泄、降低沉积物粒度等方式增加沉积物中的有机质含量。由于有机质含量的增加,促进微生物繁殖,显著提高微生物的数量,进而提高微生物对沉积物中PAHs的降解能力。与无生物扰动相比,生物扰动提高降解率高达3.3-4倍,但生物降解主要发生在低、中环(尤其是3环)PAHs.此外,生物扰动也加强了共代谢作用的发生,进而也促进了部分高环PAHs发生生物降解。由此验证了野外研究的结论,生物扰动促进沉积物中PAHs生物降解。与此同时,也发现生物扰动对沉积物中PAHs环境行为影响最大的是促进其向水相释放。
     本研究提供了生物扰动对河口沉积物中PAHs环境行为的基本信息,为客观地评价生物扰动对沉积物中PAHs在环境中的迁移转化过程中的环境风险的影响提供了科学依据。
Polycyclic aromatic hydrocarbons (PAHs) comprise a large class of widespread environmental contaminants. These compounds are widely distributed in the environment, notably in sediments of estuaries and coastal marine areas throughout the world. Due to their carcinogenic potential, there is great interest in their fate in the environment in recent years.
     Due to the range of hydrodynamic and chemical conditions, estuaries have high biodiversity and intense biological activity. The feeding, burrowing, and reworking of benthic invertebrates, collectively termed bioturbation, are expected to modify the physical, chemical, and biological properties of the sediment. As a result, the fate of the contaminants in sediment should be modified. The purpose of the present study was to determine whether PAH fate would be influenced by bioturbation in the sediment through both field investigation and laboratory microcosm experiments.
     Firstly, the bioturbation of Helice tientsinensis, Nereis diversicolor, Bullacta exarata, and Cyclina sinensis on sediment from the Beitang Estuary (Tianjin, China) was studied quantitatively by the microcosm tracer technique. The results showed that the distribution of sediment was significantly affected by bioturbation. The bioturbation capacity of different macrofauna varied a lot, with diffusion coefficient (10-3 cm2/d) in an order of N. diversicolor (2.95)> H. tientsinensis (1.00)> C. sinensis (0.78)> B. exarata. (0.35)> control (0.05) in surface sediment, while in deep sediment, the order was H. tientsinensis (3.10)> N. diversicolor (2.33)> C. sinensis (0.28)> B. exarata. (0.15)> control (0.05). These differences were mainly caused by that the macrofauna belonged to different functional groups. Correlation analysis revealed that the biovolume was significant correlated to the diffusion coefficient in surface sediment (p< 0.05), indicating that the biovolume of macrofauna could be used to predict their bioturbation intensity in sediment.
     Bioturbation by the burrowing crab H. tiensinensis was investigated to determine its impact on PAH-contaminated estuarine sediments in a field investigation at Beitang Estuary. The concentrations of 16 USEPA priority PAHs in sediment and porewater from a crab bed (including surface and burrow samples) and a control area, as well as in crabs were measured. The total concentration of the 16 USEPA priority PAHs in surface sediment of the crab bed (average 2772 ng/g dry weight) was significantly higher than in the control area (1173 ng/g dry weight). In the crab bed, the total concentration of PAHs in burrow sediment (1239 ng/g dry weight) was lower than in surface sediment, and similar trend was found for most of individual PAHs except for InP and BgP. In order to further clarify the fate of PAHs in burrow, the mass of PAHs in the burrow as compared to that in the surface sediment was examined. The results shown that the mass difference was calculated to be< 0 to 73% for individual PAHs and 50% for the total PAHs. The enhanced PAH desorption in the burrow, which could be attributed to the increase in dissolved organic matter in porewater as well as the mechanic mixing by the crab, is expected to increase PAH flux to sea. Furthermore, the stimulated microbial degradation was proposed as an ignorable factor for the lower the PAH concentration in burrow sediment because crab bioturbation could increase the abundance and activity of microorganisms by several ways. In addition, H. tientsinensis incorporated a total PAHs concentration of 8816 ng/g lipid in their body, this may be another reason for the lower PAH concentration in burrow sediment. This field investigation indicated that crab bioturbation influences PAH fate in estuarine sediments.
     In order to verify the conclusion of the field study, the effects of crab bioturbation on PAHs release from the sediment were studied in laboratory microcosms. The results shown that sediment resuspension was enhanced by the bioturbation. Due to sediment resuspension, both particulate and dissolved PAHs increased into the water column. Moreover, dissolved organic carbon (DOC) in overlying water was elevated by the bioturbation of crab. The DOC has been confirmed to enhance the distribution of PAHs from sediment to water. As a consequence, obvious desorption of PAHs from suspended particles and sediment to water occurred. This supports the conclusion of the field study.
     Once the PAHs is released from sediment to overlying water, they will be uptaken by aquatic organisms, then pose potential risks to fish and to humans and wildlife that consume aquatic organisms. The impact on PAHs bioavailability in the water column of bioturbation was studied by semipermeable membrane device (SPMD) through laboratory experiments. During 119 d test, all the individual PAHs in SPMD in the microcosm with crab showed higher concentration than that without crab. However, the availability of the individual PAHs was different between small-intermediate and large ringed PAHs based on the SPMD-sediment accumulation factor. For the small-intermediate ringed PAHs, the SSAF value was higher in treatment with crab than without crab, while there was an inverse relationship for the large ringed PAHs. It indicates that the bioavailability was enhanced for small-intermediate ringed PAHs by crab bioturbation, and the large ringed PAHs were not significantly affected. This is because large ringed PAHs associated to DOC was not available.
     The effects of crab bioturbation on PAH biodegradation from sediment were studied in microcosm. The results showed that the crab bioturbation enhanced the organic matter and fine particles in the sediment by the egesta, stimulating microbial activity. Thus, PAH biodegradation was enhanced with biodegradation rate of some PAhs increasing by 3.3-4 times by the crab bioturbation. Biodegradation enhancement occurred mainly for small-intermediate ringed PAHs. Additionally, some of large ringed PAHs were degraded by comebolism. The experiment in microcosm verified the conclusion of the field that biotubance enhanced biodegradation. Furthermore, the result showed the the most important impact of crab bioturbation on the environmental behavior of the PAHs in sediment is the PAHs were enhaned release fome sediment to water.
     This dissertation could provide some useful information on bioturbation influences on the PAH fate in estuarine surface sediments. It is very important to the evaluation the ecological risk of the PAHs transfer by the bioturbation.
引文
[1]Menzie C A, Potocki B B, Santodonato J. Ambient concentrations and exposure to carcinogenic PAHs in the environment. Environ Sci Technol,1992,26: 1278~1284
    [2]Suess M J. The environmental load and cycle of polycyclic aromatic hydrocarbons. Sci Total Environ,1976,6:239~250
    [3]Shabad L M. Circulation of carcinogenic polycyclic aromatic hydrocarbons in the human environment and cancer prevention. J Natl Cancer Inst,1980,64:405~410
    [4]戴树桂.环境化学.高等教育出版社,2001
    [5]Zakaria M P, Takada H, Tsutsumi S, et al. Distribution of polycysclic aromatic hydroearbons (PAHs) inrivers and estuaries in Malaysia:A widespread input of petrogenie PAHs. Environ Sci Technol,2002,36:1907~1918
    [6]Lei Y D, Wania F. Is rain or snow a more efficient scavenger of organic chemicals? Atmos Environ,2004,38:3557~3571
    [7]Liu S, Tao S, Liu W, et al. Atmospheric polycyclic aromatic hydrocarbons in North China:a winter-time study. Environ Sci Technol,2007,41:8256-8261
    [8]Liu L B, Hashi Y, Liu M, et al. Determination of particle-associated polycyclic aromatic hydrocarbons in Urban Air of Beijing by GC/MS. Anal Sci,2007,23: 667~671.
    [9]Wu S P, Tao S, Zhang Z H, et al. Characterization of TSP-bound n-alkanes and polycyclic aromatic hydrocarbons at rural and urban sites of Tianjin, China. Environ Pollut,2007,147:203~210
    [10]Wang X Y, Li Q B, Luo Y M, et al. Characteristics and sources of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. Environ Monit Asses,2010,165:295~305
    [11]Liu G, Zhang G, Li J, et al. Spatial distribution and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) using semi-permeable membrane devices (SPMD) and pine needles in the Pearl River Delta, South China. Atmos Environ,2006,40:3134~3143
    [12]Eiguren-Fernandez A, Miguel A H, Froines J R, et al. Seasonal and spatial variation of polycyclic aromatic hydrocarbons in vapor-phase and PM2.5 in Southern California urban and rural communities. Aerosp Sci Technol,2004,38: 447~455
    [13]Dejean S, Raynaud C, Meybeck M, et al. Polycyclic aromatic hydrocarbons (PAHs) in atmospheric urban area:monitoring on various types of sites. Environ Moni Assess,2009,148:27-37
    [14]Choia S D, Baek S Y, Chang Y S. Influence of a large steel complex on the spatial distribution of volatile polycyclic aromatic hydrocarbons (PAHs) determined by passive air sampling using membrane-enclosed copolymer (MECOP). Atmos Environ,2007,41:6255~6264
    [15]Kishida M, Mio C, Fujimori K, et al. Seasonal change in the atmospheric concentration of particulate polycyclic aromatic hydrocarbons in Ho Chi Minh City, Vietnam. B Environ Contam Tox,2009,83:747~751.
    [16]杨清书,麦碧娴,罗孝俊,等.珠江澳门水域水柱多环芳烃初步研究.环境科学研究,2004,17(3):28-33
    [17]Sun J H, Wang G L, Chai Y, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in Henan Reach of the Yellow River, Middle China. Ecotox Environ Safe,2009,72:1614~1624
    [18]Chen B L, Xuan X D, Zhu L Z, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China. Water Res,2004,38:3558~3568
    [19]Mai B X, Luo X J, Yang Q S, et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China. Mar Pollut Bull,2004,48: 1102~1115
    [20]Shi Z, Tao S, Pan B, et al. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environ Pollut,2005,134:97~111
    [21]Fernandes M B, Sicre M A, Boireau A, Tronczynski J. Polyaromatic hydrocarbon (PAH) distribution in the Seine river and its estuary. Mar Pollut Bull,1997,34: 857~867.
    [22]Gustafson K E, Dickhut R M. Distribution of polycyclic aromatic hydrocarbons tin Southern Chesapeake Bay surface water:evaluation of three methods for determining freely dissolved water concentrations. Environ Toxicol Chem,1997, 16:452~461
    [23]Nemr A E, Abd-Allah A M A. Contamination of polycyclic aromatic hydrocarbons (PAHs) in microlayer and subsurface waters along Alexandria coast, Egypt. Chemosphere,2003,52:1711~1716
    [24]Dai J, Li S, Zhang Y, et al. Distributions, sources and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in topsoil at Ji'nan city, China. Environ Monit Assess,2008,147:317~326
    [25]Ma L L, Chu S G, Wang X T, et al. Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China. Chemosphere,2005,58: 1355~1363
    [26]Wild S R, Jones K C. Polycyclic aromatic hydrocarbons in the United Kingdom environment:A preliminary source inventory and budget. Environ Pollut,1995, 88:91~108
    [27]Kipopoulou A M, Manoli E, Samara C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut,1999,106: 369~380
    [28]Martinez-Llado X, Gibert O, Marti V, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) and tributyltin (TBT) in Barcelona harbour sediments and their impact on benthic communities. Environ Pollut,2007,149:104~113
    [29]Luo X, Chen S, Mai B, et al. Distribution, source apportionment, and transport of PAHs in sediments from the pearl river Delta and the northern south China sea. Arch Environ Contain Toxicol,2008,55:11~20
    [30]Lapviboonsuk J, Loganathan B. Polynuclear aromatic hydrocarbons in sediments and mussel tissue from the Lower Tennessee River and Kentucky Lake. J Kentucky Acad Sci,2007,68:186~197
    [31]White H K, Li X, Lima A L, et al. Abundance, Composition, and Vertical Transport of PAHs in Marsh Sediments. Environ Sci Technol,2005,39: 8273~8280
    [32]Meire R O, Azeredo A, Pereira M S, et al. Polycyclic aromatic hydrocarbons assessment in sediment of national parks in southeast Brazil. Chemosphere,2008, 73:S180~S185
    [33]Curtosi A, Pelletier E, Vodopivez C L. Polycyclic aromatic hydrocarbons in soil and surface marine sediment near Jubany Station (Antarctica). Role of permafrost as a low-permeability barrier. Sci Total Environ,2007,383:193~204
    [34]刘向,张干件,刘国卿,等.南岭北坡苔藓中多环芳烃的研究.中国环境科学,2005,25(1):101-105
    [35]Kipopoulou A M, Manoli E, Samara C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environ Pollut,1999,106: 369~380
    [36]Zhong W, Wang M. Some polycyclic aromatic hydrocarbons in vegetables from Northern China. J Environ Sci Heal A,2002,37:287~296
    [37]Kong K Y, Cheung K C, Wong C K C, et al. The residual dynamic of polycyclic aromatic hydrocarbons and organochlorine pesticides in fishponds of the Pearl River delta, South China. Water Res,2005,39:1831~1843
    [38]Funga C N, Lama J C W, Zhenga G J, et al. Mussel based monitoring of trace metal and organic contaminants along the east coast of China using Perna viridis and Mytilus edulis. Environ Pollut,2004,127:203~216
    [39]Nemr A E, E12sikaily A, Khaled A, et al. Determination of hydrocarbons in mussels from the Egyp tian Red Sea Coast. Environ Monit Assess,2004,96: 251~261
    [40]Williamson K S, Petty J D, Huckins J N, et al. HPLC-PFD determination of priority pollutant PAHs in water, sediment, and semipermeable membrane devices. Chemosphere,2002,49:703~715
    [41]谢重阁,张月英,孙兰香,等.环境中的苯并[a]芘及其分析技术.北京:中国环境科学出版社,1991
    [42]Menzie C A, Potocki B B, Santodonato J. Ambient concentrations and exposure to carcinogenic PAHs in the environment. Environ Sci Technol,1992,26: 1278~1284
    [43]宋玉芳,周启星,宋雪英,等.菲和芘对土壤中植物根伸长抑制的生态毒性效应.生态学杂志,2003,22(5):6-9
    [44]万寅婧,占新华,周立祥.土壤中芘、菲、萘、苯对小麦的生态毒性影响.中国环境科学,2005,25(5):563-566
    [45]沈国清,陆贻通,洪静波,等.菲和镉复合污染对土壤微生物的生态毒理效应.环境化学,2005,24(6):662-665
    [46]Wernersson A S. Predicting petroleum phototoxicity. Ecotox Environ Safe,2003, 54:355~365
    [47]Larson R A, Berenbaum M R. Environmental phototoxicity. Environ Sci Technol, 1988,22:354~358
    [48]Mllakin A, McConkey B J, Miao G, et al. Impacts of structural photomodification on the toxicity of environmental contaminants:Anthracene phototooxidation products. Ecotox Environ Safe,1999,43:204~212
    [49]Duxbury C L, Dixon D G, Greenberg B M. Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba. Environ Toxicol Chem,1997,16:1739~1748
    [50]Jones K C, Stratford J A, Tidridge P. Polynuclear aromatic hydrocarbons in an agricultural soil:Long-term changes in profile distribution. Environ Pollut,2000, 110:79~88
    [51]Park K S. Transformation of PAHs in soil systems. J Environ Eng,1990,116: 632~640
    [52]Angus J B, David L J, Kevin C J. The form and bioavailability of non-ionic organic chemicals in sewage sludge-amended agricultural soils. Sci Total Environ, 1996,185:125~149
    [53]Van Brummelen T C, Verweij R A, Wedzinga S A. Polycyclic aromatic hydrocarbons in earthworms and isopods from contaminated forest soils. Chemosphere,1996,32:315~341
    [54]Pritchard D W. What is an estuary:physical viewpoint. In:Lanff G H (editor), Estuaries. American Association for the Advancement of Science Publ,83, Washington, D C,1967,3~5
    [55]Perillo G M E. New geodymanic definition of estuary. Joint ECS A/ERF Estuar Conf, Plymouth (abstract),1992
    [56]Fernandes M B, Sicre M A, Boireau A. et al. Polyaromatic hydrocarbon (PAH) distribution in the Seine River and its estuary. Mar Pollut Bull,1997,34: 857~867.
    [57]Zanardi E, Bicego MC, De Miranda LB, et al. Distribution and origin of hydrocarbons in water and sediments in Sao Sebastiao, SP, Brazil. Mar Pollut Bull,1999,38:261~267
    [58]Srinivasa R M, Basha S. Seasonal distribution and contamination of total PHCs, PAHs and heavy metals in coastal waters of the Alang-Sosiya ship scrapping yard, Gulf of Cambay, India. Chemosphere,2005,28:78~91
    [59]杨清书,欧素英,谢萍.珠江虎门潮汐水道水体中PAHs的分布及季节变化.海洋学报,2004,26:37-45
    [60]Yamada M, Takada H, Toyoda K. Study on the fate of petroleum-derived polycyclic aromatic hydrocarbons (PAHs) and the effect of chemical dispersant using an enclosed ecosystem, mesocosm. Mar Pollut Bull,2003,47:105~113
    [61]Sicre M A, Marty J C, Saliot A. Aliphatic and aromatic hydrocarbons in Mediterranean aerosol. International J. Environ Anal Chem,1987,29:73~94
    [62]Booij K, Hoedemaker J R, Bakker J E. Dissolved PCBs, PAHs, and HCB in pore waters and overlying waters of contaminated harbor sediments. Environ Sci Technol,2003,37:4213~4220
    [63]Nakata H, Sakai Y, Miyawaki T. Bioaccumulation and toxic potencies of polychiorinated biphenyls and polycyclic aromatic hydrocarbons in tidal fiat and coastal ecosystems of the Ariake Sea, Japan. Environ Sci Technol,2003,37: 3513~3521
    [64]Ying L, Ling C, Zhao J, Huang Q, Zhu Z, Gao H. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments of rivers and an estuary in Shanghai, China. Environ Pollut,2008,154:298~305
    [65]Chen B L, Xuan X D, Zhu L Z, et al. Distribution of polycyclic aromatic hydrocarbon in surface waters, sediment and soils of Hangzhou City, China. Water Res,2004,38,3558~3568
    [66]刘宗峰,郎印海,曹正梅,等.黄河口表层沉积物多环芳烃污染源解析研究.环境科学研究,2008,21(5):79-84
    [67]Wu Y, Zhang J, Zhu Z. Polycyclic aromatic hydrocarbons in the sediments of the Yalujiang Estuary, North China. Mar Pollut Bull,2003,46:619-625
    [68]Vane C H, Harrison I, Kim A W. Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, U.K. Sci Total Environ,2007,374:112~126
    [69]Martins M, Ferreira A M, Vale C. The influence of sarcocornia fruticosa on retention of PAHs in salt marsh sediments (Sado estuary, Portugal). Chemosphere,2008,71:1599~1606
    [70]Pereira W E, Hostettler F D, Rapp J B. Distribution and fate of chlorinated insecticides, biomarkers and polycyclic aromatic hydrocarbons in sediments along a contamination gradient from a point-source in San Francisco Bay, California. Mari Environ Res,1996,41:299~314
    [71]Simpson C D, Mosi A A, Cullen W R, et al. Composition and distribution of polycyclic aromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor, Canada. Sci Total Environ,1996,181:265~278
    [72]Kim G B, Maruya K A, Lee R F, et al. Distribution and sources of polycyclic aromatic hydrocarbons in sediments from Kyeonggi Bay, Korea. Mar Pollut Bull,1999,38:7-15
    [73]Khairya M A, Kolba M, Mostafab A R, et al. Risk assessment of polycyclic aromatic hydrocarbons in a Mediterranean semi-enclosed basin affected by human activities (Abu Qir Bay, Egypt). J Hazard Mater,2009,170:389~397
    [74]Guinan J, Charlesworth M, Serviee M, et al. Sources and geochemical constraints of polycyclic aromatic hydrocarbons (PAHs) in sediments and mussels of two Northern Irish Sea-loughs. Mar Pollut Bull,2001,42:1073~1081
    [75]Johnson L, Ylitalo G M, Sloan C A, et al. Persistent organic pollutants in outmigrant juvenile chinook salmon from the Lower Columbia Estuary, USA. Sci Total Environ,2007,374:342~366
    [76]Johnson-Restrepo B, Olivero-Verbel J, Lu S, et al. Polycyclic aromatic hydrocarbons and their hydroxylated metabolites in fish bile and sediments from coastal waters of Colombia. Environ Pollut,2008,151,452~459
    [77]Orbea A, Ortiz-Zarragoitia M, Sole M, et al. Antioxidant enzymes and peroxisome proliferation in relation to contaminant body burdens of PAHs and PCBs in bivalve molluscs, crabs and fish from the Urdaibai and Plentzia estuaries (Bay of Biscay). Aquat Toxicol,2002,58,75~98
    [78]Minier C, Abamou A, Jaouen-Madoulet A. Pollution-monitoring pilot study involving contaminant and biomarker measurements in the Seine Estuary, France, using zebra mussels (Dreissena polymorpha). Environ Toxieol Chem, 2006,25:112~119
    [79]Namiesnik J, Moncheva S, Park YS, et al. Concentration of bioactive compounds in mussels Mytilus galloprovincialis as an indicator of pollution. Chemosphere, 2008,73:938-944
    [80]Webster L, Fryer R J, Megginson C. The polycyclic aromatic hydrocarbon and geochemical biomarker composition of sediments from sea lochs on the west coast of Scotland. J Environ Monti,2004,6:219~228
    [81]Kayal S, Connell D.W. Polycyclic aromatic hydrocarbons in biota from the Brisbane River Estuary, Australia. Estuar, Coast Shelf Sci,1995,40:475~493
    [82]Harkey G A, Van Hoof P L. Landrum P F. Bioavailability of Polycyclic aromatic hydrocarbons from a historically contaminated sediment core. Environ Toxicol Chem,1994,14:1551~1560
    [83]Harkey G A, Van Hoof P L. Landrum P F. Feeding selectivity and assimilation of PAH and PCB in Diporeiaspp. Environ Toxicol Chem,1995,13:1445~1455
    [84]Djomo J E, Gaxrigues P. Narbonne J F. Uptake and depuration of polycyclic aromatic hydrocarbons from sediment by the zebrafish (Bracydanio rerio). Environ Toxicol Chem,1996,15:1177~1181
    [85]Thorsen A W, Cope W G, Shea D. Bioavailability of PAHs:Effects of soot carbon and PAH source. Environ Sci Technol,2004,38:2029~2037
    [86]Hicke C W, Roper D S, Holland P T, et al. Accumulation of organic contaminants in two sediment-dwelling shellfish with contrasting feding modes: deposit-(Maeoma liliana) and filter-feeding (Austravenus strutchburyi). Arch Environ Contain Toxicol,1995,29:221~231
    [87]DiToro D M, Zabra C S, Hansen D J, et al. Technical basis for establishing sediment quality criteria for nonionic organic chemical using equilibrium partitioning. Environ Toxicol Chem,1991,10:1541~1583
    [88]Landrum P F, Lee H, Lydy M J. Toxicokinetics in aquatic systems:model comparisons and use in hazard assessment. Environ Toxicol Chem,1992,11: 1709~1725
    [89]Park S S, Erstfeld K M. The effect of sediment organic carbon content on bioavailability of hydrophobic conlpounds in aquatic ecosystems. Environ Pollut,1999,105:9-15
    [90]Foster G D, Jr E C R, Gruessner B, et al. Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay (USA). Appl Geochem,2000,15:901~915
    [91]Palm A, Cousins I, Gustafsson O, et al. Evaluation of sequentially-coupled POP fluxes estimated from simultaneous measurements in multiple compartments of an air-water-sediment system. Environ Pollut,2004,128:85~97
    [92]王连生.环境化学进展.北京:化学工业出版社,1995
    [93]Thomas S, Poeton H, David S, et al. Biodegradation of polyaromatic hydrocarbons be marine bacteria:effect of solid phase on degradation kinetics. Water Resour,1999,33:868~880
    [94]White G F. Multiple interactions in riverine bio-films-surfactant adsorption, bacterial attachment and biodegradation. Water Sci Technol,1995,31:61~70
    [95]Meysman F J R, Middelburg J J, Heip C H R. Bioturbation:a fresh look at Darwin's last idea. Trend Ecol Evol,2006,21:688~695
    [96]Davison C. On the amount of sand brought up by lobworms to the surface. Geol Mag,1891,8:489~493
    [97]Grozier W J. The amount of bottom material ingested by holothurians (Stichopus). J Exp Zool,1918,26:379~389
    [98]Mills E L. Problems of deep-sea biology [C]//Rowe GT, ed. The sea. New York: John Wiley & Sons,1983,1-79
    [99]Francis F, Gerino M, Stora G, et al. Functional approach to sediment reworking by gallery-forming macrobenthic organisms:modeling and application with the polychaete Nereis diversicolor. Mar Ecol Prog Ser,2002,229:127~136
    [100]Paarlberg A J, Knaapen M A F, de Vries M B, et al. Biological influences on morphology and bed composition of an intertidal flat. Estuar Coast Shelf Sci, 2005,64:577~590
    [101]Dietrich W E, Perron J T. The search for a topographic signature of life. Nature, 2006,439:411~418
    [102]Murray J M H, Meadows A, Meadows P S. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos:a review. Geomorphology,2002,47:15~30
    [103]张志南.水层-底栖耦合生态动力学研究的某些进展.青岛海洋大学学报,2000,30(1):115-122
    [104]Jones S E, Jago C F. In situ assessment of modification of sediment properties by burrowing invertebrates. Mar Geol,1993,115:133~142
    [105]Richardson M D, Briggs K B, Bentley S J, et al. The effects of biological and hydrodynamic processes on physical and acoustic properties of sediments off the Eel River. California Mar Geol,2002,182:121~139
    [106]Wheatcroft R A, Jumars P A, Smith C R, et al. A mechanistic view of the particulate biodiffusion coefficient:Step lengths, rest periods and transport directions. J Mar Res,1990,48:177~207
    [107]Aller R C. Bioturbation and remineralization of sedimentary organic matter: Effect of redox oscillation. Chem Geol,1994,114:331~345
    [108]Thibodeaux L J, Bierman V J. The bioturbation driven chemical release process. Environ Sci Technol,2003,37:252A-258A
    [109]Cardoso P G, Lilleb A I, Lopes C B, et al. Influence of bioturbation by Hediste diversicolor on mercury fluxes from estuarine sediments:A mesocosms laboratory experiment. Mar Pollut Bull,2008,56:325~334
    [110]Pelegri S P, Blackburn T H. Effects of Tubifex tubifex (Oligochaeta:tubificidae) on N-mineralization in freshwater sediments, measured with 15N isotopes. Aquat Microb Ecol,1995,9:289~294
    [111]Tuominen L, Makela K, Lehtonen K K, et al. Nutrient fluxes, porewater profiles and denitrificatin in sediment influenced by algal sedimentation and bioturbation by Monporeia affinis. Estuar Coast Shelf Sci,1999,49:83~97
    [112]Nogaro G, Mermillod-Blondin F. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems. Environ Sci Technol,2009,43: 3632~3638
    [113]Fanjul E, Grela M A, Canepuccia A, et al. The Southwest Atlantic intertidal burrowing crab Neohelice granulate modifies nutrient loads of phreatic waters entering coastal area. Estuar Coast Shelf Sci,2008,79:300~306
    [114]Mermillod-Blondin F, Nogaro G, Vallier F, et al. Laboratory study highlights the key influences of stormwater sediment thickness and bioturbation by tubificid worms on dynamics of nutrients and pollutants in stormwater retention systems. Chemosphere,2008,72:213~223
    [115]Hietanen S, Laine A, Lukkari K, et al. The complex effects of the invasive polychaetes Marenzelleria spp.on benthic nutrient dynamics. J Exp Mar Biol Ecol,2007,352:89~102
    [116]Swan B K, Watts J M, Reifel K M, et al. Role of the polychaete Neanthes succinea in phosphorus regeneration from sediments in the Salton Sea, California. Hydrobiologia,2007,576:111~125
    [117]Lewandowski J, Hupfer M. Effect of macrozoobenthos on two-dimensional small-scale heterogeneity of pore water phosphorus concentrations in lake sediments:a laboratory study. Limnol Oceanog,2005,50:1106~1118
    [118]Benoit J M, Shull D H, Robinson P, et al. Infaunal burrow densities and sediment monomethyl mercury distributions in Boston Harbor, Massachusetts. Mari Chem,2006,102:124~133
    [119]Klerks P L, Felder D L, Strasser K, et al. Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL. Mar Chem,2007,104:17~26
    [120]Simpson S L, Pry or I, Mewburn B, et al. Considerations for capping metal-contaminated sediments in dynamic estuarine environments. Environ Sci Technol,2002,36:3772~3778
    [121]Ciutata A, Gerinob M, Boudou A. Remobilization and bioavailability of cadmium from historically contaminated sediments:Influence of bioturbation by tubificids. Ecotox Environ Safe,2007,68:108~117
    [122]Hammerschmidt C R, Fitzgerald W F. Sediment-water exchange of methylmercury determined from shipboard benthic flux chambers. Mar Chem, 2008,109:86~97
    [123]Branfireun B A, Roulet N T, Kelly C A, et al. In situ sulphate stimulation of mercury methylation in a boreal peatland:toward a link between acid rain and methylmercury contamination in remote environments. Glob Biogeochem Cycles,1999,13:743~750
    [124]King J F, Saunders F M, Lee R F, et al. Coupling mercury methylation rates to sulfate reduction rates in marine sediments. Environ Toxicol Chem,1999,18: 1362~1369
    [125]Menone M L, Miglioranza K S B, Iribarne 0, et al. The role of burrowing beds and burrows of the SW Atlantic intertidal crab Chasmagnathus granulate in trapping organochlorine pesticides. Mar Pollut Bull,2004,48:240~247
    [126]Menone M L, Miglioranza K S B, Botto F, et al. Field accumulative behavior of organochlorine pesticides. The role of crabs and sediment characteristics in coastal environments. Mar Pollut Bull,2006,52:1717~1724
    [127]Granberg M E, Gunnarsson J S, Hedman J E, et al. Bioturbation-driven release of organic contaminants from Baltic sea sediments mediated by the invading polychaete Marenzelleria neglecta. Environ Sci Technol,2008,42,1058-1065
    [128]Nogaro G, Mermillod-Blondin F, Montuelle B, et al. Do tubificid worms influence organic matter processing and fate of pollutants in stormwater sediments deposited at the surface of infiltration systems? Chemosphere,2007, 70:315~328
    [129]Schaffner L C, Dickhut R M, Lay P W, et al. Effects of physical chemistry and bioturbation by estuarine macrofauna on the transport of hydrophobic organic contaminants in the benthos. Environ Sci Technol,1997,31:3120~3125
    [130]Falandysz J, Strandberg L, Puzyn T, et al. Chlorinated cyclodiene pesticide residues in blue mussel, crab, and fish in the Gulf of Gdansk, Baltic Sea. Environ Toxicol Chem,2001,35:4163~4169
    [131]Aaron R J, Robert B M, Bruce B J, et al. Relationship between metabolism and bioaccumulation of benzo[a]pyrene in benthic invertebrates. Environ Toxicol Chem,2004,23:2587~2593
    [132]Goerke H, Weber K. Species-specific elimination of polychlorinated biphenyls in estuarine animals and its impact on residue patterns. Mar Environ Res,2001, 51:131~149
    [133]Granberg M E, Hansen R, Selck H. Relative importance of macrofaunal burrows for the microbial mineralization of pyrene in marine sediments:impact of macrofaunal species and organic matter quality. Mar Ecol Prog Ser,2005,288: 59~74
    [134]Timmermann K, Banta G T, Johnsen A R et al. Effects of the polychaetes Arenicola marina and Nereis diversicolor on microbial pyrene mineralization. Aquat Microb Ecol,2008,50:197~207
    [135]Sims R C, Overcash M R. Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems. Residue Rev,1983,88:1-68.
    [136]Smith C R, Berelson W, Demaster D J, et al. Latitudinal variations in benthic processes in the abyssal equatorial Pacific:Control by biogenic particle flux. Deep-Sea Res Ⅱ,1997,44:1195~2317
    [137]Wheatcroft R A, Smith C R, Jumars P A. Dynamics of surfacial trace assemblages in the deep sea. Deep-Sea Res,1989,36:71~91
    [138]Gage J D, Tyler P A. Deep-sea biology-A natural history of organisms at the deep-sea floor. Cambridge:Cambridge University Press,1991,337~356
    [139]Muzik K, Elliott M. The effects of chemical pollution on the bioturbation potential off estuarine intertidal mudflats. Helgolaender Mar Res,2000,54: 99~109
    [140]Gilbert F, Hulth S, Grossi V. Sediment reworking by marine benthic species from the Gullmar Fjord (Western Sweden):Importance of faunal biovolume. J Exp Mar Biol Ecol,2007,348:133~144
    [141]Turnewetsch R, Witte U, Graf G. Bioturbation in the abyssal Arabian Sea: influence of fauna and food supply. Deep-Sea Res Ⅱ,2000,47:2877~2911
    [142]De Deckere E M G T, Tolhurst T J, De Brouwer J F C. Destabilization of cohesive intertidal sediments by infauna. Estuar Coast Shelf Sci,2001,145: 65~77
    [143]Duport E, Stora G, Gilbert F. Effects of population density on the sediment mixing induced by the gallery-diffusor Hediste (Nereis) diversicolor O.F. Muller, 1776. J Exp Mar Biol Ecol,2006,336:33~41
    [144]Pope R H, Demaster D J, Smith C R, et al. Rapid biotubation in equatorial Pacific sediments:Evidence from excess 234Th measurements. Deep-Sea Res Ⅱ, 1996,43:1339~1364
    [145]Trauth M H, Sarnthein M, Arnold M. Bioturbational mixing depth and carbon flux at the seafloor. Paleoceanography,1997,12:517~526
    [146]Maire O, Duchene J C, Gremare A, et al. A comparison of sediment reworking rates by the surface deposit-feeding bivalve Abra ovata during summertime and wintertime, with a comparison between two models of sediment reworking. J Exp Mar Biol Ecol,2007,343:21~36
    [147]Smith C R, Rabouille C. What controls the mixed-layer depth in deep-sea sediments? The important of POS flux. Limmol Oceanog,2002,47:418~426.
    [148]Cammen L M. Ingestion rate:An empirical model for aquatic deposit feeders and detritivores. Oecologia,1980,44:303~310
    [149]Tromp T K, Cappellen P V, Key R M. A globe model for the early diagenesis of organic carbon and phosphorus in marine sediments. Geoch Cosmochim Acta, 1995,59:1259~1284
    [150]Ealbran P D. Pb-210 and C-14 as indicators of Callianassid bioturbation in coral reef sediment. J Sediment Res,1996,66:259~264
    [151]Buffoni G, Delfanti R, Papucci C. Accumulation rate and mixing processes in near-surface North Atlantic sediments:Evidence from C-14 and Pu-239,240 downcore profiles. Mar Geol,1992,109:159~170
    [152]Wheatcroft R A. Experimental tests for partical size-dependent bioturbation in the deep oceans. Limmol Oceanog,1992,37:90~104
    [153]Dashtgard S E, Gingras M K, Pemberton SG. Grain-size controls on the occurrence of bioturbation. Palaeogeog Palaeocl Palaeoecol,2008,257: 224~243
    [154]Brian C S, Jean P V, Maxime L G. Constraints on the acquisition of remanent magnetization in fine-grained sediments imposed by redeposition experiments. Earth Planet Sci Lett,2006,245:427~437
    [155]Mucha A P, Vasconcelos M T S D, Bordalo A A. Vertical distribution of the macrobenthic community and its relationships to trace metals and natural sediment characteristics in the Douro estuary, Portugal. Estuar Coast Shelf Sci, 2004,59:663~673
    [156]Reise K. Tidal flat ecology:An experiment approach to species interactions. Berlin:Springer-Verlag,1985
    [157]Davey JT. Macrofaunal community bioturbation along an estuarine gradient. Aquat Ecol,1996,27:147~153
    [158]于子山,王诗红,张志南,等.紫彩血蛤的生物扰动对沉积物颗粒垂直分布的影响.青岛海洋大学学报,1999,29(2):279-282
    [159]Gontier G, Gerino M, Gstora, et al. A new tracer technique for in situ experimental study of bioturbation process//Kershaw PJ, Woodham DS, eds. Radionuclides in the study of marine processes. London New York:Elsevier Applied Science,1991:187~196
    [160]Mermillod-Blondin F, Rosenberg R, Francois F, et al. Influence of bioturbation by three benthic infaunal species on microbial community and biogeochimical processes in marine sediment. Aquat Microb Ecol,2004,36:271~284
    [161]Francois F, Poggiale J C, Durbec J P, et al. A new approach for the modelling of sediment reworking induced by a macrobenthic community. Acta Biotheoritica, 1997,45:295~319
    [162]Han J, Zhang Z, Yu Z, et al. Differences in the benthic-pelagic particle flux (biodeposition and sediment erosion) at intertidal sites with and without clam (Rudilapes philippinarum) cultivation in eastern China. J Exp Mar Biol Ecol, 2001,261:245~261
    [163]于子山,张志南,韩洁,等.心形海胆的生物扰动对沉积物颗粒垂直分布的影响.中国学术期刊文摘,2000,6(1):95-97
    [164]Michaud E, Desrosiers G, Mermillod-Blondin F, et al. The functional group approach to bioturbation:Ⅱ. The effects of the Macoma balthica community on fluxes of nutrients and dissolved organic carbon across the sediment-water interface. J Exp Mar Biol Ecol,2006,337:178~189
    [165]Gerino M, Stora G, Francois F, et al. Macro-invertebrates functional groups in freshwater and marine sediments:a commun mechanistic classification. Vie et Milieu,2003,53:221~231
    [166]Nogaro G, Mermillod-Blondin F, Valett M H, et al. Ecosystem engineering at the sediment-water interface:bioturbation and consumer-substrate interaction. Oecologia,2009,161:125~138
    [167]Gerino M, Frignani M, Mugnai C, et al. Bioturbation in the Venice Lagoon: Rates and relationship to organisms. Acta Oecol,2007,32:14~25
    [168]Gardner LR, Sharma P, Moore W S. A regeneration model for the effect of bioturbation by fiddler crabs on 2I0Pb profiles in salt marsh sediments. J Environ Radioact,1987,5:25~36
    [169]Smith C R, Jumars P A, De Master D J. In situ studies of megafaunal mounds indicate rapid sediment turnover and community response at the deep-sea floor. Nature,1986,323:251~253
    [170]杜永芬,张志南.菲律宾蛤仔的生物扰动对沉积物颗粒垂直分布的影响.中国海洋大学学报,2004,34(6):988-992
    [171]Nordstrom M, Bonsdorff E, Salovius S. The impact of infauna (Nereis diversicolor and Saduria entomon) on the redistribution and biomass of macroalgae on marine soft bottoms. J Exp Mar Biol Ecol,2006,333:58~70
    [172]Duport E, Gilbert F, Poggiale J C, et al. Benthic macrofauna and sediment reworking quantification in contrasted environments in the Thau Lagoon. Estuar Coast Shelf Sci,2007,72:522~533
    [173]Nizzoli D, Castaldelli G, Bartoli M, et al. Benthic fluxes of dissolved inorganic nitrogen in a coastal lagoon of the Northern Adriatic Sea:an interpretation of spatial variability based on sediment features and infauna activity. Mar Ecol, 2002,23:.297~306
    [174]Dorgan K M, Jumars P A, Johnson B, et al. Burrow extension by crack propagation. Nature,2005,433:475
    [175]Schaanning M., Breyholtz B., Ske J. Experimental results on effects of capping on fluxes of persistent organic pollutants (POPs) from historically contaminated sediments. Mar Chem,2006,102,46~59
    [176]Jickells T D. The biogeochemistry of nutrients along the tidal zone. Science, 1998,281:217~222
    [177]Kidd K A, Bootsma H A, Raymond H, et al. Biomagnification of DDT through the benthic and pelagic food webs of Lake Malawi, East Africa:Importance of trophic level and carbon Source. Environ Sci Technol,2001,35:14~20
    [178]国家质量监督检验检疫总局.中华人民共和国海洋调查国家标准(GB/T12763.8-2007).2008,北京.
    [179]Moermond C T A, Zwolsman J J G, Koelmans A A. Black carbon and ecological factors affect in situ biota to sediment accumulation factors for hydrophobic organic compounds in flood plain lakes. Environ Sci Technol,2005, 39:3101~3109
    [180]Thorson W A, Cope W G, Shea D. Bioavailability of PAHs:effects of soot carbon and PAH source. Environ Sci Technol,2004,38:2029~2037
    [181]van Hattum B, Pons M J C, Montanes J F C. Polycyclic aromatic hydrocarbons in freshwater isopods and field-partitioning between abiotic phases. Arch Environ Contam Toxicol,1998,35:257~267
    [182]Casado-Martinez M C, Forja J M, Del Valls T A. A multivariate assessment of sediment contamination in dredged materials from Spanish ports. J Hazard Mater, 2009,163:1353~1359
    [183]Ashley J T F, Baker J E. Hydrophobic organic contaminants in surficial sediments of Baltimore Harbor:inventories and sources. Environ Toxicol Chem, 1999,18:838~849
    [184]Hong H, Xu L, Zhang L, et al. Environmental fate and chemistry of organic pollutants in the sediments of Xiamen and Victoria Harbours. Mar Pollut Bull, 1995,31:229~236
    [185]Kennicutt M C, Wade T L. Presley B J, at al. Sediment contaminants in Casco Bay, Maine:inventories, sources, and potential for biological impact. Environ Sci Technol,1994,28:1~15
    [186]Botello A V, Villanueva S F, Diaz G G, et al. Polycyclic aromatic hydrocarbons in sediments from Salina Cruz Harbour and Coastal Areas, Oaxaca, Mexico. Mar Pollut Bull,1998,36:554~558
    [187]Echols K R, Brumbaugh W G, Orazio C E, et al. Distribution of pesticides, PAHs, PCBs, and bioavailable metals in depositional sediments of the Lower Missouri River, USA. Arch Environ Toxicol Chem,2008,55:161~172
    [188]Tao S, Li B G, He X C, et al. Spatial and temporal variations and possible sources of dichlorodiphenyltrichloroethane (DDT) and its metabolites in rivers in Tianjin, China. Chemosphere,2006,68:10~16
    [189]Davis W R. The role of bioturbation in sediment resuspension and its interaction with physical shearing. J Exp Mar Biol Ecol,1993,171:187~200
    [190]Mermillod-Blondin F, Rosenberg R. Ecosystem engineering:the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquat Sci,2006,68:434~442
    [191]Guo W, He M, Yang Z, et al. Distribution of polycyclic aromatic hydrocarbons in water, suspended particulate matter and sediment from Daliao River watershed, China. Chemosphere,2007,68:93~104
    [192]Birch G F, Taylor S E. The use of size-normalized procedures in the analysis of organic contaminants in estuarine sediments. Hydrobiologia,2000,431:129~133
    [193]Reible D, Mohanty S. A levy flight-random walk model for bioturbation. Environ Toxicol Chem,2002,21:875~881
    [194]Christensen M, Banta G T, Andersen O. Effects of the polychaetes Nereis diversicolor and Arenicola marina on the fate and distribution of pyrene in sediments. Mar Ecol Prog Ser,2002,237:159~172
    [195]Gunnarsson J S, Hollertz K, Rosenberg R. Effects of organic enrichment and burrowing activity of the polychaete Nereis diversicolor on the fate of tetrachlorobiphenyl in marine sediments. Environ Toxicol Chem,1999,18: 1149~1156
    [196]Goedkoop W, Peterson M. The fate, distribution, and toxicity of lindane in tests with Chironomus riparius:effects of bioturbation and sediment organic matter content. Environ Toxicol Chem,2003,22:67~76
    [197]King A J, Readman J W, Zhou J L. Behaviour of polycyclic aromatic hydrocarbons in dissolved, colloidal, and particulate phases in sedimentary cores. Int J Environ Anal Chem,2007,87:211~225
    [198]Boyd T J, Montgomery M T, Steele J K, et al. Dissolved oxygen saturation controls PAH biodegradation in freshwater estuary sediments. Microb Ecol, 2005,49:226~235
    [199]Eickhoff C V, Gobas F A P C, Law F C P. Screening pyrene metabolites in the hemolymph of dungeness crabs (Cancer magister) with synchronous fluorescence spectrometry:method development and application. Environ Toxicol Chem,2003, 22:59~66
    [200]Schwarzenbach R P, Gschwend P M, Imboden D M. Environmental Organic Chemistry. New York, Wiley-Interscience,2005
    [201]Hoekstra P F, O'Hara T M, Teixeira C, et al. Spatial trends and bioaccumulation of organochlorine pollutants in marine zooplankton from the Alaskan and Canadian Arctic. Environ Toxicol Chem,2002,21:575~583
    [202]Krauss M, Wilcke W, Zech W. Availability of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) to earthworms in urban soil. Environ Sci Technol,2000,34:4335~4340
    [203]Maruya K A, Lee R F. Biota-sediment accumulation and trophic transfer factors for extremely hydrophobic polychlorinated biphenyls. Environ Toxicol Chem, 1998,17:2463~2469.
    [204]Bird F L, Boon P I, Nichols P D. Physicochemical and microbial properties of burrows of the deposit-feeding Thalassinidean ghost shrimp Biffarius arenosus (Decapoda:Callianassidae). Estuar Coast Shelf Sci,2000,51:279~291
    [205]Kinoshita K, Wada M, Kogure K, et al. Mud shrimp burrows as dynamic traps and processors of tidal-flat materials. Mar Ecol Prog Ser,2003,247:159~164
    [205]Ciarelli S, van Straalen N M, Klap V A, et al. Effects of sediment bioturbation by the estuarine amphipod corophium volutator on fluoranthene resuspension and transfer into the mussel(Mytilus edulis). Environ Toxicol Chem,1999,18: 318~328
    [206]Tsai C H, Lick W. A portable device for measuring sediment resuspension. J Gt Lakes Res,1986,12:314~321
    [207]Tusseau-Vuillemin M, Gourlay C, Lorgeoux C, et al. Dissolved and bioavailable contaminants in the Seine river basin. Sci Total Environ, 2007,375:244~256
    [208]Tsai C H, Lick W. A portable device for measuring sediment resuspension. J Gt Lakes Res,1986,12:314~321
    [209]Bender K, Davis W R. The effect of feeding by yoldia limatula on bioturbation. Ophelia,1984,23:91~100
    [210]Graf G, Rosenberg R. Bioresuspension and biodeposition:a review. J Mar Syst, 1997,11:269~278.
    [211]Ghosh U, Giliette J S, Luthy RG, et al. Microscale location, characterization and association of polycyclic aromatic hydrocarbons on harbor sediment particles. Environ Sci Technol,2000,34:1729~1736
    [212]Lee B C, Shimizu Y, Matsuda T, et al. Characterization of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in deposited road particles (DRPs) from Lake Biwa area, Japan. Environ Sci Technol,2005,39: 7402~7409
    [213]Davey J T. The architecture of the burrow of Nereis diversicolor and its quantification in relation to sediment-water exchange. J Exp Mar Biol Ecol, 1994,179:115~129
    [214]Benoit J M, Shull D H, Harvey R M, et al. Effect of bioirrigation on sediment-water exchange of methylmercury in Boston Harbor, Massachusetts. Environ Sci Technol,2009,43:3669~3674
    [215]Schneider A, Porter E, Baker A. Polychlorinated biphenyl release from resuspended hudson river sediment. Environ Sci Technol,2007,41:1097~1103
    [216]Svensson J M, Enrich-Prast A, Leonardson L. Nitrification and denitrification in eutrophic lake sediment bioturbated by oligochaetes. Aquat Microb Ecol,2001, 23:177~186
    [217]Erickson M J, Turner C L, Thibodeaux L J. Field observation and modeling of dissolved fraction sediment-water exchange coefficients for PCBs in the Hudson River. Environ Sci Technol,2005,39:549~556
    [218]Ciarelli S, Kater B J, van Straalen N M. Influence of bioturbation by the amphipod Corophium colutator on fluoranthene uptake in the marine polychaete nereis virens. Environ Toxicol Chem,2000,19:1575~1581.
    [219]Lu Y, Wang Z. Accumulation of organochlorinated pesticides by triolein-containing semipermeable membrane device (triolein-SPMD) and rainbow trout. Water Res,2003,37:2419~2425
    [220]Huckins J N, Manuweera G K, Petty J D, et al. Lipid-containing semipermeable membrane devices for monitoring organic contaminants in water. Environ Sci Technol,1993,27:2489~2496
    [221]Zimmerman J R, Ghosh U, Millward R N, et al. Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments:physicochemical tests. Environ Sci Technol,2004,38:5454~5464
    [222]McCarthy K. Assessment of the usefulness of semipermeable membrane devices for long-term watershed monitoring in an urban slough system. Environ Monit Assess,2006,118:293~318
    [223]Rantalainen A, Cretney W J, Ikonomou M G. Uptake rates of semipermeable membrane devices (SPMDs) for PCDDs, PCDFs and PCBs in water and sediment. Chemosphere,2000,40:147~158
    [224]Sower G J, Anderson A. Spatial and temporal variation of preely dissolved polycyclic aromatic Hhydrocarbons in an Urban River undergoing superfund remediation. Environ Sci Technol,2008,42:9065~9071
    [225]Allan I J, Booij K, Paschke A, et al. Field performance of seven passive sampling devices for monitoring of hydrophobic substances. Environ Sci Technol,2009,43:5383~5390
    [226]Huckins J N, Tubergen M W, Manuweera G K. Semipermeable membrane devices containing model lipid:A new approach to monitoring the bioavailability of lipophilic contaminants and estimating their bioconcentration potential. Chemosphere,1990,20:533~552
    [227]Liu W X, Chen J L, Lin X M, et al. Distribution and characteristics of organic micropollutants in surface sediments from Bohai Sea. Environ Pollut,2006,140: 4-8
    [228]Van der Oost R, Opperhuizen A, Satumalay K, et al. Biomonitoring aquatic pollution with feral eel (Anguilla anguilla):I. Bioaccumulation:biotasediment ratios of PCBs, OCPs, PCDDs and PCDFs. Aquat Toxicol,1996,35:21~46
    [229]Williamson K S, Petty J D, Huckins J N, et al. Sequestration of priority pollutant PAHs from sediment pore water employing semipermeable membrane devices. Chemosphere,2002,49:717~729
    [230]Haitzer M, Hoss S, Traunspurger W, et al. Effects of dissolved organic matter (DOM) on the bioconcentration of organic chemicals in aquatic organisms-a review. Chemosphere,1998,37:1335~1362.
    [231]Gourlay C, Miege C, Noir A, et al. How accurately do semi-permeable membrane devices measure the bioavailability of polycyclic aromatic hydrocarbons to Daphnia magna? Chemosphere,2005,61:1734~1739
    [232]Ke R, Xu Y, Wang Z, et al. Estimation of the uptake rate constants for polycyclic aromatic hydrocarbons accumulated by semipermeable membrane devices and triolein-embedded cellulose acetate membranes. Environ Sci Technol,2006,40:3906~3911
    [233]Meadows J C, Echols K R, Huckins J N, et al. Estimating of uptake rate constants for PCB congeners accumulated by semipermeable membrane devices and brown trout (Salmo trutta). Environ Sci Technol,1998,32: 1847~1852
    [234]Gibson D T, Mahadevan V, Jerina R M, et al. Oxidation of the carcinogens benzo[a]pyrene and dibenz[a,h]anthracene to dihydrodiols by abacterium. Science,1975,189:295~297
    [235]Cemiglia C E. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation,1992,3:351~368
    [236]陈振楼,刘杰,许世远,等.大型底栖动物对长江口潮滩沉积物-水界面无机氮交换的影响.环境科学,2006,26(6):43-50
    [237]Jones A, Reed R, Weyers J.李玲,张春荣,郭建军,等译.生物学实验技术.长沙:湖南科学技术出版社,2001,146-147
    [238]Patre S K. Nature of biogenic elements in the surface sediments of the eastern continental shelf of India. Environ Pollut,2001,8:385~389
    [239]Fabi F, Silvia G, Ginlio Z. Anaerobic biodegradation of weathered polychlorinated biphenyls (PCBs) in contaminated sediments of Porto Marghera (Venice Lagoon, Italy). Chemosphere,2003,53:101~109
    [240]Bosma T N P, Harms H, Zehnder A J B. The handbook of environmental chemistry, Vol.2K:Biodegradation of xenobioties in environment and technosphere. Heidelberg:Springer Beriin,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700