用户名: 密码: 验证码:
银杏对分根区交替灌溉的适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分根区交替灌溉(APRI)不但是一种生物节水技术,也是一种重要的植物生理生化调控手段。为了探讨分根区交替灌溉对银杏水分管理策略的适应性和活性次生代谢物的影响,本研究以3年生分根盆栽银杏为试材,试验采取双因素三水平设计,因素1为供水方式(分别为分根区交替渗灌、固定根区渗灌和全根区渗灌),因素2为供水量(3个梯度为正常水分供应、轻度干旱和重度干旱),研究了银杏生长分化、生理生态、抗旱响应、次生代谢物等方面指标,并结合SPAC系统、等水/异水的抗旱机制以及次生代谢物产生机理进行了分析讨论,主要结论如下:
     (1)相对于常规灌溉方式,分根区交替灌溉在没有降低银杏生长量的同时,显著提高了银杏根冠比、吸收根、根系活力,增强了银杏对资源的获得能力,在轻度干旱胁迫下能保护银杏的细胞膜少受伤害。分根区交替灌溉最大限度的激发了补偿效应,在不影响植物光合速率和水分状况的情况下大大提高了植物的水分利用效率,充分发挥了植物本身的生物学节水潜力。分根区交替供水处理的银杏维持较高的叶绿素含量、Fv/Fm、Yield、qP,有效缓解光抑制,保护了光合结构,同时还缓解了光合色素的分解,利于银杏的二次生长。
     (2)银杏水分利用效率与活性氧和质膜伤害相关指标的相关性显著,说明银杏水分利用效率相对于其干旱胁迫的响应和适应而言,具有滞后性,所以一味的追求提高水分利用效率会使银杏受到严重的活性氧胁迫。分根区交替灌溉提高银杏WUE的原因一是在不明显降低光合速率的情况下显著降低了蒸腾速率和气孔导度,进而提高了水分利用效率;二是提高了根系的导水率,即根系的吸收能力得到了增强。
     (3)在不同的供水条件下,ABA与银杏的水分状况调控、渗透调节和活性氧代谢等过程关系密切。ABA的积累不但在银杏与环境因子之间的联系中发挥了重要作用,而且在银杏叶片水分状况和相关抗旱代谢调节机制之间也具有重要的地位。
     (4)银杏气孔导度与叶片水分状况和渗透物质相关性高;叶水势与水分状况指标、逆境信号、渗透调节和资源获得指标关系密切。研究发现银杏是等水植物,水势的变化配合了气孔调节,叶水势影响了气孔导度对ABA的敏感性,银杏气孔调节是化学和水力信号共同作用的结果,水分亏缺条件下通过气孔和水势调节在SPAC系统中尽量维持了银杏体内的水分平衡。
     (5)银杏主要在两方面提高了干旱适应能力:一方面通过降低气孔导度来减少水分散失,提高水分利用效率,避免过度蒸腾而引发导管的气塞发生和水势的过度降低,同时,通过提高根冠比、增加吸收根和根系活力,以尽可能多的吸收水分。另一方面,增加渗透物质的积累、提高活性氧清除能力、合成生物活性物质保护核酸、蛋白和膜脂的结构和功能;银杏的这一系列反应,其目的是维持体内水分状况在正常范围内,以保证正常生理活动的进行。
     (6)分根区交替灌溉和轻度干旱胁迫可以促进脯氨酸和多胺的积累,说明分根区供水和土壤含水量为最大持水量的55%时,银杏的抗性最强。脯氨酸和多胺在银杏叶片的积累具有反馈机制,使得其含量水平根据胁迫情况的不同而维持相应的动态平衡。银杏叶片脯氨酸在植物逆境胁迫过程中与内源激素、渗透调节和活性氧清除等密切相关,说明脯氨酸广泛地参与了植物在水分亏缺响应和适应性的相关过程。不同种类和形式的多胺,在植物逆境胁迫适应相关的过程中作用不同,以多胺储存、离子平衡、渗透调节、生物大分子保护等功能为主。银杏叶片脯氨酸含量和P5CS活性呈极显著的线性关系,在多胺的生物合成过程中精氨酸途径起到了关键作用,发现在干旱胁迫条件下,多胺和脯氨酸的生物合成途径可能存在对鸟氨酸的竞争现象。
     (7)分根区交替灌溉和轻度干旱胁迫利于银杏叶片黄酮和萜内酯的累积,以及苯丙氨酸解氨酶和查尔酮异构酶等关键酶活性的提高。发现银杏叶片黄酮的合成和积累与活性氧胁迫及内源激素关系密切,银杏黄酮可能在细胞生长与分化调节以及延缓衰老和保护生物大分子等方面发挥了直接或间接的作用。而银杏萜内酯在银杏体内广泛的参与了植物的生长、分化以及逆境信号转导和胁迫适应等过程,但与银杏的生长和分化调节方面关系更为密切。银杏黄酮、萜内酯次生代谢物合成机制是氧化应激效应假说、生长与分化假说、资源获得假说的综合体现。
     分根区交替灌溉不但可以提高银杏的适应能力和水分利用效率,而且还是一种不降低生物量而能提高银杏黄酮、萜内酯含量的简便、安全、可靠的方法。
Alternative partial root-zone irrigation (APRI) is not only a biological water-savingtechnology, but also an important means of regulation of plant physiology and biochemistry. Inorder to explore the adaptability and the impact on secondary metabolites of APRI on the watermanagement strategy of Ginkgo, this research takes the3-year split root potted ginkgo as testmaterials, and the test takes two-factor three-level design: factor1is the water supply(Alternative partial root-zone subsurface irrigation, the fixed root zone subsurface irrigation andfull root zone subsurface irrigation); factor2is the amount of water supply (the three gradientsare normal water supply, mild drought and severe drought), doing research on the parameters ofthe growth and differentiation,physiology and Ecology, drought response, secondarymetabolites of ginkgo, combing with the analysis and discussion of SPAC system, such asIsohydric/Anisohydric behavior drought-resistant mechanism of water and the mechanism ofsecondary metabolites, the main conclusions are as follows:
     (1) Compared with conventional irrigation methods, APRI did not reduce the amount ofginkgo growth, but significantly improved the ginkgo root to shoot ratio, absorbing roots, rootactivity, and at the same time enhanced the ability of Ginkgo access to resources, and made theginkgo membrane less harm in mild drought stress. APRI stimulated the maximumcompensation effect, greatly improved plant water use efficiency and root to shoot ratio notaffecting the photosynthetic rate of plant water status, gave full play to the biologicalwater-saving potential of the plant itself. The ginkgo of partial root alternate water treatmentmaintained high chlorophyll content, Fv/FM, Yield, qP, effectively alleviated photo inhibitionprotect photosynthetic structure, but also eased the decomposition of photosynthetic pigments,and promoted to second growth of ginkgo.
     (2) The water use efficiency of Ginkgo and reactive oxygen species with the plasmamembrane injury index was significantly correlated. This showed that Ginkgo water useefficiency relative to its drought stress response and adaptation, with a lag, so blind pursuit toimprove the efficiency of water use would make the ginkgo by a serious reactive oxygen stress.One reason of APRI to improve ginkgo WUE was that APRI significantly reduced thetranspiration rate and stomata conductance, thus improved the efficiency of water use with a notsignificantly reduction in the photosynthetic rate; the second was that APRI increased the roothydraulic conductivity, and enhanced root absorption capacity.
     (3) Under different water conditions, ABA and ginkgo water status regulation, osmoticregulation and reactive oxygen metabolism were closely related. The accumulation of ABAplayed an important role not only in the link between ginkgo and environmental factors, butalso in the Ginkgo leaf water status and related drought metabolic regulation mechanism.
     (4) Ginkgo stomatal conductance and leaf water status and osmotic substances related tohigh; the indicators of leaf water potential and water status, stress signal, osmotic adjustmentand resource indicators closely related. This study found that ginkgo was isohydric plants, andwater potential in line with the stomatal regulation, leaf water potential impacted on thesensitivity of stomatal conductance to ABA, Ginkgo stomatal regulation was the result of therole of chemical and hydraulic signals. Under water deficit the ginkgo through the stomata andwater potential adjustment in the SPAC system would try to keep the body water balance.
     (5) Ginkgo improved the drought adaptability mainly in two ways:the one hand, byreducing the stomatal conductance to reduce water loss, improving the efficiency of water use,to avoid excessive transpiration caused by the catheter air lock and excessive reduction of thewater potential, at the same time, to increase the absorption of roots and root activity to absorbwater as much as possible; on the other hand, the increase in the accumulation of osmolytes,improving the ability of active oxygen scavenging, the synthesis of biologically activesubstances to protect the structure and function of nucleic acids, proteins and membrane lipids.The series of reactions of the Ginkgo aimed to maintain body water status within the normalrange to ensure normal physiological activity.
     (6) The APRI and mild drought stress could contribute to the accumulation of proline andpolyamines, which showed that under the condition that APRI and soil water content of55%ofthe maximum water holding capacity, the ginkgo most resistant. The accumulation of prolineand polyamines in Ginkgo biloba had a feedback mechanism which could maintain the dynamicequilibrium at a level, depending on the stress situation. Ginkgo biloba proline, endogenoushormones and active oxygen scavenging in plant stress in osmotic adjustment was closelyrelated showed that proline extensively involved in the process of the plants in the water deficitresponse and adaptability. Different types and forms of polyamines in plant stress adaptationrelated to the polyamine storage, ion balance, osmotic adjustment, protection of biologicalmacromolecules based. Ginkgo leaf proline content and P5CS activity was a significant linearrelationship. arginine pathway played a key role in polyamine biosynthesis, and this studyfound that there may be a competition to ornithine in polyamine, and proline biosyntheticpathway under drought stress.
     (7) APRI and mild drought stress conducive to the accumulation of Ginkgo bilobaflavonoids and terpene lactones, and the improving of phenylalanine ammonia-lyase andchalcone isomerase activities of key enzymes. This study found that the synthesis andaccumulation of ginkgo flavonoid, reactive oxygen stress and endogenous hormones closelyrelated,and ginkgo flavonoids may play directly or indirectly in cell growth and differentiationregulation and anti-aging, and the conservation of biological macromolecules. Ginkgolides in ginkgo body widely involved in plant growth, differentiation and stress signal transduction andstress adaptation process, but ginkgolides and ginkgo growth,differentiation regulation relatedmore closely. Ginkgo flavonoids, the terpene lactones secondary metabolite synthesismechanism were the comprehensive reflection of the hypothesis of oxidation stress effects,growth/differentiation balance and resource availability.
     APRI not only could improve the ability to adaptability and water use efficiency of theginkgo, but also was a simple, safe and reliable method improving the content of flavonoids,terpene lactone in ginkgo, without reducing the biomass.
引文
[1]山仑.科学应对农业干旱.干旱地区农业研究,2011,(2):1~5
    [2]秦大河.气候变化与干旱.科技导报,2009,(11):3
    [3]夏军,翟金良,占车生.我国水资源研究与发展的若干思考.地球科学进展,2011,(9):905~915
    [4]丁文喜.中国水资源可持续发展的对策与建议.中国农学通报,2011,(14):221~226
    [5]杜太生,康绍忠,胡笑涛,等.时空亏缺调控灌溉--果园节水理论的新突破.沈阳农业大学学报,2004,35(5):449~454
    [6] Kang S Z, Zhang J H. Controlled alternate partial root-zone irrigation: its physiological consequencesand impact on water use efficiency. JOURNAL OF EXPERIMENTAL BOTANY,2004,55(407):2437~2446
    [7] Ahmadi S H, Andersen M N, Plauborg F, et al. Effects of irrigation strategies and soils on field grownpotatoes: Yield and water productivity. AGRICULTURAL WATER MANAGEMENT,2010,97(11):1923~1930
    [8]杜太生,康绍忠,张建华.交替灌溉的节水调质机理及同位素技术在作物水分利用研究中的应用.植物生理学报,2011,(9):823~830
    [9] Wang Y S, Liu F L, Jensen C R. Comparative effects of deficit irrigation and alternate partial root-zoneirrigation on xylem pH, ABA and ionic concentrations in tomatoes. JOURNAL OF EXPERIMENTALBOTANY,2012,63(5):1907~1917
    [10] Du T S, Kang S Z, Zhang J H, et al. Water use efficiency and fruit quality of table grape under alternatepartial root-zone drip irrigation. AGRICULTURAL WATER MANAGEMENT,2008,95(6):659~668
    [11] Zegbe J A, Serna-Perez A. Partial rootzone drying maintains fruit quality of 'Golden Delicious' applesat harvest and postharvest. SCIENTIA HORTICULTURAE,2011,127(3):455~459
    [12]曹福亮.中国银杏南京:江苏省科学技术出版社,2003.
    [13]王玉涛.北京城市优良抗旱节水植物材料的筛选与评价研究:[博士学位论文].北京林业大学,2008
    [14]朱灿灿.银杏叶次生代谢产物的环境诱导机制及其调控:[博士学位论文].南京林业大学,2010
    [15] Kirda C, Topcu S, Cetin M, et al. Prospects of partial root zone irrigation for increasing irrigation wateruse efficiency of major crops in the Mediterranean region. ANNALS OF APPLIED BIOLOGY,2007,150(3):281~291
    [16] Sepaskhah A R, Ahmadi S H. A Review on Partial Root-Zone Drying Irrigation. INTERNATIONALJOURNAL OF PLANT PRODUCTION,2010,4(4):241~258
    [17] Davies W J, Wilkinson S, Loveys B. Stomatal control by chemical signalling and the exploitation ofthis mechanism to increase water use efficiency in agriculture. NEW PHYTOLOGIST,2002,153(3):449~460
    [18] Dodd I C, Egea G, Davies W J. Accounting for sap flow from different parts of the root systemimproves the prediction of xylem ABA concentration in plants grown with heterogeneous soil moisture.JOURNAL OF EXPERIMENTAL BOTANY,2008,59(15):4083~4093
    [19]张建华,贾文锁,康绍忠.根系分区灌溉和水分利用效率(英文).西北植物学报,2001,(2):191~197
    [20]梁宗锁,康绍忠,张建华,等.控制性分根交替灌水对作物水分利用率的影响及节水效应.中国农业科学,1998,(5):88~90
    [21] Heilmeier H, Schulze E, Fan J, et al. General relations of stomatal responses to xylem sap abscisic acidunder stress in the rooting zone-A global perspective. FLORA,2007,202(8):624~636
    [22] Dodd I C, Egea G, Davies W J. Abscisic acid signalling when soil moisture is heterogeneous:decreased photoperiod sap flow from drying roots limits abscisic acid export to the shoots. PLANT CELLAND ENVIRONMENT,2008,31(9):1263~1274
    [23] Morison J, Baker N R, Mullineaux P M, et al. Improving water use in crop production.PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES,2008,363(1491):639~658
    [24]李冀南,李朴芳,孔海燕,等.干旱胁迫下植物根源化学信号研究进展.生态学报,2011,(5)
    [25]胡田田,康绍忠.植物抗旱性中的补偿效应及其在农业节水中的应用.生态学报,2005,(2)
    [26]周磊,甘毅,欧晓彬,等.作物缺水补偿节水的分子生理机制研究进展.中国生态农业学报,2011,(4)
    [27] Wang Y S, Liu F L, Andersen M N, et al. Carbon retention in the soil-plant system under differentirrigation regimes. AGRICULTURAL WATER MANAGEMENT,2010,98(3SI):419~424
    [28] Jensen C R, Battilani A, Plauborg F, et al. Deficit irrigation based on drought tolerance and rootsignalling in potatoes and tomatoes. AGRICULTURAL WATER MANAGEMENT,2010,98(3SI):403~413
    [29]余江敏,李伏生,韦彩会,等.根区局部灌溉对有机无机肥配施土壤微生物和玉米水分利用的影响.干旱地区农业研究,2008,(5)
    [30]王金凤.控制性根系分区交替灌溉对作物生长及其根区微生物的影响:[博士学位论文].西北农林科技大学,2009
    [31]韩坤,张纪涛,上官宇先,等.交替灌溉条件下水氮耦合对土壤气态氮排放的影响.环境科学,2011,(1)
    [32]刘水,李伏生,韦翔华,等.分根区交替灌溉对玉米水分利用和土壤微生物量碳的影响.农业工程学报,2012,(8):71~77
    [33]山仑,张岁岐.节水农业及其生物学基础.水土保持严谨,1999,6(1):3~7
    [34]杜太生,康绍忠.基于水分-品质响应关系的特色经济作物节水调质高效灌溉.水利学报,2011,(2)
    [35]朱旗,徐吉臣.植物抗旱分子机制研究进展.安徽农业科学,2010,(26):14198~14202
    [36] Plauborg F, Abrahamsen P, Gjettermann B, et al. Modelling of root ABA synthesis, stomatalconductance, transpiration and potato production under water saving irrigation regimes. AGRICULTURALWATER MANAGEMENT,2010,98(3SI):425~439
    [37]康绍忠,潘英华,石培泽,等.控制性作物根系分区交替灌溉的理论与试验.水利学报,2001,(11):80~86
    [38] Dorji K, Behboudian M H, Zegbe-Dominguez J A. Water relations, growth, yield, and fruit quality ofhot pepper under deficit irrigation and partial rootzone drying. SCIENTIA HORTICULTURAE,2005,104(2):137~149
    [39]杨启良,张富仓,刘小刚.根系分区交替滴灌对苹果幼苗生理特性和水分利用效率的影响.西北植物学报,2009,(7):1364~1372
    [40]杨启良,张富仓,刘小刚,等.控制性分根区交替滴灌对苹果幼树形态特征与根系水分传导的影响.应用生态学报,2012,(5)
    [41]李彩霞,孙景生,周新国,等.隔沟交替灌溉条件下玉米根系形态性状及结构分布.生态学报,2011,(2)
    [42]刘贤赵,刘德林.连续亏缺灌溉与根系分区灌溉对苹果幼树根系生长的影响.中国生态农业学报,2010,(6)
    [43]杨素苗.灌溉方式对红富士苹果根系水分生理特性影响的研究:[博士学位论文].河北农业大学,2011
    [44]潘丽萍,李彦,唐立松.分根交替灌水对棉花生长、光合与水分利用效率的影响.棉花学报,2010,22(2):138~144
    [45]刘松忠,魏钦平,王小伟,等.苹果根域交替、定位灌水对新梢生长和叶片生理的影响.园艺学报,2010,37(11):1721~1728
    [46]刘贤赵,宿庆,刘德林.根系分区不同灌水上下限对茄子生长与产量的影响.农业工程学报,2010,(6)
    [47]宋磊,岳玉苓,狄方坤,等.分根交替灌溉对桃树生长发育及水分利用效率的影响.应用生态学报,2008,(7):1631~1636
    [48]胡超.控制性分根交替灌溉提高马铃薯水分利用效率的研究:[硕士学位论文].南京农业大学,2011
    [49]刘松忠,魏钦平,王小伟,等.苹果分根交替灌溉不同水量对树体生长和水分利用效率的影响.果树学报,2010,(2)
    [50]王艳,张佳宝,张丛志,等.不同灌溉处理对玉米生长及水分利用效率的影响.灌溉排水学报,2008,(5):41~44
    [51]张雯,安贵阳,李翠红.肥水分区调控对苹果光合作用、生长结果和果实品质的影响.西北农业学报,2010,19(6):110~114
    [52]黄仲冬,齐学斌,樊向阳,等.根区交替地下滴灌对马铃薯产量及水分利用效率的影响.应用生态学报,2010,(1):79~83
    [53] Li G, Wan S W, Zhou J, et al. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigmentscontent, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.)seedlings to salt stress levels. INDUSTRIAL CROPS AND PRODUCTS,2010,31(1):13~19
    [54]綦伟,翟衡,厉恩茂,等.部分根区干旱对不同砧木嫁接葡萄光合作用的影响.园艺学报,2007,(1)
    [55] Szabados L, SavouréA. Proline: a multifunctional amino acid. Trends in Plant Science,2010,15(2):89~97
    [56] Gomes F P, Oliva M A, Mielke M S, et al. Osmotic adjustment, proline accumulation and cellmembrane stability in leaves of Cocos nucifera submitted to drought stress. Scientia Horticulturae,2010,126(3):379~384
    [57] Chandra Rai A, Singh M, Shah K. Effect of water withdrawal on formation of free radical, prolineaccumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. PlantPhysiology and Biochemistry,2012,61(0):108~114
    [58] Ku H, Hu C, Chang H, et al. Analysis by virus induced gene silencing of the expression of two prolinebiosynthetic pathway genes in Nicotiana benthamiana under stress conditions. Plant Physiology andBiochemistry,2011,49(10):1147~1154
    [59]綦伟.不同葡萄砧穗组合对分根交替灌溉的生物学响应.2006,
    [60]马怀宇,吕德国,刘国成,等.不同灌水方式对‘寒富’苹果叶片光合功能和抗氧化酶活性的影响.生态学杂志,2012,
    [61] Anjum S A, Farooq M, Xie X, et al. Antioxidant defense system and proline accumulation enables hotpepper to perform better under drought. Scientia Horticulturae,2012,140(0):66~73
    [62]曹让,梁宗锁,武永军,等.分根交替渗透胁迫下玉米幼苗叶片中游离氨基酸的变化.干旱地区农业研究,2004,(2)
    [63]宋磊.分根交替灌溉对大棚草莓生长、光合作用和氧化酶活性的影响.2009,
    [64] Takahashi T, Kakehi J I. Polyamines: ubiquitous polycations with unique roles in growth and stressresponses. Annals of botany,2010,105(1):1~6
    [65] Fuell C, Elliott K A, Hanfrey C C, et al. Polyamine biosynthetic diversity in plants and algae. PlantPhysiology and Biochemistry,2010,48(7):513~520
    [66] Serafini-Fracassini D, Di Sandro A, Del Duca S. Spermine delays leaf senescence in Lactuca sativa andprevents the decay of chloroplast photosystems. Plant Physiology and Biochemistry,2010,48(7):602~611
    [67] Wang B, Zhang Q, Liu J, et al. Overexpression of PtADC confers enhanced dehydration and droughttolerance in transgenic tobacco and tomato: Effect on ROS elimination. Biochemical and BiophysicalResearch Communications,2011,413(1):10~16
    [68] Toumi I, Moschou P N, Paschalidis K A, et al. Abscisic acid signals reorientation of polyaminemetabolism to orchestrate stress responses via the polyamine exodus pathway in grapevine. Journal of PlantPhysiology,2010,167(7):519~525
    [69] Peremarti A, Bassie L, Yuan D, et al. Transcriptional regulation of the rice arginine decarboxylase(Adc1) and S-adenosylmethionine decarboxylase (Samdc) genes by methyl jasmonate. Plant Physiology andBiochemistry,2010,48(7):553~559
    [70]原丽娜,胡田田,康绍忠,等.局部灌水方式下玉米根系对干旱及复水的生理生化响应.节水灌溉,2010,(9):15~18
    [71]李昊文,赵军.非生物逆境信号转导的分子机制.中国农业科技导报,2008,(S1):1~6
    [72] Cai H, Tian S, Liu C, et al. Identification of a MYB3R gene involved in drought, salt and cold stress inwheat (Triticum aestivum L.). Gene,2011,485(2):146~152
    [73]潘丽萍,李彦,唐立松.局部根区灌溉对棉花主要生理生态特性的影响.中国农业科学,2009,(8):2982~2986
    [74]张自常,李鸿伟,陈婷婷,等.畦沟灌溉和干湿交替灌溉对水稻产量与品质的影响.中国农业科学,2011,(24):4988~4998
    [75]邹养军,魏钦平,李嘉瑞,等.根系分区灌水对苹果叶片内源激素及生长的影响.园艺学报,2006,(5):1039~1041
    [76]周振江,牛晓丽,陈思,等.根系分区交替灌溉条件下水肥供应对番茄中番茄红素含量的影响.中国蔬菜,2013,
    [77]牛晓丽,周振江,李瑞,等.根系分区交替灌溉条件下水肥供应对番茄可溶性固形物含量的影响.中国农业科学,2012,(5):893~901
    [78] Maclennan K M, Darlington C L, Smith P F. The CNS effects of Ginkgo biloba extracts and ginkgolideB. Progress in Neurobiology,2002,66(3):235~257
    [79]许锋.银杏GbPAL和GbANS基因的克隆与表达及ALA对类黄酮含量的影响:[博士学位论文].山东农业大学,2008
    [80]张雯.银杏萜内酯代谢途径中关键酶基因的遗传转化研究:[硕士学位论文].复旦大学,2008
    [81]孙铭遥.基于紫外诱导银杏叶次生代谢产物及其差异蛋白质组学研究:[硕士学位论文].浙江大学,2010
    [82]许锋,张威威,孙楠楠,等.矮壮素对银杏叶片光合代谢与萜内酯生物合成的影响.园艺学报,2011,(12):2253~2260
    [83] Schijlen E G, de Vos C H, Martens S, et al. RNA interference silencing of chalcone synthase, the firststep in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol,2007,144(3):1520~1530
    [84]程水源,陈昆松,刘卫红,等.植物苯丙氨酸解氨酶基因的表达调控与研究展望.果树学报,2003,(6)
    [85]程水源,王燕,刘卫红,等.生长调节剂对离体银杏叶苯丙氨酸解氨酶活性的影响.植物资源与环境学报,2005,(2)
    [86]许锋,程水源,程述汉,等.银杏查尔酮合成酶基因表达的时间进程(英文).植物生理与分子生物学学报,2007,(4):309~317
    [87]李琳玲,程华,程水源,等.银杏查尔酮合成酶基因启动子(GbCHSP)调控元件及功能分析.园艺学报,2010,(12):1919~1928
    [88] F X, Sy C, Sh C, et al. Time course of expression of chalcone synthase gene in Ginkgo biloba. Journalof plant physiology and molecular biology,2007,33(4):309~317
    [89] Pourcel L, Routaboul J M, Cheynier V, et al. Flavonoid oxidation in plants: from biochemicalproperties to physiological functions. TRENDS IN PLANT SCIENCE,2007,12(1):29~36
    [90] Treutter D. Significance of flavonoids in plant resistance and enhancement of their biosynthesis.PLANT BIOLOGY,2005,7(6):581~591
    [91] van Beek T A, Montoro P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, andphytopharmaceuticals. J Chromatogr A,2009,1216(11):2002~2032
    [92] Eisenreich W, Rohdich F, Bacher A. Deoxyxylulose phosphate pathway to terpenoids. Trends in plantscience,2001,6(2):78~84
    [93] Lo Bianco R, Francaviglia D. Comparative responses of 'Gala' and 'Fuji' apple trees to deficit irrigation:Placement versus volume effects. PLANT AND SOIL,2012,357(1-2):41~58
    [94] Poni S, Bernizzoni F, Civardi S. Response of "Sangiovese"' grapevines to partial root-zone drying:Gas-exchange, growth and grape composition. SCIENTIA HORTICULTURAE,2007,114(2):96~103
    [95]吴家胜,应叶青,周国模.喜树叶用园的密度效应.浙江林学院学报,2007,(6)
    [96]许大全.光合作用气孔限制分析中的一些问题.植物生理学通讯,1997,(4):241~244
    [97]贺立红,贺立静,梁红.银杏不同品种叶绿素荧光参数的比较.华南农业大学学报,2006,(4):43~46
    [98] Hu T T, Yuan L N, Wang J F, et al. Antioxidation responses of maize roots and leaves to partialroot-zone irrigation. AGRICULTURAL WATER MANAGEMENT,2010,98(1):164~171
    [99]李洁,姚延梼,周春娥,等.分区交替水分胁迫对草乌光合特性的影响.林业科学,2012,(6):72~79
    [100]王学奎.植物生理生化试验原理和技术北京:高等教育出版社,2006.
    [101] Uchida A, Jagendorf A T, Hibino T, et al. Effects of hydrogen peroxide and nitric oxide on both saltand heat stress tolerance in rice. PLANT SCIENCE,2002,163(3):515~523
    [102]汪天,胡晓辉,郭世荣,等.外源多胺对低氧胁迫下黄瓜幼苗根系活性氧及保护酶活性变化的影响.农业工程学报,2005,(5)
    [103]赵福庚,刘友良.大麦幼苗多胺合成比脯氨酸合成对盐胁迫更敏感.植物生理学报,2000,26(4):343
    [104] Kim H R, Rho H W, Park J W. Assay of ornithine aminotransferase with ninhydrin. AnalyticalBiochemistry,1994,223(2):205~207
    [105]赵福庚,孙诚,刘友良,等. ABA和NaCl对碱蓬多胺和脯氨酸代谢的影响.植物生理与分子生物学学报,2002,28(2):117~120
    [106]段九菊,郭世荣,康云艳,等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响.应用生态学报,2008,(1):57~64
    [107]张志新,邹志荣,张春梅,等.水分胁迫对番茄幼苗叶片和根系中多胺代谢的影响.西北农林科技大学学报(自然科学版),2009,(7):97~102
    [108]赵福庚,刘友良.精氨酸脱羧酶和谷酰胺转移酶活性的测定方法.植物生理学通讯,2000,36(5):442~445
    [109]汪天,郭世荣,刘俊,等.多胺氧化酶检测方法的改进及其在低氧水培黄瓜根系中的应用.植物生理学通讯,2004,
    [110]王金凤.控制性根系分区交替灌溉对作物生长及其根区微生物的影响.2010,
    [111] Hu T, Yuan L, Wang J, et al. Antioxidation responses of maize roots and leaves to partial root-zoneirrigation. Agricultural Water Management,2010,98(1):164~171
    [112] Liu F L, Andersen M N, Jensen C R. Capability of the 'Ball-Berry' model for predicting stomatalconductance and water use efficiency of potato leaves under different irrigation regimes. SCIENTIAHORTICULTURAE,2009,122(3):346~354
    [113] Blum A. Effective use of water (EUW) and not water-use effciency (WUE) is the target of crop yieldimprovement under drought stress. Field Crops Research,2009(112):119~123
    [114] Hu T T, Kang S Z, Li F S, et al. Effects of partial root-zone irrigation on hydraulic conductivity in thesoil-root system of maize plants. JOURNAL OF EXPERIMENTAL BOTANY,2011,62(12):4163~4172
    [115] Sadras V O. Does partial root-zone drying improve irrigation water productivity in the field? Ameta-analysis. IRRIGATION SCIENCE,2009,27(3):183~190
    [116] Diaz-Espejo A, Cuevas M V, Ribas-Carbo M, et al. The effect of strobilurins on leaf gas exchange,water use efficiency and ABA content in grapevine under field conditions. JOURNAL OF PLANTPHYSIOLOGY,2012,169(4):379~386
    [117] AugéR, Toler H, Sams C, et al. Hydraulic conductance and water potential gradients in squash leavesshowing mycorrhiza-induced increases in stomatal conductance. Mycorrhiza,2008,18(3):115
    [118] Soar C J, Speirs J, Maffei S M, et al. Grape vine varieties Shiraz and Grenache differ in their stomatalresponse to VPD: apparent links with ABA physiology and gene expression in leaf tissue. AUSTRALIANJOURNAL OF GRAPE AND WINE RESEARCH,2006,12(1):2~12
    [119] Williams L E, Baeza P, Vaughn P. Midday measurements of leaf water potential and stomatalconductance are highly correlated with daily water use of Thompson Seedless grapevines. IRRIGATIONSCIENCE,2012,30(3):201~212
    [120] Centritto M, Wahbi S, Serraj R, et al. Effects of partial rootzone drying (PRD) on adult olive tree (Oleaeuropaea) in field conditions under arid climate II. Photosynthetic responses. AGRICULTUREECOSYSTEMS&ENVIRONMENT,2005,106(2-3SI):303~311
    [121] Aganchich B, Wahbi S, Loreto F, et al. Partial root zone drying: regulation of photosyntheticlimitations and antioxidant enzymatic activities in young olive (Olea europaea) saplings. TREEPHYSIOLOGY,2009,29(5):685~696
    [122] Wahbi S, Wakrim R, Aganchich B, et al. Effects of partial rootzone drying (PRD) on adult olive tree(Olea europaea) in field conditions under arid climate: I. Physiological and agronomic responses. Agriculture,Ecosystems& Environment,2005,106(2–3):289~301
    [123] Aasamaa K, Sober A. Stomatal sensitivities to changes in leaf water potential, air humidity, CO2concentration and light intensity, and the effect of abscisic acid on the sensitivities in six temperate deciduoustree species. ENVIRONMENTAL AND EXPERIMENTAL BOTANY,2011,71(1):72~78
    [124]刘利民,齐华,罗新兰,等.植物气孔气态失水与SPAC系统液态供水的相互调节作用研究进展.应用生态学报,2008,(9):2067~2073
    [125] Duursma R A, Kolari P, Peramaki M, et al. Predicting the decline in daily maximum transpiration rateof two pine stands during drought based on constant minimum leaf water potential and plant hydraulicconductance. TREE PHYSIOLOGY,2008,28(2):265~276
    [126] Domec J C, Johnson D M. Does homeostasis or disturbance of homeostasis in minimum leaf waterpotential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars? TREEPHYSIOLOGY,2012,32(3):245~248
    [127]赵贵林,陈强,胡国霞,等.水稻脯氨酸代谢关键酶对水分胁迫的响应.干旱地区农业研究,2011,(3):80~83
    [128]李玲,余光辉,曾富华.水分胁迫下植物脯氨酸累积的分子机理.华南师范大学学报(自然科学版),2003,(1):126~134
    [129]汪耀富,张瑞霞.渗透胁迫下烤烟内源多胺含量及其代谢酶活性变化.干旱地区农业研究,2005,(6):92~96
    [130]黄诚梅,毕黎明,杨丽涛,等.聚乙二醇胁迫对甘蔗伸长期间叶中脯氨酸积累及其代谢关键酶活性的影响.植物生理学通讯,2007,(1):77~80
    [131] Lister C E, Lancaster J E. Developmental changes in enzymes of flavonoid biosynthesis in the skins ofred and green apple cultivars. J Sci Food Agric,1996(71):313~320
    [132]谢宝东,王华田,常立华,等.土壤水分含量对银杏叶黄酮和内酯含量的影响.山东林业科技,2002,(5)
    [133]朱灿灿,曹福亮,汪贵斌,等.干旱胁迫对银杏叶萜内酯年动态变化的影响.林业科技开发,2011,(6):15~20
    [134]朱灿灿,田亚玲,曹福亮,等.干旱胁迫对银杏叶类黄酮年动态变化的影响.林业科技开发,2010,(4):67~71
    [135]张成军,郭佳秋,陈国祥,等.高温和干旱对银杏光合作用、叶片中黄酮苷和萜类内酯含量的影响.农村生态环境,2005,21(3):11~15
    [136]程水源,杜何为,许锋,等.银杏苯丙氨酸解氨酶基因的克隆和序列分析.林业科学研究,2005,
    [137]郝岗平,杜希华,史仁玖.干旱胁迫下外源一氧化氮促进银杏可溶性糖脯氨酸和次生代谢产物合成.植物生理与分子生物学学报,2007,33(4):499一~506一
    [138]冷平生,苏淑钗,李月华,等.施肥与干旱胁迫对银杏生长及黄酮苷和萜类内酯含量的影响.北京农学院学报,2001,(1):32~37
    [139] Frischknecht P M, Schuhmacher K, Muller-Scharer H, et al. Phenotypic plasticity of Senecio vulgarisfrom contrasting habitat types: Growth and pyrrolizidine alkaloid formation. JOURNAL OF CHEMICALECOLOGY,2001,27(2):343~358
    [140] Hamilton J G, Zangerl A R, Delucia E H, et al. The carbon-nutrient balance hypothesis: its rise and fall.ECOLOGY LETTERS,2001,4(1):86~95
    [141] Barto E K, Cipollini D. Testing the optimal defense theory and the growth-differentiation balancehypothesis in Arabidopsis thaliana. OECOLOGIA,2005,146(2):169~178
    [142] Byers J E. Effects of body size and resource availability on dispersal in a native and a non-nativeestuarine snail. Journal of Experimental Marine Biology and Ecology,2000,248(2):133~150
    [143]刘欣,王豹祥,冯云,等.氧化胁迫与特色烤烟质量形成的关系探讨.中国农学通报,2009,(04):225~230

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700