用户名: 密码: 验证码:
碳纤维纺丝过程的协同模型与智能优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维是上个世纪五十年代末异军突起的一种新型的工程材料,它具有理想的工程特性,比如:高强度、高模量,被广泛应用于各行各业,成为一个国家军事、工业和经济等方面的重要影响因素之一。由于我国的碳纤维生产起步较晚,与先进国家生产的碳纤维在性能上具有较大的差距,对其生产过程优化开展研究,具有深远的意义。基于碳纤维纺丝生产线本身流程长,生产环境复杂,影响因素众多,各个环节之间的生产参数又相互耦合,将协同机制及生物机理引入其中,采用人工智能算法对碳纤维的纺丝过程进行建模与优化,对碳纤维的实时生产监控,提高碳纤维产品性能,可以提供相应的指导作用,具有一定的参考价值。本论文的具体贡献归纳如下:
     (1)以聚丙烯腈基碳纤维的六级牵伸过程为例,通过对搜集整理到的实验数据进行曲线拟合,研究了具有代表性的若干产品性能与牵伸参数之间的相互关系,给出了一个可供参考的碳纤维牵伸过程数学模型;设计了一种具有协同机制、克隆选择和非一致性变异三个主要操作的协同免疫克隆选择算法来解决碳纤维六级牵伸牵伸比分配这个多目标优化问题;由本论文所提算法获得的优化结果可以对碳纤维的实际生产提供一定的参考价值,所提算法也同样可以运用到类似的多目标优化问题中去。
     (2)以聚丙烯腈基碳纤维的原丝预氧化过程为例,建立了一个基于父代保留策略的免疫遗传加强BP神经网络预测模型,从预氧化过程的生产参数即可以提前评估出碳纤维预氧丝的性能。基于现有的实验数据,通过与已有的碳纤维预氧丝性能预测模型进行比较,结果表明,我们所提出的模型在性能预测方面具有更好的精度,并且能够更加快速的给出预测值,是一个更加可靠的预测模型,能够更好地为碳纤维原丝的预氧化过程提供相应的指导与参考。
     (3)我们提出了一个基于遗传-加强粒子群混合算法的神经网络(GA-IPSO-RNN)的聚丙烯腈基碳纤维纺丝生产过程双向优化模型。我们先用最近邻聚类算法确定径向基函数神经网络的隐含层所包含的神经元个数,然后提出一种遗传-加强粒子群算法来调整径向基函数神经网络的各个参数:作用函数及权重。通过这个模型,我们一方面给出了一种碳纤维产品性能预测的方法;一方面为新型碳纤维产品的生产方案设计提供了参考。这种新的基于遗传-加强粒子群混合算法引入到径向基函数神经网络中去,它们的结合使用,在一定程度上,推动了人工智能的发展;通过所设计的碳纤维纺丝生产过程双向优化模型,我们可以初步实现对碳纤维纺丝生产过程的在线监控与控制,实时预测碳纤维的产品质量,及时修正碳纤维生产的参数,避免造成较大的经济损失;同样的,基于设计的碳纤维纺丝生产过程双向优化模型,可以在新型碳纤维产品投出生产之前,提供一种或若干种基本符合我们所期望的产品性能的参考生产方案,为实际生产提供一些指导和帮助,防止直接投入大规模生产而引起的时间及金钱上的浪费。
     最后,对全文的研究内容进行了总结,对其中的不足进行了讨论,对下一步的研究方向提出了建议。
Caron fiber is a new engineering material, it has ideal engineering characteristics such as high strength and high modulus. Owning to its superiority, it has been widely used in all works of life and influence national military, industry and economic deeply. Since carbon fiber production starts late in China, there is a large gap on carbon fiber performance between our motherland and advanced countries, in that case, it is significative to focus our attention on the optimization of carbon fiber manufacture process. The production line of carbon fiber is long, it contains several key sub-processes, each sub-process has its own control parameters, and these parameters couples each other. So complex production situation and so many factors make us considering that, introduce collaborative mechanism and biological mechanism into our research, adopt artificial intelligence algorithms to modeling and optimize the spinning process of carbon fiber, give out some reference and guides to real-time monitoring the carbon fiber production and improve the performance of carbon fiber product. The specific contributions of this paper summarized as follows:
     (1)Take the six steps drawing process of carbon fiber production as an example, based on existing experiments data, we investigate the relationship between representative production parameters and product properties indices, built a mathematical model of the carbon fiber drawing process; design a synergistic immune clonal selection algorithm which includes synergy mechanism, clonal selection and nonuniformty mutation, this algorithm can solve the multi-objective optimization problem, give out a six steps drawing ratio distribution scheme. This optimal result can provide reference to the actual production of carbon fiber, and the algorithm also can be applied to similar multi-objective optimization problem.
     (2)Take the pre-oxidation process of polyacrylonitrile carbon fiber an a example, set up a immune genetic neural network model based on father keeping scheme, we can estimate the performance of carbon fiber during production process by this model. Based on experiments data, we compare our prediction model to existing model, results show that, our model has better prediction precision, and convergent more quickly, it is a reliable performance prediction model which can provide guidance and reference for pre-oxidation process of carbon fiber better.
     (3)In this paper, we put forward a genetic-improved particle swarm optimization based neural network (GA-IPSO-RNN) bi-directional optimization model for carbon fiber spinning process. First of all, we use nearest neighbor clustering algorithm to determine the hidden layer nodes of neural network; secondly, we propose a genetic-improved particle swarm optimization algorithm to tune all the parameters of the neural network, which means activate function and weights between layers. For one direction, we can predict properties of carbon fiber by this model; for another direction, we can provide a design tool of new type carbon fiber. Combining this novel GA-IPSO algorithm into neural network plays a role to develop artificial intelligence; base on the bi-directional optimization model of carbon fiber spinning process, we can attempt to realize online monitor and control the manufacture line, real-time predict quality of carbon fiber, adjust the produce parameters in time, avoid to cause serious economical loss; similarly, this model can offer one or several production schemes which approximate meet our expect product properties, provide some guidance and help to actual production, prevent into mass production directly and lead to waste of time and money.
     At the end, we summary the full text of the research, discuss the deficiency of our investigate results, and propose future research direction.
引文
[1]金立国.我国碳纤维工业现状和碳纤维应用[J].合成纤维,2009,(10):1-6.
    [2]上官倩芡,蔡泖华.碳纤维及其复合材料的发展及应用[J].上海师范大学学报(自然科学版),2008,37(3):275-279.
    [3]高新玲,杨新颖,裴志强.浅谈我国聚丙烯腈基碳纤维的发展概况及存在问题[J].非织造布,2009,17(5):21-24.
    [4]许深.论我国碳纤维工业的发展[J].人造纤维,2008,38(3):15-18.
    [5]程眐.PAN基碳纤维的制造及应用[J].安徽化工,2003,(2):25-27.
    [6]陈方泉,陈慧芳,潘鼎.干湿法高性能聚丙烯腈基碳纤维原丝的制备[J].化工新型材料,2003,31(11):11-15.
    [7]东邦人造丝.[P].JP11-152618.
    [8]Goto Hideni. [P]. JP11-350244.
    [9]日本东丽公司.聚丙烯腈基碳纤维用原丝的制造方法[P].J P Pat,特开平11-12854.1999-01.
    [10]M.B. Radishecskii, A.T. Serkov. Coagulation Mechanism in Wet Spinning of Fibers[J]. Khimicheskie Volokna in Russian,2005,23(4):26.
    [11]高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺[J].合成纤维工业2002,25(4):35-38.
    [12]许登堡,吴叙健.聚丙烯腈基碳纤维原丝[J].广西化纤通讯,2000,(2):19-25.
    [13]罗益锋.国外PAN原丝及碳纤维专利分析报告(2)[J].高科技纤维与应用,2007,32(1):4-13.
    [14]D.A. Grove, A.S.Abhiraman. A Mathematical Model of Solid-state Thermo-oxidative Stabilization of Acrylic Fibers[J]. Carbon,1992,30(3):451-457.
    [15]张旺玺.聚丙烯腈基碳纤维[M].上海:东华大学出版社,2005.
    [16]井敏,王成国,朱波,王延相,丁海燕.PAN原丝预氧化工艺与氧元素含量相关性研究[J].航空材料学报,2006,26(5):56-60.
    [17]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [18]徐强.聚丙烯腈碳纤维原丝、预氧丝取向结构及理论模型研究[D].北京化工大 学硕士学位论文,北京化工大学:北京,2006.
    [19]杜彩霞,赵镇尧,宋立平.工业化生产聚丙烯腈碳纤维原丝纺丝设备的研讨[J].纺织机械,2001,(4):10-12.
    [20]朱岿力,潘鼎.干-喷湿纺聚丙烯腈纤维拉伸工艺研究[J].合成纤维工业,2003,26(2):9-12.
    [21]陈方泉,陈惠芳,潘鼎.干湿法高性能聚丙烯腈基碳纤维原丝的制备[J].化工新型材料,2003,31(11):11-15.
    [22]武永涛,赵炯心,曾小梅,潘鼎.干湿法制备异性PAN原丝及其力学性能的研究[J].合成技术及应用,2006,21(4):11-16.
    [23]刘焕章,王成国,王延相.聚丙烯腈纤维氧化工艺条件对其结构和性能的影响[J].高科技纤维与应用,2006,31(1):31-35.
    [24]王延相,王成国,蔡华,马勇,董雪梅.拉伸对聚丙烯腈原丝结构和性能的影响[J].合成纤维,2002,31(5):6-8.
    [25]董兴广,王成国,曹伟伟,赵亚奇,陈娟.凝固浴拉伸对碳纤维前驱体PAN初生纤维结构及性能的影响[J].高分子材料科学与工程,2008,24(6):117-120.
    [26]武吉伟,王成国,王延相,杨茂伟.牵伸对湿纺聚丙烯腈纤维性能的影响[J].功能材料,2007,38(5):771-773.
    [27]王延相,董学梅,焦培明,王成国,季保华,何东新.高性能碳纤维原丝聚合机理和纺丝工艺的研究[J].材料导报,2003,17(4):75-77.
    [28]唐春红,张旺系,曹维宇,刘杰,吴刚.不同牵伸倍数的PAN原丝结构性能的研究[J].塑料工业,2004,32(3):54-57.
    [29]徐秀娟.牵伸条件对聚酯长丝性能的影响[J].浙江理工大学学报,2005,22(2):114-116.
    [30]葛兆刚,肖长发,金欣.湿法纺丝中凝固成形和拉伸对PAN纤维结构和性能的影响[J].天津工业大学学报,2008,27(2):1-5.
    [31]薛林兵,王浩静,李东风.牵伸石墨化对石墨纤维结构和力学性能的影响[J].新型炭材料,2006,21(3):243-247.
    [32]臧勇.现代机械设计方法[M].北京:冶金工业出版社,1998.
    [33]苏勇彦.单目标、多目标优化进化算法及其应用[D].武汉理工大学硕士学位论文,武汉理工大学:武汉,2007.
    [34]胡毓达.实用多目标优化[M].上海:上海科学技术出版社,1990.
    [35]《现代应用数学手册》.运筹学和最优化理论卷[M].北京:清华大学出版社,1998.
    [36]C.A.Coello Coello. An Empirical Study of Evolutionary Techniques for Multi-objective Optimization in Engineering Design[D]. PhD thesis, Department of Computer Science, Tulane university:New Orleans, LA, April 1996.
    [37]谢涛,陈火旺.多目标优化与决策问题的演化算法[J].中国工程科学,2002,4(2):59-68.
    [38]丁永生.计算智能的新框架:生物网络结构[J].智能系统学报,2007,2(2):26-30.
    [39]李红梅.多目标优化演化算法研究综述[J].现代计算机,2009,4(305):44-46.
    [40]张联军.多级库存系统中的协同问题研究[D].上海海事大学硕士学位论文,上海海事大学:上海,2004.
    [41]任义军.高等教育质量链初探[J].黑龙江高教研究,2006,(6):60-66.
    [42]李全喜,张欣,王姣.先进制造模式下的质量链管理[J].科学学与科学技术管理,2004,(7):36-39.
    [43]惠怀海,梁工谦,马健诚.协同质量链管理流程模型先期研究[J].现代制造工程,2008,(6):14-17.
    [44]薛彩军,聂宏,姜少飞.机械产品协同优化设计研究综述[J].机械科学与技术,2005,24(5):620-623.
    [45]J. Sobieszczanski Sobieski, B.B James, M.F. Riley. Structure Optimization by Multilevel Decomposition[J]. AIAA Journal,1985,23(11):1775-1782.
    [46]Kusiak, J. Wang. Efficient Organizing of Design Activities[J]. International Journal of Production Research,1993,31(4):753-769.
    [47]J.L. Rogers, C.L. Bloebaum. Ordering Design Tasks Based on Coupling Strengths[C]. Proceedings of 5th AIAA/NASA/USAF/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Panama City,1994.
    [48]R.J. Balling, S.J. Sobieszans. An Algorithm for Solving the System-level Problem in Multilevel Optimization [J]. Structural Optimization,1995,9:168-177.
    [49]S.J. Sobieszczanski. A Step From Hierarchic to Non-Hietatchic Systems[R]. NASA-CP-3031. Part 1, Viegjnia:NASA,1989.
    [50]I. Kioox, S. Altus, R. Braun, P. Gage, I. Sobieski. Multidisciplinary Optimization Methods for Aircraft Preliminary Design [R]. AIAA-94-4325, FL:AIAA,1994.
    [51]戴红,杨兆升,肖萍萍.交通流诱导与控制协同优化模型的遗传算法求解[J].吉林大学学报(工学版),2006,36(增刊):157-160.
    [52]仝令胜,石博强,申焱华,李畅.协同优化方法及铰接式自卸车系统设计协同优化模型[J].煤矿机械,2007,28(12):25-28.
    [53]曹学明,王喜富,林博梁.重空车流径路及多车种空车调配协同优化模型[J].中国铁道科学,2009,30(6):114-118.
    [54]J. Andersson. Multi-objective Optimization in Engineering Design[D]. PhD thesis, Department of Mechanical Engineering Linkopings university:Linkopings,2001.
    [55]Dirk Biiche. Multi-Objective Evolutionary Optimization of Gas Turbine Components[D]. PhD thesis, Universitat Stuttgart:Stuttgart,2003.
    [56]A. Farhangmehr. Entropy Approach Tometa-modeling, Multi-objective Genetic Algorithm, and Quality Assessment of Solution Sets for Design Optimization[D]. PhD thesis, University of Maryland:Maryland,2003.
    [57]Hern'an Eduardo Aguirre Dur'an. Generational Parallel Varying Mutation Gas and Their Application[D]. PhD thesis, Shinshu University:Japan,2003.
    [58]赵曙光,焦李成,王宇平,杨万海.基于多目标遗传算法的模拟电路进化设计方法[J].西安电子科技大学学报(自然科学版),2004,31(3):342-346.
    [59]马秀丽,刘芳,焦李成.基于免疫克隆算法的协同神经网络参数优化[J].红外与毫米波学报,2007,26(1):38-42.
    [60]尚荣华,马文萍,焦李成,张伟.用于求解多目标优化问题的克隆选择算法[J].西安电子科技大学学报(自然科学版),2007,34(5):716-721.
    [61]尚荣华,焦李成,吴建设,马文萍,李阳阳.用于非监督特征选择的免疫克隆多目标优化算法[J].西安电子科技大学学报(自然科学版),2010,37(1):18-22.
    [62]尚荣华,焦李成,马文萍.免疫克隆多目标优化算法求解约束优化问题[J].软件学报,2008,19(11):2943-2956.
    [63]C.A.Coello Coello. An Updated Survey of GA-based Multi-objective Optimization Techniques[J]. ACM Computing Surveys,2000,32(2):109-143.
    [64]R.T. Marler, J.S. Arora. Survey of Multi-objective Optimization Methods for Engineering[J]. Structural and Multidisciplinary Optimization,2004,26(6): 369-395.
    [65]Z. Eckart, Kalyanmoy Deb. Comparison of Multi-objective Evolutionary Algorithms:Empirical Results[J]. Evolutionary Computation,2000,8(2):173-195.
    [66]温录亮.多目标最优化方法与应用[D].暨南大学硕士学位论文,暨南大学:广州,2009.
    [67]安伟刚.多目标优化方法研究及其工程应用[D].西北工业大学博士学位论文,西北工业大学:2005.
    [68]X.D. Li. A Real-Coded Predator-Prey Genetic Algorithm for Multi-objective Optimization[A]. EMO 2003[C]:207-221.
    [69]W. Darrell. Evaluating Evolutionary Algorithms[J]. Artificial intelligence,1996,85: 245-276.
    [70]田志刚.智能多目标优化理论及工程应用研究[D].大连理工大学硕士学位论文,大连理工大学:大连,2003.
    [71]徐光.运筹学基础手册[M].北京:科学出版社,1999.
    [72]V. Pareto, D. Cours. Economics(Volume Ⅰ and Ⅱ)[M]. Lausanne:Rouge F,1896.
    [73]贾小平,韩方煜.多目标优化及其在过程工程中的应用[A].
    [74]A.R. Ciric, S.G Huchette. Multi-objective Optimization Approach to Sensitivity Analysis:Waste Treatment Costs in Discrete Process Synthesis and Optimization Problems[J]. Ind.Eng.Chem,1993,32:2636-2646.
    [75]Young Ⅱ Lim, et al. Multi-objective Optimization in Terms of Economics and Potential Environmental Impact for Process Design and Analysis in a Chemical Process Simulator[J]., Ind.Eng.Chem,1999,38:4729-4741.
    [76]A. David, Van Veldhuizen, B. Gary, Lamont. Multi-objective Evolutionary Algorithms:Analyzing the State of the Art[J]. Evolutionary Computation,2000, 8(2):125-147.
    [77]E. Zitzler. Evolutionary Algorithms for Multi-objective Optimization:Methods and Applications[D]. PhD thesis, Swiss Federal Institute of Technology(ETH):Zurich,1999.
    [78]J.H. Holland. Adaptation in National and Artificial Systems[J]. The University of Michigen Press,1975:20-28.
    [79]L.J. Fogel, A.J. Owens, M.J. Walsh. Artificial Intelligence through Simulated Evolution[J]. New York, John Wiley,1966:32-44.
    [80]Rechenberg. Evolutions Strategie:Optimierung Texhnischer Systeme nach Prinzipien der Biologischen Evolution[J]. Stuttgart, Germany,1973:120-125.
    [81]R.S. Rosenberg. Simulation of Genetic Populations with Biochemical Properies[D]. PhD thesis, University of Michigan:Michigan,1967.
    [82]J.D. Schaffer. Multiple Objective Optimization with Vector Evaluated Genetic Algorithms [C]. Proceedings of the 1st International Conference on Genetic Algorithms,1985, pp.93-100.
    [83]C.M.Fonseca, P.G Fleming. An Overview of Evolutionary Algorithms in Multi-objective Optimization[R]. Department of Automatic Control and Systems Engineering, University of Sheffield, U.K.1994.
    [84]C.M. Fonseca, P.G. Fleming. An Pverview of Evolutionary Algorithms in Multi-objective Optimization [J]. Evolutionary Computation,1995,3(1):1-16.
    [85]D.A.V. Veldhuizen, G.B. Lamont. Multi-objective Evolutionary Algorithm Research: A History and Analysis[R]. TR-98-03, Department of Electrical and Computer Engineering, Graduate School of Engineering, Air Force Institute of Technology, Wright Patterson AFB, OH, USA,1998.
    [86]C.M. Fonseca, P.J. Fleming. Genetic Algorithms for Multi-objective Optimization: Formulation, Discussion and Generation[C]. Proceedings of the Fifth International Conference on Genetic Algorithm,1993, pp.416-423.
    [87]N. Srinivas, D. Kalyanmoy. Multi-objective Optimization Using Nondominated Sorting in Genetic Algorithms[J]. Evolutionary Computation,1994,2(3):221-248.
    [88]J. Horn, N. Nafpliotis. Multi-objective Optimization Using the Riched Pareto Genetic Algorithm[R]. University of Illinois at Urbana-Champaign, Urbana, Illinois, USA,1993.
    [89]J. Lis, A.E. Eiben. A Multi-sexual Genetic Algorithm for Multi-objective Optimization[C]. Proceedings of the 1996 International Conference on Evolutionary Computation, IEEE, Nagoya, Japan,1996, pp.97-99.
    [90]W. Darrell. Evaluating Evolutionary Algorithms[J]. Artificial Intelligence,1996,85: 245-276.
    [91]P.B. Wienke, C. Lucasius, G. Kateman. Multicriteria Target Vector Optimization of Analytical Procedures Using a Genetic Algorithm[J]. Analytica Chimica Acta, 1992,265(2):211-225.
    [92]C.H. Tseng, T.W. Lu. Minimax Multi-objective Optimization in Structural Design[J]. International Journal for Numerical Methods in Engineering,1990, 30:1213-1228.
    [93]S. Minghe, S. Antonie, E.S. Ralph. Solving Multiple Objective Programming Problems Using Feed-forword Artificial Neural Networks:the Interactive FFANN Procedure[J]. Management Science,1996,42(6):835-849.
    [94]R.C. Eberhart, J. Kennedy. A New Optimizer Using Particle Swarm Theory[C]. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan,1995, pp.39-43.
    [95]J. Kennedy, R.C. Eberhart. Particle Swann Optimization[C]. Proceeding of the 1995 IEEE International Conference on Neural Networks, Piscataway, NJ, Perth, Australia,1995, pp.1942-1948.
    [96]X. Hu, R.C Eberhart. Multi-objective Optimization Using Dynamic Neighborhood Particle Swarm Optimization[C]. Proceedings of the IEEE World Congress on Computational Intelligence, Hawaii, USA,2002, pp.1666-1670.
    [97]X. Hu, R.C. Eberhart, Y. Shi. Particle Swann with Extended Memory for Multi-objective Optimization[C]. IEEE Swarm Intelligence Symposium,2003.
    [98]J.E. Fieldsend, S. Singh. A Multi-objective Algorithm Based upon Particle Swarm Optimization, An Efficient Data Structure and Turbulence [C]. Proceedings of the 2002 U.K. Workshop on Computational Intelligence, Birmingham, UK,2002, pp. 37-44.
    [99]S. Mostaghim, J.R Teich. Strategies for Finding Local Guides in Multi-objective Particle Swarm Optimization(MOPSO)[C]. Proceedings of the IEEE Swarm Intelligence Symposium 2003, Indiana, USA,2003, pp.26-33.
    [100]C.A. Coello, M.S Lechuga. MOPSO:A Proposal for Multi-objective Particle Swarm Optimization[C]. Proceedings of the IEEE congress on Evolutionary Computation(CEC 2002), Honolulu, Hawii, USA,2002.
    [101]邓斌,黄洪钟,王金诺.多目标模糊优化的数学模型及其求解原理和方法[J].机械设计与研究,1996,28(1):8-13.
    [102]黄洪钟.多目标模糊优化设计的基本理论与方法[J].机械设计,2008,44(4):39-43.
    [103]Y. Liu, G. Chen. Optimal Parameters Design of Oilfield Surface Pipeline Systems Using Fuzzy Models[J]. Information Sciences,1999,120(1):13-21.
    [104]E. Aboelela, C. Douligeris. Fuzzy Multi-objective Routing Model in B-ISDN[J]. Computer Communications,1998,21(17):1571-1584.
    [105]Z. Kadambaya, K.R. Pattipati. Application of Multi-objective Optimization and Neural Network Techniques to Process Design[C]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,1999, pp.527-532.
    [106]G Sathyanarayanan, I.J. Lin, M. Chen. Neural Network Modelling and Multi-objective Optimization of Creep Feed Grinding of Superalloys[J]. International Journal of Production Research,1992,30(10):2421-2438.
    [107]S. Liong, S. Khu, W. Chan. Derivation of Pareto Front with Genetic Algorithm and Neural Network[J]. Journal of Hydrologic Engineering,2001,6(1):52-61.
    [108]吕庆,盛昭瀚,徐南荣.一类多目标决策问题的神经网络求解方法[J].管理科学学报,1995,15(1):93-103.
    [109]祝世京,陈埏.基于神经网络的多目标综合评价[J].系统工程理论与实践,1994,24(9):74-80.
    [110]李光熹,熊曼丽.交互神经网络法电网多目标运行优化[J].电网技术,1995,19(4):21-24.
    [111]K. Liu, W. Guo, X. Shen, Z. Tan. Research on the Forecast Model of Electricity Power Industry Loan Based on GA-BP Neural Network[C]. Energy Prosedia,2012, 14:1918-1924.
    [112]E. Guresen, G Kayakutlu, T.U. Daim. Using Artificial Neural Network Models in Stock Market Index Prediction[J]. Expert Systems with Applications,2011, 38(8):10389-10397.
    [113]X. Peng, Z. Hu, T. Li. Neural Network Based Combining Prediction Model and Its Application in Ship Motion Prodiction[C].2010 8th World Congress on Intelligent Control and Automation,2010, pp.5624-5627.
    [114]Z. Guo, J. Wu, H. Lu, J. Wang. A Case Study on a Hybrid Wind Speed Forecasting Method Using BP Neural Network[J]. Knowledge-Based Systems. 2011,24(7):1048-1056.
    [115]Y. Sun. RMB Exchange Rate Forecast Approach Based on BP Neural Network [C]. Physics Procedia,2012,33:287-293.
    [116]H.E. Kadi. Modeling the Mechanical Behavior of Fiber-reinforced Polymeric Composite Materials Using Artificial Neural Networks-A Review[J]. Composite Structures,2006,73(1):1-23.
    [117]Y. Yu, C. Hui, T. Choi, R. Au. Intelligent Fabric Hand Prediction System with Fuzzy Neural Network[J]. IEEE Trans on Systems, Man, and Cybernetics, Part C: Applications and Reviwes,2010,40(6):619-629.
    [118]J. Qiao, H. Han. Identification and Modeling of Nonlinear Dynamical Systems Using a Novel Self-organizing RBF-based Approach[J]. Automatica,2012 48(8): 1729-1734.
    [119]Y. Wang, G. Liu. A Forecasting Method Based on Online Self-correcting Single Model RBF Neural Network[J]. Procedia Engineering,2012,29:2516-2520.
    [120]Y. Wang, F.M. Wahl. Multi-objective Neural Network for Image Reconstruction[C]. Proceedings:Vision, Image and Signal Processing,1997,144(4): 233-236.
    [121]M. Szymkat, T. Uhl, F. Biennier. Neural Ntwork Spport for Smultaneous Otimization of Trque and Dviation in Robot Path Planning [C]. Proceedings of the 1993 IEEE International Symposium on Intelligent Control,1993, pp.244-249.
    [122]王继成.一种基于多目标优化神经网络的心电图数据压缩方法[J].中国生物医学工程学报,1997,16(4):353-358.
    [123]K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multi-objective Evolutionary Algorithm:NSGA-Ⅱ[J]. IEEE Trans on Evolutionary Caputation, 2002,6(2):182-197.
    [124]马清亮,胡昌华.多目标进化算法及其在控制领域中的应用综述[J].控制与决策,2006,21(5):481-486.
    [125]M.H. Asiabar, S.H. Ghodsypour, R. Kerachian. Multi-objective Genetic Local Search Algorithm Using Kohonen's Neural Map[J]. Computer & Industrial Engineering,2009,56(4):1566-1576.
    [126]E.G. Okafor, Y.C. Sun. Multi-objective Optimization of a Series-parallel System Using GPSIA [J]. Reliability Engineering & System Safety,2012, 103:61-71.
    [127]G.D. Chen, X. Han, G.P. Liu, C. Jiang, Z.H. Zhao. An Efficient Multi-objective Optimizatioin Method for Black-box Functions Using Sequential Approximate Technique [J]. Applied Soft Computing,2012,12(1):14-27.
    [128]K. Deb, A. Pratap, S. Agarwal, T. Meyarivan. A Fast and Elitist Multi-objective Genetic Algorithm:NSGE-II[J]. IEEE Trans, on Evolutionary Computation,2002, 6(2):182-197.
    [129]H. Safikhani, A. Hajiloo, M.A. Ranjbar. Modeling and Multi-objective Optimization of Cyclone Separators Using CFD and Genetic Algorithms. Computers & Chemical Engineering,2011,35(6):1064-1071.
    [130]K. Atashkari, N. Nariman-Zadeh, M. G o lcii, A. Khalkhali, A. Jamali. Modelling and Multi-objective Optimization of a Variable Valve-timing Spark-ignition Engine Using Polynomial Neural Networks and Evolutionary Algorithms [J]. Energy Conversion and Management,2007,48(3):1029-1041.
    [131]J. Marin, R. Sole. Macroevolutionary Algorithms:A New Optimization Method on Fitness Landscapes [J]. IEEE Trans on Evolutionary Computation,1999,3(4): 272-286.
    [132]C. Li, James McPhee, W.G William. A Diversified Multi-objective GA for Optimizing Reservoir Rule Curves[J]. Advances in Water Resources,2007,30: 1082-1093.
    [133]J. Knowles, D. Corne. The Pareto Archived Evolution Strategy:A New Baseline Algorithm for Multi-objective Optimisation [C]. Washington:IEEE Press, 1999, pp.98-105.
    [134]E. Zitzler, L. Thiele. Multi-objective Evolutionary Algorithms:A Comparative Case Study and the Strength Pareto Approach[J]. IEEE Trans on Evolutionary Computation,1999,3(4):257-271.
    [135]C.A.C. Coello, M.R. Sierra. A Coevolutionary Multi-objective Evolutionary Algorithm[C]. Congress on Evolutionary Computation, Canberra:IEEE Press,2003, pp.482-489.
    [136]余建伟.多目标进化算法研究综述[J].海南大学学报自然科学版,2005,23(4):378-382.
    [137]K. Deb, S. Tiwari. Omni-optimizer:A Generic Evolutionary Algorithm for Single and Multi-objective Optimization [J]. European Journal of Operational Research,2008,185(3):1062-1087.
    [138]G.P. Coelho, A.E.A. da Silva, F.J. Von Zuben. An Immune-inspired Multi-objective Approach to the Reconstruction of Phylogenetic trees [J]. Neural Computing & Applications,2010,19(8):1103-1132.
    [139]Z.J. Li, H.T. Liao, D.W. Coit. A Two-stage Approach for Multi-objective Decision Making with Applications to System Reliability Optimization [J]. Reliability Engineering & System Safety,2009,94(10):1585-1592.
    [140]王震,陈云芳.基于人工免疫的多目标优化研究综述[J].计算机应用,2009,26(7):2422-2426.
    [141]P. Hajela, J. Lee. Constrained Genetic Search via Schema Adaption:An Immune Network Solution[J]. Structural Optimization,1996,12(1):11-15.
    [142]C.A. Coello Coello, N.C. Cortes. Solving Multi-objective Optimization Problems Using an Artificial Immune System[J]. Genetic Programming and Evolvable Machines,2005,6(2):163-190.
    [143]F. Freschi, M. Repetto. VIS:An Artificial Immune Network for Multi-objective Optimization [J]. Engineering Optimization,2006,38(8):975-996.
    [144]I. Ay din, M. Karakose, E. Akin. A Multi-objective Artificial Immune Algorithm for Parameter Optimization in Support Vector Machine [J].Applied Soft Computing, 2011,11(1):120-129.
    [145]C. Hou, Y. Ding, X. Zeng. Immune Based Evolutionary Algorithm for Fabric Evaluation[J]. Mathematics and Computers in Simulation,2008,77(5-6):540-549.
    [146]Gaspar, P. Collard. Two Models of Immunization For Time Independent Optimization[C]. Proceedings of IEEE International Conference on Systems, Man, and Cybernetics,2000, pp.113-118.
    [147]L.N. Castro, X.J. Immis. An Artificial Immune Network Formultimodal Function Optimization[C]. Proceedings of IEEE Congress on Evolutionary Computation,2002, pp.699-704.
    [148]B. Lu, L.C. Jiao, H.F. Du. IFMOA:Immune Forgetting Multi-objective Optimization Algorithm[C]. Proceedings of the 1st International Conference on Advances in Nature Computation,2005, pp.399-408.
    [149]X.L. Wang, Mahfoufin. ACSAMO:An Adaptive Multi-objective Optimization Algorithm Using the Clonal Selection Principle[C]. Proceedings of the 2nd European Symposium on Nature Inspired Smart Information Systems,2006.
    [150]李阳阳,焦李成.量子免疫克隆多目标优化算法[J].电子与信息学报,2008,30(6):1367-1371.
    [151]M. Pavone, G. Narzisi, G Nicosia. Clonal Selection:An Immunological Algorithm for Global Optimization over Continuous Spaces [J]. Journal of Global Optimization,2012,53(4):769-808.
    [152]R.C. Liu, X.R. Zhang, N. Yang, Q.F. Lei, L. C. Jiao. Immunodomaince Based Clonal Selection Clustering Algorithm, Applied Soft Computing,2012,12(1): 302-312.
    [153]Z.H. Zhang. Multi-objective Optimization Immune Algorithm in Dynamic Enviroments and Its Application to Greenhouse Control [J]. Applied Soft Computing March,2008,8(2):959-971.
    [154]S. Das, B. Natarajan, D. Stevens. Multi-objective and Constrained Optimization for DS-CDMA Code Design Based on the Clonal Selection Principle^]. Applied Soft Computing,2008,8(1):788-797.
    [155]潘晓英,刘芳,焦李成.多执行模式项目调度问题的克隆选择优化[J].模 式识别与人工智能,2008,21(3):303-309.
    [156]公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(2):273-289.
    [157]倪庆剑,邢汉承,张志政,王蓁蓁,文巨风.粒子群优化算法研究进展[J].模式识别与人工智能,2007,20(3):349-357.
    [158]薛洪波,伦淑娴.粒子群算法在多目标优化中的应用综述[J].渤海大学学报(自然科学版),2009,30(3):265-269.
    [159]C.A. Coello Coello, G.T. Pulido, M.S. Lechuga. Handing Multiple Objective with Particle Swarm Optimization[J]. IEEE Trans on Evolutionary Computations, 2004,8(3):256-279.
    [160]H. Han, Y. Ding, K. Hao, X. Liang. An Evolutionary Particle Filter with Immune Genetic Algorithm for Intelligent Video Target Tracking[J]. Computers & Mathematics with Applications,2011,62(7):2685-2695.
    [161]Y. Tang, H. Gao, J. Kurths, J. Fang. Evolutionary Pinning Control and Its Application in UAV Coordination[J]. IEEE Trans. On Industrial Informatics, 2012,8(8):828-838.
    [162]M.A. Abido. Two Level of Nondominated Solutions Approach to Multi-objective Particle Swarm Optimization[C]. Proceedings of the Genetic and Evolutionary Computation Conference,2007, pp.726-733.
    [163]M. Reyes Sierra, Coello Coello CA. Improving PSO-based Multi-objective Optimization Using Crowding, Mutation and ε-dominance[C]. Proceedings of the 3rd International Conference Evolutionary Multi-Criterion Optimization,2005, pp. 505-519.
    [164]A. Kaveh, K. Laknejadi. A Novle Hybrid Charge System Search and Particle Swarm Optimization Method for Multi-objective Optimization [J]. Expert Systems with Applications,2011,38(12):15475-15488.
    [165]Y.F. Hu, Y.S. Ding, K.R. Hao. An Immune Cooperative Particle Swarm Optimization Algorithm for Fault-tolerant Routing Optimization in Heterogeneous Wireless Sensor Networks[J]. Mathematical Problems in Engineering,2012, 2012(Article ID 743728):1-19.
    [166]A. Mahor, S. Rangnekar. Short Term Generation Scheduling of Cascaded Hydro Electric System Using Novel Self Adaptive Inertia Weight PSO[J]. International Journal of Electrical Power & Energy Systems,2012,34(1):1-9.
    [167]B. Luitel, G.K. Venayagamoorthy. Quantum Inspired PSO for the Optimization of Simultaneous Recurrent Neural Networks as MIMO Learning Systems[J]. Neural Networks,2012,23(5):583-586.
    [168]S. Yu, Y. Wei, K. Wang. A PSO-GA Optimal Model to Estimate Primary Energy Demand of China[J]. Energy Policy,2012,42:329-340.
    [169]A. Alireza. PSO with Adaptive Mutation and Inertia Weight and Its Application in Parameter Estimation of Dynamic Systems[J]. Acta Automatica Sinica,2011, 37(5):541-549.
    [170]M.A. Behrang, E. Assareh, A.R. Noghrehabadi, A. Ghanbarzadeh. New Sunshine-based Models for Predicting Global Solar Radiation Using PSO (Particle Swarm Optimization) Technique[J]. Energy,2011,36(5):3036-3049.
    [171]J. Li, X. Liu. Melt Index Prediction by RBF Neural Network Optimized with an MPSO-SA Hybrid Algorithm[J]. Neurocomputing,2011,74(5):735-740.
    [172]B.Vasumathi, S. Moorthi. Implementation of Hybrid ANN-PSO Algorithm on FPGA for Harmonic Estimation[J]. Engineering Applications of Artificial Intelligence,2012,25(3):476-483.
    [173]S. Oh, W. Kim, W. Pedrycz, B. Park. Polynomial-based Radial Basis Function Neural Networks (P-RNF NNs) Realized with the Aid of Particle Swarm Optimization[J]. Fuzzy Sets and Systems,2011,163(1):54-77.
    [174]C. Huang, F. Wang. An RBF Network with OLS and EPSO Algorithm for Real-time Power Dispatch[J]. IEEE Trans on Power Systems,2007,22(1):96-104.
    [175]于艳艳.蚁群算法研究综述[J].科技广场,2009,(1):238-239.
    [176]C.E. Mariano, E. Morales. MOAQ:An Ant-Q Algorithm for Multiple Objective Optimization Problems[C]. Proceedings of the 1999 Genetic and Evolutionary Computing Conference,1999, pp.894-901.
    [177]T. Stutzle, H.H. Hoos. MAX-MIN Ant System[J]. Future Generation Computer System,2000,16(8):889-914.
    [178]S. N. Omkar, J. Senthilnath, R. Khandelwal, G.N. Naik, S. Gopalakrishnan. Artificial Bee Colony (ABC) for Multi-objective Design Optimization of Composite Structures [J]. Applied Soft Computing,2011,11(1):489-499.
    [179]J. Yang, Y. Jaluria. Feasibility and Optimization of the Hollow Optical Fiber Drawing Process[J]. Inernational Journal of Heat and Mass Transfer,2009, 52(17-18):4108-4116.
    [180]S.E. Bechtel, S. Vohra, K.I. Jacob. Modeling of a Two-stage Draw Process[J]. Polymer,2001,42(5):2045-2059.
    [181]Z. Gou, A. J. McHugh. Two-dimensional Modeling of Dry Spinning of Polymer Fibers[J]. Joural of Non-newtonian Fluid Mechanics,2004,118(2-3):121-136.
    [182]A. Makradi, C.L. Cox, S. Ahzi, S. Belouettar. Postspinning Draw of Polymeric Fibers:Multiscale Micromechanical Model for a Solid Polymer Under Finite Deformation and Strain-induced Crystallization [J]. Journal of Applied Polymer Science,2006,100(3):2259-2266.
    [183]A. Mataram, A.F. Ismail, D.S.A. Mahmod, T. Matsuura. Characterization and Mechanical Properties of Polyacrylonitrile/silica Composite Fibers Prepared via Dry-jet Wet Spinning Process[J]. Materials Letters,2010,64(17):1875-1878.
    [184]T. Hobbs, A.J. Lesser. Prepatation of High Performance Poly(Ethylene Terephthalate) Fibers:Two-stage Drawing Using High Pressure CO2[J]. Polymer, 2000,41(16):6223-6230.
    [185]S.M. Chuo, M.H. Wan, L.A. Wang, J.S. Wang. Multistage Modified Fiber Drawing Process and Related Diameter Measuring System [J]. Journal of Lightwave Technology,2009,27(15):2983-2988.
    [186]B. Suman, P. Tandon. Fluid Flow Stability Analysis of Multilayer Fiber Drawing[J]. Chemical Engineering Science,2010,65(20):5537-5549.
    [187]M.A. Mabrouk. Experimental Investigation of Deformation Mechanisms During Low Drawing of Polymeric Fibers[J]. Polymer Testing,2002,21 (6): 653-658.
    [188]A.mawardi, R.pitchumani. Optical Fiber Drawing Process Model Using an Analytical Neck-Down Profile[J]. IEEE Photonics Journal,2010,2(4):620-629.
    [189]W.L. Han, X.H. Wang. Multi-objective Optimization of the Coat-hanger Die for Melt-blowing Process [J]. Fibers and Polymers,13(5):626-631.
    [190]C. de. Boor. A Practical Guide to Splines[M]. Applied Mathematical Sciences, 2001, vol.27.
    [191]V.K. Karakasis, A. Stafylopatis. Efficient Evolution of Accurate Classification Rules Using a Combination od Gene Expreesion Programming and Clonal Selection[J]. IEEE Transactions on Evolutionary Computation,2008,12(6): 662-678.
    [192]C.A. coello coello, M.R. Sierra. A Coevolutionary Multi-objective Evolutionary Algorithm[C]. Congress on Evolutionary Computation, Canberra: IEEE Press,2003, pp.482-489.
    [193]S. Chiocchio, E. Martin, P. Barabaschi, H.W. Barels, J. How, W. Spears. System Engineering and Configuration Management in ITER[J]. Fusion Engineering and Design,2007,82:548-554.
    [194]L. Tan, A. Wan, D. Pan. Pregelled Gel Spinning of Polyacrylonitrile Precursor Fiber[J]. Materials Letters,2011,65(5):887-890.
    [195]高晓冬,朱波,于宽,吴益民,刘洪正,郑连勇.基于BP人工神经网络的碳纤维性能预测系统设计[J].工业加热,2012,41(2):28-31.
    [196]M.S.A. Rahaman, A.F. Ismail, A. Mustafa. A Review of Heat Treatment on Polyacrylonitrile Fiber[J]. Polymer Degradation and Stability,2007,92(8): 1421-1432.
    [197]N. Yusof, A.F. Ismail. Post Spinning and Pyrolysis Processes of Polyacrylonitrile (PAN)-based Carbon Fiber and Activated Carbon Fiber:A Review[J]. Journal of Analytical and Applied Pyrolysis,2012,93:1-13.
    [198]J. Liu, Y. Tian, Y. Chen, J. Liang, L. Zhang, H. Fong. A Surface Treatment Technique of Electrochemical Oxidation to Simultaneously Improve the Interfacial Bonding Strength and the Tensile Strength of PAN-based Carbon Fibers [J]. Materials Chemistry and Physics,2010,122(2-3):548-555.
    [199]Y. Wang, W. Yin. Chemical Modification for PAN Fibers During Heat-treatment Process[J]. Physics Procedia,2011,18:202-205.
    [200]M.A. Rahman, A.F. Ismail, A. Mustafa. The Effect of Residence Time on the Physical Characteristics of PAN-based Fibers Produced Using a Solvent-free Coagulation Process[J]. Materials Science and Engineering,2007,448(1-2): 275-280.
    [201]X. Liang, Y.S. Ding, L.H. Ren, K.R. Hao, H.P. Wang, J.J. Chen. A Bio-inspired Multi-layered Intelligent Cooperative Controller for Stretching Process of Fiber Production[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews,2012,42(3):367-377.
    [202]H. Rennhofer, D. Loidl, S. Puchegger, H. Peterlik. Structural Development of PAN-based Carbon Fibers Studied by in Situ X-ray Scattering at High Temperatures Under Load[J]. Carbon,2010,48(4):964-971.
    [203]S.S. Belyaev, L.V. Arkhangelsky, I.V. Makarenko. Non-isothermal Kinetic Analysis of Oxidative Stabilization Processes in PAN Fibers[J]. Thermochimica Acta,2010,507-508:9-14.
    [204]Y. Sugimoto, M. Shioya, K. Yamamoto, S. Sakurai. Relationship Between Axial Compression Strength and Longitudinal Microvoid Size for PAN-based Carbon Fibers[J]. Carbon,2012,50(8):2860-2869.
    [205]D. Du, K, Li, M. Fei. A Fast Multi-output RBF Neural Network Construction Method[J]. Neurocomputing,2010,73(10-12):2196-2202.
    [206]A. Roy, S. Govil, R. Miranda. A Neural-network Learning Theory and a Polynomial Time RBF Algorithm[J]. IEEE Trans on Neural Network,1997, 8(6):1301-1313.
    [207]X. Hong, S. Chen. A New RBF Neural Network with Boundary Value Constraints [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B:Cybernetics, 2009,39(1):298-303.
    [208]G. Huang, P. Saratchandran, N. Sundararajan. A Generalized Growing and Pruning RBF(GGAP-RBF) Neural Network for Function Approximation[J]. IEEE Trans on Neural Network,2005,16(1):57-67.
    [209]J. Moody, C.J. Darken. Fast Learning in Networks of Locally-turned Processing Units[J]. Neural Computation,1989,1:281-294.
    [210]R.A. Jarvis, E.A. Patrick. Clustering Using a Similarity Measure Based on Shared Near Neighbors[J]. IEEE Trans on Computers,1973, C-22(11):1025-1034.
    [211]J. Kennedy, R.C. Eberhart. Particle Swarm Optimization[C]. Proceedings of the 1995, IEEE International Conference on Neural Network IV,1995,4:1942-1948.
    [212]Z. Ditzian. Relating Smoothness to Expressions Involving Fourier Coefficients or to a Fourier Transform[J]. Journal of Approximation Theory,2012,164(10): 1369-1389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700