用户名: 密码: 验证码:
机会移动网络中的数据传输机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线便携设备(如:ipad、PDAs、智能手机等)的大量普及,机会移动网络应运而生。这类网络突破了传统网络对实时连通性的要求限制,更适合实际的自组网需求。机会移动网络在传感器网络、野生动物追踪、车载网络和不发达地区的网络服务等领域具有广阔的应用前景,极大地改善了人们的生产和生活方式,因而近年来引起了学术界的密切关注。
     在机会移动网络中,由于时变的网络拓扑,网络中节点到节点之间很难保证有一条稳定的连通的路径。因此,节点如果有数据需要去传输的话只能先存储需要发送的数据,然后转发给和它机会性接触的其它节点。这个数据交换过程被称为“存储-携带-转发”机制,是机会移动网络中传输数据的一种基本策略。目前已经有很多的学者对机会移动网络中的数据传输问题进行了研究,但是现有的数据传输研究存在两个方面的不足:1)没有考虑节点的能量限制;2)缺乏合适的激励机制。本文结合该方向的最新研究成果,首先对邻居发现过程中的能量节省问题进行了研究,然后考虑占空比模式下的数据转发和自私环境下的数据分发问题,并提出了相应的数据转发机制和数据分发激励机制。本文主要工作和贡献包括以下几个方面:
     1.简要回顾了机会移动网络的产生背景、概述、主要特性、应用领域及其研究现状。
     2.研究了机会移动网络在随机路点模型(Random Way-Point model)下能量效率和接触机会之间的折衷。首先提出了一种理论模型去研究基于随机路点模型的接触探测过程,分别得到了单点探测概率和双点探测概率的表达式。然后,基于提出的理论模型,分析了在不同情况下能量效率和有效接触总数之间的折衷。实验结果表明,“好的折衷点”会随着节点移动速度的变化而显著变化。
     3.研究了机会移动网络中占空比模式下的邻居发现过程,并且为占空比机会移动网络中的邻居发现过程设计了一种能量有效的自适应工作机制。提出的自适应工作机制使用节点间过去的接触历史记录去预测节点间未来的接触信息,从而在每个周期内自适应地配置网络中每个节点的工作机制。实验结果表明,自适应工作机制在有效的接触数、递送率和递送延时方面的表现,都要优于随机工作机制和周期性工作机制。
     4.研究了占空比机会移动网络中占空比操作对数据转发的影响,并且为占空比机会移动网络设计了一种能量有效的数据转发策略。该策略考虑了节点间的接触频率和接触时长,并且设法将数据包沿着可以最大化占空比模式下数据传递概率的路径转发。实验结果表明,提出的数据转发策略的递送率和传染路由(Epidemic Routing)的递送率相比比较接近,但是相应的递送开销却要比传染路由的递送开销减少很多。同时,提出的数据转发策略的递送率比Bubble Rap协议和Prophet协议的递送率都要高,但是相应的递送开销却只是稍微大于Bubble Rap的递送开销。
     5.研究了机会移动网络中自私环境下的数据分发问题,并且提出了一种适用于自私机会移动网络的基于激励驱动的发布/订阅数据分发机制。该机制采用“针锋相对”(Tit-For-Tat,简称为TFT)机制来激励网络中的节点互相合作。同时,该机制也提出了一种新颖的数据交换协议来实现两节点接触过程中的数据交换,目的是最大化节点缓存中储存的数据的效用值。在大量基于真实数据集的性能评估中,提出的机制在总新鲜值、总传递数据和总传输开销方面都优于已有机制。
     最后对全文进行了总结,并对未来的研究方向进行了展望。
Recently, with the rapid proliferation of wireless portable devices (e.g., ipad, PDAs, smartphones and so on), Opportunistic Mobile Networks (OppNets) begin to emerge. With-out the constraint of real-time connectivity, OppNets are more suitable for the actual ad hoc network requirements. OppNets can be widely applied in wireless sensor networks, wildlife monitoring, vehicular networks, and providing network services in underdeveloped areas, etc. Being able to greatly improve people's production and life style, OppNets have gained high attention from global researchers.
     In OppNets, it is hard to guarantee end-to-end path due to the time-varying network topology, and thus nodes with data to transmit have to exchange data with relay nodes within their communication range. This data exchange process is referred to as the store-carry-forward mechanism, which works as a basic strategy of data transmission in Opp-Nets. Many researchers have studied data transmission in OppNets, but the existing studies have two aspects of deficiencies:1) without consider the energy constraint of nodes in OppNets;2) lack of proper incentive schemes for data transmission in OppNets. Based on the latest results, this dissertation first investigates energy saving in neighbor discovery, then studies data forwarding in the duty-cycle mode and data dissemination in the selfish environment, and proposes the corresponding data forwarding strategy as well as incentive scheme for OppNets. The novelty and contributions are summarized as follows:
     1. A brief review on the background, overview, main characteristics, application field and related work of OppNets is provided.
     2. Exploring the trade-off between energy efficiency and the contact opportunities based on the Random Way-Point model in OppNets. In order to investigate this trade-off, this dissertation first proposes a model to quantify the detecting probability in Opp-Nets. Then, based on the proposed model, this dissertation analyzes the trade-off between energy efficiency and the total number of effective contacts under differ-ent situations. Simulation results show that the good trade-off points are obviously different when the speed of nodes is different.
     3. Exploring neighbor discovery in duty-cycle OppNets, and designing an energy-efficient adaptive working schedule for duty-cycle OppNets. The proposed adaptive work-ing schedule uses the past recorded contact histories to predict the future contact information, so as to adaptively configure the working schedule of each node in the network. Extensive simulations results demonstrate that the proposed adaptive work-ing schedule is superior to the random working schedule and the periodical working schedule algorithms in terms of the number of effect contacts, delivery ratio and delivery delay.
     4. Exploring the impact of duty-cycle operation on data forwarding in duty-cycle Opp-Nets, and designing an efficient data forwarding strategy for duty-cycle OppNets. The proposed forwarding strategy takes into account both the contact frequency and the contact duration, and manages to forward data copies along the opportunistic for-warding paths which maximize the data delivery probability in duty-cycle OppNets. Simulation results show that the proposed data forwarding strategy is close to Epi-demic Routing in terms of delivery ratio but with significantly reduced delivery cost. Additionally, the proposed strategy outperforms Bubble Rap and Prophet in terms of delivery ratio with reasonable delivery cost.
     5. Exploring data dissemination in selfish OppNets, and proposing an incentive-driven publish/subscribe (pub/sub) content dissemination scheme, called ConDis (Content Dissemination), for selfish OppNets. In ConDis, the Tit-For-Tat (TFT) scheme is em-ployed to deal with selfish behaviors of nodes in OppNets. ConDis also implements a novel content exchange protocol when nodes are in contact, and the objective is to maximize the utility of the content inventory stored in nodes'buffer. Extensive realistic trace-driven simulation results show that ConDis is superior to other ex- isting schemes in terms of total freshness value, total delivered contents, and total transmission cost.
     The conclusions and future work are depicted in the end of the dissertation.
引文
[1]Papadimitratos P, Haas Z. Secure routing for mobile ad hoc networks[C], in Pro-ceedings of the SCS Commnication Networks and Distributed Systems Modeling and Simulation Conference.2002:193-204.
    [2]Williams B, Camp T. Comparison of broadcasting techniques for mobile ad hoc networks[C], in Proceedings of ACM Mobihoc. ACM.2002:194-205.
    [3]Buttyan L, Hubaux J. Stimulating cooperation in self-organizing mobile ad hoc networks[J]. Mobile Networks and Applications,2003,8(5):579-592.
    [4]Zhang Z. Routing in intermittently connected mobile ad hoc networks and delay tolerant networks:overview and challenges[J]. IEEE Communications Surveys & Tutorials,2006,8(1):24-37.
    [5]Leiner B, Nielson D, Tobagi F. Issues in packet radio network design[J]. Proceed-ings of the IEEE,1987,75(1):6-20.
    [6]Johansson P, Larsson T, Hedman N, et al. Scenario-based performance analysis of routing protocols for mobile ad-hoc networks[C], in Proceedings of ACM Mobicom. ACM.1999:195-206.
    [7]Marti S, Giuli T, Lai K, et al. Mitigating routing misbehavior in mobile ad hoc networks[C], in Proceedings of ACM Mobicom. vol 6.2000:255-265.
    [8]Peng W, Lu X. On the reduction of broadcast redundancy in mobile ad hoc net-works[C], in Proceedings of the 1st ACM international symposium on Mobile ad hoc networking & computing. IEEE Press.2000:129-130.
    [9]Ko Y, Vaidya N. Location-aided routing (lar) in mobile ad hoc networks[J]. Wireless Networks,2000,6(4):307-321.
    [10]Mauve M, Widmer A, Hartenstein H. A survey on position-based routing in mobile ad hoc networks[J]. IEEE Network,2001,15(6):30-39.
    [11]Perkins C, Bhagwat P. Highly dynamic destination-sequenced distance-vector rout-ing (dsdv) for mobile computers[C], in ACM SIGCOMM Computer Communica-tion Review. vol 24. ACM.1994:234-244.
    [12]Karp B, Kung H. Gpsr:Greedy perimeter stateless routing for wireless networks[C], in Proceedings of ACM Mobicom. ACM.2000:243-254.
    [13]Cao Y, Sun Z. Routing in delay/disruption tolerant networks:A taxonomy, survey and challenges[J]. IEEE Communications Surveys & Tutorials,2013,15(2):654-677.
    [14]Pereira P, Casaca A, Rodrigues J, et al. From delay-tolerant networks to vehicular delay-tolerant networks[J]. IEEE COMMUNICATIONS SURVEYS & TUTORI-ALS,2012,14(4).
    [15]Caini C, Cruickshank H, Farrell S, et al. Delay-and disruption-tolerant networking (dtn):an alternative solution for future satellite networking applications[J]. Proceed-ings of the IEEE,2011,99(11):1980-1997.
    [16]Kayastha N, Niyato D, Wang P, et al. Applications, architectures, and protocol design issues for mobile social networks:A survey[J]. Proceedings of the IEEE, 2011,99(12):2130-2158.
    [17]Pelusi L, Passarella A, Conti M. Opportunistic networking:data forwarding in disconnected mobile ad hoc networks[J]. IEEE Communications Magazine,2006, 44(11):134-141.
    [18]Chaintreau A, Mtibaa A, Massoulie L, et al. The diameter of opportunistic mobile networks[C], in Proceedings of ACM CoNEXT. ACM.2007:12.
    [19]Fall K. A delay-tolerant network architecture for challenged internets[C], in Pro-ceedings of the conference on Applications, technologies, architectures, and proto-cols for computer communications. ACM.2003:27-34.
    [20]Jones E, Li L, Schmidtke J, et al. Practical routing in delay-tolerant networks[J]. IEEE Transactions on Mobile Computing,2007,6(8):943-959.
    [21]Hui P, Yoneki E, Chan S, et al. Distributed community detection in delay tolerant networks[C], in Proceedings of the ACM/IEEE international workshop on Mobility in the evolving internet architecture. ACM.2007.
    [22]Lindgren A, Doria A, Schelen O. Probabilistic routing in intermittently connected networks[J]. ACM SIGMOBILE Mobile Computing and Communications Review, 2003,7(3):19-20.
    [23]Thompson N, Nelson S, Bakht M, et al. Retiring replicants:congestion control for intermittently-connected networks[C], in Proceedings of IEEE INFOCOM. IEEE. 2010:1-9.
    [24]Ryu J, Ying L, Shakkottai S. Back-pressure routing for intermittently connected networks[C], in Proceedings of IEEE INFOCOM. IEEE.2010:1-5.
    [25]Zhao W, Ammar M, Zegura E. A message ferrying approach for data delivery in sparse mobile ad hoc networks[C], in Proceedings of ACM MobiHoc. ACM.2004: 187-198.
    [26]Harras K, Almeroth K, Belding-Royer E. Delay tolerant mobile networks (dtmns): controlled flooding in sparse mobile networks[C], in Proceedings of the IFIP-TC6 international conference on Networking Technologies, Services, and Protocols. Springer-Verlag.2005:1180-1192.
    [27]Tariq M B, Ammar M, Zegura E. Message ferry route design for sparse ad hoc networks with mobile nodes[C], in Proceedings of ACM Mobihoc. ACM.2006: 37-48.
    [28]熊永平,孙利民,牛建伟,刘燕.机会网络[J]. Journal of Software,2009, 20(1):124-137.
    [29]范家璐.机会移动网络建模与应用研究一种社会网络分析的视角[D]. PhD thesis浙江大学,2011年9月.
    [30]Fan J, Chen J, Du Y, et al. Delque:A socially-aware delegation query scheme in delay tolerant networks[J]. IEEE Transactions on Vehicular Technology,2011, 60(5):2181-2193.
    [31]Fan J, Chen J, Du Y, et al. Geo-community-based broadcasting for data dissemi-nation in mobile social networks[J]. IEEE Transactions on Parallel and Distributed Systems,2013,24(4):734-743.
    [32]Li F, Wu J. MOPS:Providing content-based service in disruption-tolerant net-works[C], in Proceedings of IEEE ICDCS.2009.
    [33]Zhou H, Chen J, Fan J, et al. Consub:incentive-based content subscribing in selfish opportunistic mobile networks[J]. IEEE Journal on Selected Areas in Communica-tions,2013,31 (9):669-679.
    [34]Zhou H, Wu J, Zhao H, et al. Incentive-driven and freshness-aware content dissem-ination in selfish opportunistic mobile networks[C], in Proceedings of IEEE MASS. 2013.
    [35]Wu J, Wang Y. Social feature-based multi-path routing in delay tolerant net-works[C], in Proceedings of IEEE INFOCOM.2012.
    [36]Gao W, Li Q, Zhao B, et al. Multicasting in delay tolerant networks:A social net-work perspective[C], in Proceedings of ACM MobiHoc.2009.
    [37]Rao W, Zhao K, Zhang Y, et al. Maximizing timely content advertising in dtns[C], in Proceedings of IEEE SECON.2012:254-262.
    [38]Khabbaz M, Assi C, Fawaz W. Disruption-tolerant networking:A comprehensive survey on recent developments and persisting challenges [J]. IEEE Communications Surveys & Tutorials,2012,14(2):607-640.
    [39]王欣.容迟/容断移动自组织网络路由技术研究[D]. PhD thesis天津大学,2010年6月.
    [40]彭敏.延迟容忍网络中移动模型与路由技术研究[D]. PhD thesis中国科学技术大学,2010年12月.
    [41]于海征.容迟网络路由协议及可靠性研究[D]. PhD thesis西安电子科技大学,2011年4月.
    [42]曹向辉.无线传感器/执行器网络的体系结构与算法研究[D]. PhD thesis浙江大学,2011年6月.
    [43]贺诗波.无线传感器网络覆盖理论与资源优化研究[D]. PhD thesis浙江大学,2012年5月.
    [44]张建辉.无线传感器网络拓扑控制研究[D]. PhD thesis浙江大学,2008年9月.
    [45]Zhu J, Cao J, Liu M, et al. A mobility prediction-based adaptive data gathering pro-tocol for delay tolerant mobile sensor network[C], in Proceedings of IEEE Globe-corn. IEEE.2008:1-5.
    [46]Project Z. Picture available online at:. https://www.princeton. edu/eeb/gradinitiative/decisionmaking/zebranet.jpg.
    [47]Seth A, Kroeker D, Zaharia M, et al. Low-cost communication for rural internet kiosks using mechanical backhaul[C], in Proceedings of ACM Mobicom. ACM. 2006:334-345.
    [48]Juang P, Oki H, Wang Y, et al. Energy-efficient computing for wildlife tracking: Design tradeoffs and early experiences with zebranet[C], in ACM Sigplan Notices. vol 37. ACM.2002:96-107.
    [49]Luan T, Cai L, Chen J, et al. Vtube:Towards the media rich city life with au-tonomous vehicular content distribution[C], in Proceedings of IEEE SECON. IEEE. 2011:359-367.
    [50]Lu N, Luan T, Wang M, et al. Capacity and delay analysis for social-proximity urban vehicular networks[C], in Proceedings IEEE INFOCOM. IEEE.2012:1476-1484.
    [51]周欢,徐守志.一种用于高速公路上防车辆连环碰撞的v2v广播协议[J].计算机研究与发展,2009,46(12):20162-2067.
    [52]Niyato D, Wang P. Optimization of the mobile router and traffic sources in vehic-ular delay-tolerant network[J]. IEEE Transactions on Vehicular Technology,2009, 58(9):5095-5104.
    [53]Pentland A, Fletcher R, Hasson A. Daknet:Rethinking connectivity in developing nations[J]. Computer,2004,37(1):78-83.
    [54]Zhu Y, Xu B, Shi X, et al. A survey of social-based routing in delay tolerant net-works:Positive and negative social effects[J]. IEEE COMMUNICATIONS SUR-VEYS & TUTORIALS,2013,15(1).
    [55]Krifa A, Sbai M K, Barakat C, et al. Bithoc:A content sharing application for wireless ad hoc networks[C], in Proceedings of IEEE PerCom.2009:1-3.
    [56]Jung S, Lee U, Chang A, et al. Bluetorrent:Cooperative content sharing for blue-tooth users[J]. Pervasive and Mobile Computing,2007,3(6):609-634.
    [57]Lenders V, Karlsson G, May M. Wireless ad hoc podcasting[C], in Proceedings of IEEE SECON. IEEE.2007:273-283.
    [58]Yoneki E, Hui P, Chan S, et al. A socio-aware overlay for publish/subscribe com-munication in delay tolerant networks[C], in Proceedings of the ACM Symposium on Modeling, analysis, and simulation of wireless and mobile systems. ACM.2007: 225-234.
    [59]Boldrini C, Conti M, Passarella A. Contentplace:social-aware data dissemination in opportunistic networks[C], in Proceedings of ACM MSWiM.2008:203-210.
    [60]Zhao Y, Wu J. B-sub:a practical bloom-filter-based publish-subscribe system for human networks[C], in Proceedings of IEEE ICDCS. IEEE.2010:634-643.
    [61]He S, Chen J, Sun Y, et al. On optimal information capture by energy-constrained mobile sensors[J]. IEEE Transactions on Vehicular Technology,2010,59(5):2472-2484.
    [62]He S, Chen J, Yau D K Y, et al. Energy-efficient capture of stochastic events under periodic network coverage and coordinated sleep[J]. IEEE Transactions onParallel and Distributed Systems,2012,23(6):1090-1102.
    [63]Wang W, Srinivasan V, Motani M. Adaptive contact probing mechanisms for delay tolerant applications[C], in Proceedings of ACM MobiCom.2007.
    [64]Motani W W M, Srinivasan V. Opportunistic energy-efficient contact probing in delay-tolerant applications[J]. IEEE/ACM Transactions on Networking,2009, 17(5):1592-1605.
    [65]Qin S, Feng G, Zhang Y. How the contact-probing mechanism affects the trans-mission capacity of delay-tolerant networks [J]. IEEE Transactions on Vehicular Technology,2011,60(4):1825-1834.
    [66]Qin S, Feng G, Zhang Y. How contact probing affects the transmission capacity and energy consumption in dtns[C], in Proceedings of IEEE ICC. IEEE.2011:1-5.
    [67]Drula C, Amza C, Rousseau F, et al. Adaptive energy conserving algorithms for neighbor discovery in opportunistic bluetooth networks[J]. IEEE Journal on Se-lected Areas in Communications,2007,25(1):96-107.
    [68]Banerjee N, Corner M, Levine B. Design and field experimentation of an energy-efficient architecture for dtn throwboxes[J]. IEEE/ACM Transactions on Network-ing,2010,18(2):554-567.
    [69]Trullols-Cruces O, Morillo-Pozo J, Barcelo-Ordinas J M, et al. Power saving trade-offs in delay/disruptive tolerant networks[C], in Proceedings of IEEE WoWMoM. 2011.
    [70]Yang S, Yeo C K, Lee B S. Cdc:An energy-efficient contact discovery scheme for pocket switched networks[C], in Proceedings of ICCCN. IEEE.2012:1-7.
    [71]Yang S, Yeo C, Lee B. Cooperative duty cycling for energy-efficient contact discov-ery in pocket switched networks[J]. IEEE Transactions on Vehicular Technology, 2013,62(4):1815-1826.
    [72]Vahdat A, Becker D. Epidemic routing for partially connected ad hoc networks[R]. CS-200006, Duke University,2000.
    [73]Grossglauser M, Tse D. Mobility increases the capacity of ad hoc wireless net-works[J]. IEEE/ACM TRANSACTIONS ON NETWORKING,2002,10(4):477.
    [74]Tseng Y C, Ni S Y, Chen Y S, et al. The broadcast storm problem in a mobile ad hoc network[J]. Wireless networks,2002,8(2):153-167.
    [75]Spyropoulos T, Psounis K, Raghavendra C S. Spray and wait:an efficient routing scheme for intermittently connected mobile networks[C], in Proceedings of ACM SIGCOMM workshop on Delay-tolerant networking.2005:252-259.
    [76]Spyropoulos T, Psounis K, Raghavendra C. Efficient routing in intermittently con-nected mobile networks:The single-copy case[J]. IEEE/ACM Transactions on Net-working,2008,16(1):63-76.
    [77]Spyropoulos T, Psounis K, Raghavendra C. Efficient routing in intermittently con-nected mobile networks:the multiple-copy case[J]. IEEE/ACM Transactions on Networking,2008,16(1):77-90.
    [78]Dubois-Ferriere H, Grossglauser M, Vetterli M. Age matters:efficient route dis-covery in mobile ad hoc networks using encounter ages[C], in Proceedings of ACM MobiHoc.2003:257-266.
    [79]Lindgren A, Doria A, Schelen O. Probabilistic routing in intermittently connected networks[J]. Lecture Notes in Computer Science,2004,3126:239-254.
    [80]Erramilli V, Crovella M, Chaintreau A, et al. Delegation forwarding[C], in Proceed-ings of ACM MobiHoc.2008:251-260.
    [81]Balasubramanian A, Levine B, Venkataramani A. Dtn routing as a resource alloca-tion problem[C], in ACM SIGCOMM Computer Communication Review, vol 37. ACM.2007:373-384.
    [82]Balasubramanian A, Levine B, Venkataramani A. Replication routing in dtns:A resource allocation approach[J]. IEEE/ACM Transactions on Networking,2010, 18(2):596-609.
    [83]Hui P, Crowcroft J, Yoneki E. Bubble rap:social-based forwarding in delay tolerant networks[C], in Proceedings of ACM MobiHoc.2008:241-250.
    [84]Daly E M, Haahr M. Social network analysis for routing in disconnected delay-tolerant manets[C], in Proceedings of ACM MobiHoc.2007:32-40.
    [85]Hui P, Crowcroft J. How small labels create big improvements[C], in Proceedings of the Fifth IEEE International Conference on Pervasive Computing and Communi-cations Workshops. IEEE.2007:65-70.
    [86]Wang Y, Jain S, Martonosi M, et al. Erasure-coding based routing for opportunistic networks[C], in Proceedings of the ACM SIGCOMM workshop on Delay-tolerant networking. ACM.2005:229-236.
    [87]M. Mitzenmacher. Digital fountains:A survey and look forward[C], in IEEE Infor-mation Theory Workshop.2004:271-276.
    [88]Chen L, Yu C, Sun T, et al. A hybrid routing approach for opportunistic networks[C], in Proceedings of the SIGCOMM workshop on Challenged networks. ACM.2006: 213-220.
    [89]Widmer J, Boudec J L. Network coding for efficient communication in extreme networks[C], in Proceedings of the ACM SIGCOMM workshop on Delay-tolerant networking. ACM.2005:284-291.
    [90]Lin Y, Liang B, Li B. Performance modeling of network coding in epidemic rout-ing[C], in Proceedings of the ACM MobiSys workshop on Mobile opportunistic networking. ACM.2007:67-74.
    [91]Shah R, Roy S, Jain S, et al. Data mules:Modeling and analysis of a three-tier architecture for sparse sensor networks [J]. Ad Hoc Networks,2003,1(2):215-233.
    [92]Zhao W, Ammar M, Zegura E. Controlling the mobility of multiple data transport ferries in a delay-tolerant network[C], in Proceedings of IEEE INFOCOM. vol 2. 2005:1407-1418.
    [93]Farahmand F, Cerutti I, Patel A, et al. Relay node placement in vehicular delay-tolerant networks[C], in Proceedings of IEEE Globecom.2008:1-5.
    [94]Sollazzo G, Musolesi M, Mascolo C. Taco-dtn:a time-aware content-based dissem-ination system for delay tolerant networks[C], in Proceedings of ACM MobiOpp. 2007:83-90.
    [95]Motani M, Srinivasan V, Nuggehalli P S. Peoplenet:engineering a wireless virtual social network[C], in Proceedings of ACM MobiCom.2005:243-257.
    [96]May M, Lenders V, Karlsson G, et al. Wireless opportunistic podcasting:implemen-tation and design tradeoffs[C], in Proceedings of ACM CHANTS.2007:75-82.
    [97]Costa P, Mascolo C, Musolesi M, et al. Socially-aware routing for publish-subscribe in delay-tolerant mobile ad hoc networks[J]. IEEE Journal on Selected Areas in Communications,2008,26(5):748-760.
    [98]McPherson M, Smith-Lovin L, Cook J. Birds of a feather:Homophily in social networks[J]. Annual review of sociology,2001,27:415-444.
    [99]Gao W, Cao G. User-centric data dissemination in disruption tolerant networks[C], in Proceedings of IEEE INFOCOM.2011.
    [100]Krifa A, Barakat C, Spyropoulos T. Mobitrade:trading content in disruption tolerant networks[C], in Proceedings of ACM CHANTS.2011:31-36.
    [101]Osborne M J. An introduction to game theory[M]. Oxford University Press New York, NY,2004.
    [102]Mahajan R, Rodrig M, Zahorjan D W J. Sustaining cooperation in multi-hop wire-less networks[C], in Proceedings of USENIX NSDI.2005:231-244.
    [103]Zhong S, Li L, Liu Y, et al. On designing incentive-compatible routing and forward-ing protocols in wireless ad-hoc networks[J]. Wireless networks,2007,13(6):799-816.
    [104]Michiardi P, Molva R. Core:a collaborative reputation mechanism to enforce node cooperation in mobile ad hoc networks[G]//Advanced Communications and Multi-media Security. Springer,2002:107-121.
    [105]Zhong S, Chen J, Yang Y R. Sprite:A simple, cheat-proof, credit-based system for mobile ad-hoc networks[C], in Proceedings of IEEE INFOCOM. vol 3.2003: 1987-1997.
    [106]Kamvar S, Schlosser M, Garcia-Molina H. The eigentrust algorithm for reputation management in p2p networks[C], in Proceedings of ACM WWW. ACM.2003: 640-651.
    [107]Feldman M, Lai K, Stoica I, et al. Robust incentive techniques for peer-to-peer net-works[C], in Proceedings of the conference on Electronic commerce. ACM.2004: 102-111.
    [108]Defrawy K E, Zarki M E, Tsudik G. Incentive-based cooperative and secure inter-personal networking[C], in Proceedings of the international MobiSys workshop on Mobile opportunistic networking. ACM.2007:57-61.
    [109]Buttyan L, Dora L, Felegyhazi M, et al. Barter-based cooperation in delay-tolerant personal wireless networks[C], in Proceedings of IEEE WoWMoM. IEEE.2007: 1-6.
    [110]Panagakis A, Vaios A, Stavrakakis I. On the effects of cooperation in dtns[C], in Proceedings of the International Conference on Communication Systems Software and Middleware. IEEE.2007:1-6.
    [111]Bigwood G, Henderson T. Ironman:Using social networks to add incentives and reputation to opportunistic networks[C], in Proceedings of IEEE SocialCom.2011: 65-72.
    [112]Li N, Das S K. Radon:Reputation-assisted data forwarding in opportunistic net-works[C], in Proceedings of ACM MobiOpp.2010.
    [113]Li N, Das S K. A trust-based framework for data forwarding in opportunistic net-works[J]. Ad Hoc Networks, to appear,2012.
    [114]Shevade U, Song H H, Qiu L, et al. Incentive-aware routing in dtns[C], in Proceed-ings of IEEE ICNP.2008:238-247.
    [115]Ning T, Yang Z, Xie X, et al. Incentive-aware data dissemination in delay-tolerant mobile networks[C], in Proceedings of IEEE SECON.2011.
    [116]Srinivasan K, Rajkumar S, Ramanathan P. Incentive schemes for data collaboration in disruption tolerant networks[C], in Proceedings of IEEE GLOBECOM.2010.
    [117]Li M, Cao N, Yu S, et al. Findu:Privacy-preserving personal profile matching in mobile social networks[C], in Proceedings of IEEE INFOCOM. IEEE.2011:2435-2443.
    [118]Guan X, Liu C, Chen M, et al. Internal threats avoiding based forwarding protocol in social selfish delay tolerant networks[C], in Proceedings of IEEE International Conference on Communications. IEEE.2011:1-6.
    [119]Natarajan V, Yang Y, Zhu S. Resource-misuse attack detection in delay-tolerant networks[C], in Proceedings of IEEE IPCCC. IEEE.2011:1-8.
    [120]Fawal A E, Boudec J L, Salamatian K. Vulnerabilities in epidemic forwarding[C], in Proceedings of IEEE WoWMoM. IEEE.2007:1-6.
    [121]Asokan N, Kostiainen K, Ginzboorg P, et al. Applicability of identity-based cryp-tography for disruption-tolerant networking[C], in Proceedings of ACM MobiSys workshop on Mobile opportunistic networking. ACM.2007:52-56.
    [122]Lu R, Lin X, Luan T, et al. Prefilter:An efficient privacy-preserving relay filtering scheme for delay tolerant networks[C], in Proceedings of IEEE INFOCOM. IEEE. 2012:1395-1403.
    [123]Ma C, Yau D, Yip N, et al. Privacy vulnerability of published anonymous mobility traces[C], in Proceedings of ACM Mobicom. ACM.2010:185-196.
    [124]Broch J, Maltz D, Johnson D, et al. A performance comparison of multi-hop wireless ad hoc network routing protocols[C], in Proceedings of ACM Mobicom.1998:85-97.
    [125]Johnson D B, Maltz D A. Dynamic source routing in ad hoc wireless networks[J]. Mobile computing,1996,153-181.
    [126]McDonald A B, Znati T. A path availability model for wireless ad-hoc networks[C], in Proceedings of IEEE WCNC.1999.
    [127]Eagle N, Pentland A S, Lazer D. Inferring friendship network structure by using mobile phone data[J]. Proceedings of the National Academy of Sciences,2009, 106(36):15274-15278.
    [128]Haartsen J, Naghshineh M, Inouye J, et al. Bluetooth:Vision, goals, and architec-ture[J]. ACM SIGMOBILE Mobile Computing and Communications Review,1998, 2(4):38-45.
    [129]Zhou H, Zhao H, Chen J. Energy saving and network connectivity tradeoff in op-portunistic mobile networks[C], in Proceedings of IEEE Globecom.2012.
    [130]Zhou H, Zheng H, Wu J, et al. Energy-efficient contact probing in opportunistic mobile networks[C], in Proceedings of ICCCN.2013:1-7.
    [131]Tsao C L, Liao W, Kuo J C. Link duration of the random way point model in mobile ad hoc networks[C], in Proceedings of IEEE WCNC.2006:367-371.
    [132]Wu Y T, Liao W, Tsao C L, et al. Impact of node mobility on link duration in multihop mobile networks[J]. IEEE Transactions on Vehicular Technology,2009, 58(5):2435-2442.
    [133]Wu J. Extended dominating-set-based routing in ad hoc wireless networks with uni-directional links[J]. IEEE Transactions on Parallel and Distributed Systems,2002, 13(9):866-881.
    [134]Abdulla M, Simon R. The impact of intercontact time within opportunistic net-works:protocol implications and mobility models[J]. TechRepublic White Paper, 2009.
    [135]Spyropoulos T, Psounis K, Raghavendra C S. Performance analysis of mobility-assisted routing[C], in Proceedings of ACM Mobihoc.2006:49-60.
    [136]Feeney L M, Nilsson M. Investigating the energy consumption of a wireless net-work interface in an ad hoc networking environment[C], in Proceedings of IEEE INFOCOM.2001.
    [137]Stemm M, Katz R H. Measuring and reducing energy consumption of network interfaces in hand-held devices[J]. IEICE Transactions on Communications,1997, 80(8):1125-1131.
    [138]Shih E, Bahl P, Sinclair M. Wake on wireless:An event driven energy saving strategy for battery operated devices[C], in Proceedings of ACM MobiCom.2002.
    [139]Sun Y, Gurewitz O, Du S, et al. Adb:an efficient multihop broadcast protocol based on asynchronous duty-cycling in wireless sensor networks[C], in Proceedings of ACM SenSys.2009.
    [140]Li Z, Li M, Liu Y. Towards energy-fairness in asynchronous duty-cycling sensor networks[C], in Proceedings of IEEE INFOCOM.2012.
    [141]Zhou H, Chen J, Zhao H, et al. On exploiting contact patterns for data forwarding in duty-cycle opportunistic mobile networks[J]. IEEE Transactions on Vehicular Technology,2013,62(9):4629-642.
    [142]Guo S, Kim S M, Zhu T, et al. Correlated flooding in low-duty-cycle wireless sensor networks[C], in Proceedings of IEEE ICNP.2011:383-392.
    [143]Karagiannis T, Boudec J Y L, Vojnovic M. Power law and exponential decay of intercontact times between mobile devices[J]. IEEE Transactions on Mobile Com-puting,2010,9(10):1377-1390.
    [144]Nelson S, Bakht M, Kravets R. Encounter-based routing in dtns[C], in Proceedings of IEEE INFOCOM.2009:846-854.
    [145]Chen H, Lou W. On using contact expectation for routing in delay tolerant net-works[C], in Proceedings of IEEE ICPP.2011:683-692.
    [146]Scott J, Gass R, Crowcroft J, et al. Crawdad data set cambridge/haggle (v.2009-05-29) 2009. http://crawdad.cs.dartmouth.edu/cambridge/haggle.
    [147]Eagle N, Pentland A, Lazer D. Inferring social network structure using mobile phone data[C], in Proceedings of National Academy of Sciences.2009:15274-15278.
    [148]Chaintreau A, Hui P, Crowcroft J, et al. Impact of human mobility on oppor-tunistic forwarding algorithms[J]. IEEE Transactions on Mobile Computing,2007, 6(6):606-620.
    [149]Chaintreau A, Hui P, Crowcroft J, et al. Pocket switched networks:Real-world mobility and its consequences for opportunistic[R]. UCAM-CL-TR-617, University of Cambridge, Computer Lab,2005.
    [150]Zhuo X, Li Q, Cao G, et al. Social-based cooperative caching in dtns:A contact duration aware approach[C], in Proceedings of IEEE MASS.2011:92-101.
    [151]Zhuo X, Li Q, Gao W, et al. Contact duration aware data replication in delay tolerant networks[C], in Proceedings of IEEE ICNP.2011:236-245.
    [152]Zhu H, Fu L, Xue G, et al. Recognizing exponential inter-contact time in VANETs[C], in Proceedings of IEEE INFOCOM.2010.
    [153]Conan V, Leguay J, Friedman T. Characterizing pairwise inter-contact patterns in delay tolerant networks[C], in Proceedings of ACM SenSys.2007:321-334.
    [154]Grandell J. Mixed poisson process[M]. Chapman & Hall/CRC,1997.
    [155]Prabhavat S, Nishiyama H, Ansari N, et al. On load distribution over multipath networks[J]. IEEE Communications Surveys & Tutorials,2012,14(3):662-680.
    [156]Jaramillo J J, Srikant R. Darwin:distributed and adaptive reputation mechanism for wireless ad-hoc networks[C], in Proceedings of ACM MobiCom.2007:87-98.
    [157]Srinivasan V, Nuggehalli P, Chiasserini C F, et al. Cooperation in wireless ad hoc networks[C], in Proceedings of IEEE INFOCOM. vol 2.2003:808-817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700