用户名: 密码: 验证码:
铜及铜合金表面纳米化及其改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米晶材料由于其特有的力学性能和物理性能而备受人们的关注,纳米材料性能的提高主要归因于大量的晶界和特殊的晶界结构。
     表面机械研磨处理(Surface mechanical attrition treatment-SMAT)是通过强烈的塑性变形来制备纳米晶材料的新方法。它能在材料的表面获得纳米级、亚微米级和微米级大小不同的晶粒,该技术已经成功地在许多材料中实现了表面纳米化。
     面心立方结构的铜及铜合金具有优良的导电性、导热性和耐腐蚀性等优点,广泛应用于电器仪表、航天航空、机械、国防工业等行业。全面系统地了解纳米晶材料的微观结构和性能之间的关系可以为纳米材料的使用提供理论基础。将SMAT技术和传统的表面处理相结合来优化纳米晶材料的性能对纳米材料的应用及研究具有十分重要的意义。
     本文采用表面机械研磨处理的方法在纯铜、铜钛合金、铜镍合金表面制备了纳米晶组织。采用金相显微镜(OM)、X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、和显微硬度测试仪对SMAT试样的微观组织结构和性能进行了表征。
     采用电化学极化曲线的方法和电化学阻抗技术,研究了试样在0.05mol/L Na2SO4和0.05mol/L H2SO4混合溶液中的电化学腐蚀行为。
     将表面改性和纳米化技术相结合可改善材料的综合性能。采用电沉积技术对SMAT纯铜试样表面进行了电沉积镍处理,通过退火处理研究了镍原子在纳米晶铜中的扩散行为及其对性能的影响。
     采用金属蒸发真空弧(MEVVA)对SMAT处理前后的纯铜进行了钛离子的注入,研究了离子注入钛后试样组织结构的特征及其对性能的影响。
     主要结论如下:
     1.经过表面机械研磨处理,纯铜表面产生了强烈的塑性变形,沿表面至基体形成了梯度分布。试样表面的晶粒尺寸随着SMAT处理时间的延长逐渐减小,SMAT处理45min表面晶粒尺寸达到了20nm,晶粒尺寸随着距离表面的深度增加而减小。强烈塑性变形层的厚度随着处理时间的延长而增加,最终达到一稳定值。SMAT处理后纯铜试样表面的显微硬度明显提高,沿深度方向逐渐减小,最终与基体一致。表面显微硬度达到了1.8GPa,比基体提高了1倍。
     2.固溶Cu-2.wt%Ti合金进行不同时间的SMAT处理后,试样表面的晶粒达到纳米级,SMAT处理60min后晶粒尺寸为30.5nm,变形层的厚度为45μm。SMAT处理后,试样中出现了明显的分层现象及高密度的形变孪晶和交叉孪晶。SMAT处理后试样表面的硬度增大,沿深度成梯度分布。对SMAT试样进行时效处理后,表面硬度变化不大,但距表面40~50μm之间的硬度明显增大。通过热力学计算了Ti含量对铜钛合金层错能的影响。发现随着钛含量的增加,合金层错能降低。
     3.Cu-10wt%Ni合金经过表面机械研磨处理后,获得了与纯铜类似的具有梯度结构的表面层。表面机械研磨处理90min时,试样表面附近平均晶粒尺寸达到了31.03nm,平均应变为0.0828%。处理时间120min时,表面显微硬度达到2.28GPa,是基体组织的1.52倍。极化腐蚀结果表明,表面机械研磨处理后,Cu-10wt%Ni合金的腐蚀电位产生了负移,钝化能力提高了,但其耐腐蚀性能降低了。
     4.采用MEVVA对纳米化纯铜表面进行离子注Ti,结果表明:注入离子的浓度服从Gauss分布。和粗晶试样相比,Ti原子在纳米晶铜中更容易扩散。离子注Ti后,试样的耐腐蚀性能明显提高。
     5.将电沉积技术和SMAT相结合改性纯铜表面性能,通过分析表明:SMAT试样表面纳米晶层内存在着大量的非平衡态缺陷,尤其是晶界数量的增加,降低了镍原子扩散的激活能,提高了扩散系数,加快了镍原子的扩散。在纳米铜试样中,镍原子在100℃下就有明显的扩散现象发生。极化腐蚀的实验结果表明SMAT处理试样的耐腐蚀性能提高。
Nanocrystalline materials attract particular interest because of their unique mechanical and physical properties. The property variation in these materials are frequently attributed to either the numerous amount of grain boundaries and/or the specific grain boundary structure that was claimed to differ fundamentally from that of the conventional grain boundary.
     Surface mechanical attrition treatment (SMAT) is a promising way to produce nano-grained microstructures by imposing intense plastic deformation into metals and alloys. It enables one to obtain ultrafine-grained structures from nanometer-sized grains to submicrometer-sized and micrometer-sized crystallites within the deformed surface layer. This technique has been successfully applied in achieving surface nanocrystallization in a variety of materials.
     Copper and copper alloy have wide application in industry, especially, electric meter manufactrere, aerospace and aviation, car manufacturing, due to excellent electrical conductivity, thermal conductance and corrosion resistance. Understanding of the relationship between microstructures of nanocrystalline materials and their properties is necessary. Optimizing the properties of nanocrystalline materials and understanding their essential behaviors become significant for actual application and scientific study.
     Nanostructured surface layers were produced in pure copper, Cu-Ti alloy and Cu-Ni alloy respectively by means of surface mechanical attrition treatment (SMAT). The microstructure features and properties of the surface layer of SMATed samples were characterized in detail by using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and microhardness testing machine.
     The electrochemical corrosion behavior of the samples was investigated through the potentiodynamic polarization method and the electrochemical impedance spectroscopy (EIS) technique in0.05mol/L Na2SO4+0.05mol/L H2SO4solution.
     The combination of surface modification and nanotechnology was applied to modify the surface properties of metal materials. The SMATed copper samples surface was cleaned and electroplated with a layer of pure nickel and Scanning electron microscope (SEM), GDS, X-ray diffractometer (XRD), etc. were used to analyze diffusion behavior of Ni atoms in the pure copper. In addition, Titanium (Ti) ions were implanted into the surface nanocrystalline copper samples by using metal vapor vacuum arc (MEVVA). The surface microstructure and concentration distribution of implanted ions were characterized by using X-ray diffractometer (XRD), transmission electron microscope (TEM), Auger electron spectroscopy (AES).
     The main conclusions can be drawn as follows:
     1. The surface layer of pure copper was severely deformed after SMAT, and such a gradient structure was formed from the top surface to the matrix. Particularly, the severely deformed layer can be further divided to nanostructured layer and layer with superfine structure.
     The grain sizes in the top surface of samples decreased with the prolonging of treatment time. The grain size in the top surface of the samples treated for45min was20nm. The grain size decreased when away from the top surface.
     The depth of the severely deformed layer increased with the prolonging of SMAT treatment time and finally reached a plateau at about250μm, while the depth of the whole strained layer could be as deep as450μm.
     Microhardness of the surface layer was obviously elevated after SMAT and it decreases gradually to the level of the matrix along the direction away from the top surface. The microhardness of the top surface could be2times as high as that of the matrix.
     2.Surface nanocrystallization layer was produced on solid solution treated Cu-2wt%Ti alloy by means of surface mechanical attrition treatment. The grain size in the top surface of the samples treated for60min was30.5nm.
     The stratification phenomena occurred on the Cu-2wt%Ti alloy samples. High density deformation twin and crossover twin were observed in the samples.
     After surface mechanical attrition treatment, the micro-hardness of the stratified interface began to keep stabilization, but after aging treatment, the micro-hardness of interface increased rapidly.
     With the introduction of Ti, Stacking fault energy of copper was brought down.
     3. Nanocrysitalline surface lauer was achieved in Cu-10wt%Ni alloy after SMAT. When the treatment time was90min, the average grain size on the surface of the sample achieved the smallest size of31.03nm, the mean micro-strain was0.0828%correspondingly. Experimental evidences also indicated that the SMAT treatment played an important role in the strength of the alloy. Its micro-hardness on the surface was2.28GPa when the sample was processed for120mins, which was1.52times harder than that of the matrix.
     The result showed that the corrosion potential of Cu-10wt%Ni Alloy shifted to a more negative value and its passivity behavior enhanced with respect to the coarse grain alloy. As a result, the corrosion behavior of Cu-10wt%Ni Alloy decreased after SMAT.
     4. Titanium ions were implanted into the surface nanocrystalline copper by using metal vapor vacuum arc (MEVVA). Ti distribution is measured by using Auger electron spectroscopy (AES). The results showed that after the surface mechanical attrition treatment (SMAT), the concentration of implanted ions followed Gauss distribution. The specimens after ion implantation have a remarkable enhancement of corrosion resistance with respect to the specimens without the surface treatment.
     5. The combination of electrodeposition and SMAT was applied to modify the surface properties of metal materials.
     It concluded that the increase of diffusion rate was attributed to lower diffusion activation energy and higher coefficient which was induced by the non-equilibrium defects in nanocrystaline (such as high density dislocations and dislocation cells), especially, a large number of grain boundaries.
     The diffusion phenomenon of Ni atoms in the SMAT copper can be obviously observed at100℃.
引文
[1]林肇琪.有色金属材料学[M].哈尔滨:东北工学院出版社,1986.
    [2]罗伟,钱聪,吴希俊.纳米晶铜块体材料电化学腐蚀行为研究[J].浙江大学学报,2006,40(9):1587-1590.
    [3]张通和,吴瑜光.离子注入表面优化技术[M].北京:冶金工业出版社,1993.
    [4]赵阳培,黄因慧.电沉积纳米材料的研究进展[J].材料科学与工程学报,2003,21(1):126-129.
    [5]Birringer R, Gleiter H, Klein H P, etc. Nanocrystalline materials an approach to a novel solid st ructure wit h gas-like disorder [J]. Physics Letters A,1984,102 (8):365-369.
    [6]Lu K. Nanocrystalline materials crystallized from amorphous solids:nanocry-stallization, structure, and properties[J]. Materials Science Engineering R:Reports, 1996,16(4):161-221.
    [7]Schumacher S, Birringer R, Gleiter R H. Diffusion of silver in nanocrystalline copper between 303 and 373 K[J]. Acta Metallurgica,1989,37 (9):2485-2488.
    [8]Liu G, Wang S C, Lou X F, etc. Low carbon steel with nanostructured surface layer induced by high-energy shot peening [J]. Scripta mater,2001,44:1791-1795.
    [9]Wei Y H, Liu B S, Hou L F, etc. Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechanical attrition treatment [J], Journal of Alloys and Compounds,2006,452:336-342.
    [10]Ni Z, Wang X, Wang J, etc. Characterization of the phase transformation in a nanostructured surface layer of 304 stainless steel induced by high-energy shot peening [J]. Physica B,2003,334:221-228.
    [11]Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Materials Science & Engineering A,2004, (375-377):38-45.
    [12]Padmanabhan K. Mechanical properties of nanostructured materials [J]. Materials Science & Engineering A,2001, (304-306):200-205.
    [13]Zhang H W, Hei Z K, Liu G, etc. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia,2003,51:1871-1881.
    [14]Gleiter H. Nanocrystalline materials [J]. Progress in Materials Science,1989,33 (4):223-315.
    [15]卢柯,周飞.纳米晶体材料的研究现状[J].金属学报,1997,33(1):99-106.
    [16]Fecht H J, Hellstem E, Fu Z. Nanocrystalline metals prepared by high-energy ball milling [J]. Metall Trans A,1990,21:2333-2337
    [17]Koch C C. The synthesis and structure of nanocrystalline materials produced by mechanical attrition:A review [J]. Nanostructure Materials,1993,2:109-129
    [18]吴文飞,姚可夫.非晶合金纳米晶化的研究进展[J].稀有金属材料与工程,2005,34(4):505-509.
    [19]Lu K, Wang J T. Relationship between crystallization temperature and preexist-ing nuclei in amorphous Ni-P alloys [J]. Materials Science Engineering,1988,97 (1):399-402.
    [20]Bakonyi I. Thermal stability of nanocrystalline nickel electrodeposits:differential scanning calorimetry, transmission electron microscopy and magnetic studies [J]. Material Science Engineering,1994,179-180A:531-535
    [21]Erb U, El-Sherik A M, Paluinbo G, etc. Synthesis, structure and properties of electroplated nanocrystalline materials[J]. Nanostructure Materials,1993,2:383-390
    [22]Cziraki A, Fogarassy B, Gerocs I. Microstructure and growth of electrodeposited nanocrystalline nickel foils [J]. J Mater Sci 1994,29(18):4771-4777.
    [23]McMahon G, Erb U. Structural transitions in electrodepositied Ni-P Alloys [J]. J mater. Sci.lett.1989,8(7):865-868.
    [21]荆天辅,付万堂,张静武.Co-Ni合金的电沉积及其微观结构的PoSAP分析[J].科学通报,1997,19:12-15.
    [22]邓妹皓,龚竹青,陈文汩.电沉积纳米晶体材料的研究现状与发展[J].电镀与涂饰,2001,8:35-40.
    [23]蒋华麟,陈萍华.溶胶-凝胶法制备纳米材料研究进展[J]..广东化工,2010,37(11):262-264.
    [24]Yao M Q, Wei Y H, Hu L Q, etc. Preparation and properties of nano-sized SnO2 powder [J]. Trans. Nonferrous Met. Soc. China,2002,12:833-836.
    [25]Birringer R, Gleiter H, Klein H P, etc. Nanocrystalline materials an approach to a novel solid st ructure wit h gas-like disorder [J]. Physics Letters A,1984,102 (8): 365-369.
    [26]Cizek J, Melikhova O, Prochazka I, etc. Defects in nanocrystalline Nb films:Effect of sputtering temperature [J]. Applied Surface Science,2006,252:3245-3251.
    [27]Segal V M, Reznikov V I, Pavlik D A, etc.Processes of plastic transformation of metals [R]. Minsk:Navuka Teknika,1984, P.295.
    [28]Chang C P, Sun P L, Kao P W. Deformation induced grain boundaries in commercially pure aluminium [J]. Acta Materialia,2000,48:3377-3385.
    [29]Kim W J, An C W, Kim Y S, etc. Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing [J]. Scripta Materialia, 2002,47:39-44.
    [30]Shin D H, Kim I, Kim J, etc. Grain refinement mechanism during equal-channel angular pressing of a low-carbon steel [J]. Acta Materialia,2001,49:1285-1292.
    [31]Bridgman P W. Studies in Large Plastic Flow and Fracture[R]. New York:1952
    [32]Gertsmen V Y, Birringer R, Valiev R Z, Gleiter H. On the structure and strength of ultrefina-grained copper produced by severe plastic deformation [J]. Scripta Metall Materialia,1994,30:229-234
    [33]Lu J, Lu K. Nanostructured surface layer on metallicmaterials induced by surface mechanical attrition treatment [J]. Materials Science and Engineering A,2005,275 138-145.
    [34]Zhang H W, Hei Z K, Liu G, etc. Formation of nanostructured surface layer on AISI304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia,2003,51:1871-1881.
    [35]Sui M L, Patu S, He Y Z. Influence of interfaces on the mechanical properties in polycrystalline Ni-P alloys with ultrafine grains [J]. Scr Metall et Mater,1991,25: 1537-1542.
    [36]Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials presentation of the concep t behind a new app roach [J]. J Mater.Sci. Technol.1999,15 (3) 193-197.
    [37]Zhu K.Y., Lu K., Lu J.. Nanostructure formation mechanism of a-titanium using SMAT. Acta Mataterials,2004,52:4101-4110.
    [38]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004,352-387.
    [39]张洪旺,刘刚,黑祖昆等.表面机械研磨诱导AISI304不锈钢表层纳米化[J].金属学报,2003,39(4):342-346.
    [40]王振波,雍兴平,陶乃镕.表面纳米化对低碳钢摩擦磨损性能的影响[J].金属学报,2001,37(12):1251-1255.
    [41]Noskova N I. Deformation of nanocrystalline pure metals and alloys based on Fe and Al [J]. Journal of Alloys and Compounds.2007,434-435:307-310.
    [42]Stangl M, Acker J and Dittel V. Characterization of electroplated copper self-annealing with investigations focused on incorporated impurities [J]. Microelectronic Engineering,2005,82:189-195.
    [43]Ren J W, Shan A D, Zhang J B, etc. Surface nanocrystallization of Ni3Al by surface mechanical attrition treatment [J]. Materials Letters,2006,60:2076-2079.
    [44]冯端.金属物理学结构与缺陷[M].北京:科学出版社,1987.
    [45]Lu K, Lu J, Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mater. Sci. Eng. A 2004,375-377:1234-1237.
    [46]肖纪美.合金相与相变[M].北京:冶金工业出版社,2004,96-149.
    [47]Hall E O. The deformation and aging of mild steel. Proceedings of the Physical society [J].1951,64:747-751.
    [48]Petch N J.The cleavage strength of polycrystals [J]. Journal of iron steel Inst,1953, 174:25-28.
    [49]Sanders P G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Materialia,1997,45:4019-4025.
    [50]Schuh C A, Nieh T G, Yamasaki T. Hall-Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel [J]. Scripta Materialia 2002,46:735-740.
    [51]Wolf D, Yamakov Y, Phillpot S R.etc. Deformation mechanism and inverse Hall-Petch behavior in nanocrystalline materials [J]. Zeitschrift fur Metallkunde,2003,94: 1052-1061.
    [52]Jang J S C, Koch C C. Hall-petch relationship in nanocrystalline iron produced by ball milling [J]. Scr Metall Mater,1990,24:1599-1602.
    [53]Nieman G W, Weertman J R, Siegel. R W. Mechanical behavior of Nanocrystalline Cu and Pd [J]. J Mater Res.1991,6:1012-1027.
    [54]Gleiter H. Nanostructured materials:basic concepts and microstructure [J]. Acta Mater, 2000,48:1-29.
    [55]Erdelyi Z, Girardeaux C, Langer GA, etc. Determination of grain-boundary diffusion coefficients by Auger electron spectroscopy [J]. Applied Surface Science.2000, 162-163:213-218.
    [56]Noskova N I. Dfeformation of nanocrystalline pure metals and alloys based on the Fe and Al [J]. Journal of Alloys and Compounds,2007,434-435:307-310.
    [57]Chen Y, Christopher A S. Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials [J]. Scripta Materialia,2007,57:253-256.
    [58]Horvath J, Birringer R, Gleiter H. Diffusion in Nanocrystalline material [J]. solid state commun,1987,62:391-392.
    [59]周宇松,吴希俊.纳米金属的力学性能[J].力学进展,2001,31(1):62-69.
    [60]Qian L H, Wang S C, Zhao Y H, etc. Microstrain effect on thermal propertiesof nanocrystalline Cu [J]. Acta Materialia,2002,50:3425-3434.
    [61]Roland T, Retraint D, Lu K, etc. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment [J]. Scripta Materialia,2006,54:1949-1954.
    [62]Sahoo S, Yang C S, Doudin B. Fabrication and quantum conductance of electroplated Ni nanocontacts [J]. Physics Letters A.2006,352:331-334.
    [63]卢柯.纳米孪晶纯铜的强度和导电性研究[J].中国科学院院刊,2004,19(5):352-354.
    [64]Guo F A, Zhu K Y, Trannoy N, etc. Examination of thermal properties by scanning thermal microscopy in ultrafine-grained pure titanium surface layer produced by surface mechanical attrition treatment [J]. Thermochimica Acta,2004,419:239-246.
    [65]Haas V, Birringer R, Gleiter H, etc. Synthesis of nanostructured powders in an aerosol flow condenser [J]. Journal of Aerosol Science,1999,28(8):1443-1453.
    [66]Sanders P G, Fougere G E, Thompson L J, etc. Improvements in the synthesis and compaction of nanocrystalline materials [J]. Nanostructured Materials,1997,8(3): 243-252.
    [67]Qian L H, Wang S C, Zhao Y H, etc. Microstrain effect on thermal properties of nanocrystalline Cu [J]. Acta Materialia,2002,50:3425-3434.
    [68]Lu A Q, Zhang Y, Li Y. Efffect of Nanocrystalline and twin boundaries on corrosion behavior of 316L stainless steel using smat [J]. Acta Metall Sin,2006,19(3):183-189.
    [69]石继红,武保林,刘刚.16L不锈钢表面纳米化后腐蚀性能研究[J].材料工程,2005,10:42-46.
    [70]Mordyuk B N, Prokopenko G I, Vasylyev M A, etc. Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel [J]. Materials Science and Engineering A,2007,458:253-261.
    [71]Mishra R, Balasubramaniam R. Effect of nanocrystalline grain size on the electrochemical and corrosion behavior of nickel [J]. Corrosion Science,2004,46: 3019-3029.
    [72]Luo W, Qian C, Wu X J, etc. Electrochemical corrosion behavior of nanocrystalline copper bulk [J]. Materials Science and Engineering A,2007, (452-453):524-528.
    [73]Yu B, Woo P, Erb U. Corrosion behaviour of nanocrystalline copper foil insodium hydroxide solution [J]. Scripta Materialia,2007,56:353-356.
    [74]Garbacz H, Pisarek M. Corrosion resistance of nanostructured titanium [J]. Biomolecular Engineering,2007,24:559-563.
    [75]Wang L, Lin Y, Zeng Z, etc. Electrochemical corrosion behavior of nano-crystalline Co coatings explained by higher grain boundary density [J]. Electrochimica Acta,2007, 52:4342-4350.
    [76]胡庚祥,钱苗根.金属学[M].上海,上海科学技术出版社,1980.
    [77]邓安华.有色金属中的原子扩散[J].上海有色金属,1999,20(1):36-41.
    [78]Tong W P, Liu C Z, Wang W, etc. Gaseous nitriding of iron with a nanostructur-ed surface layer. Scripta Materialia,2007,57:533-536.
    [79]Tao N R, Wang Z B, Tong W P, etc. An investigation of surface nano-crystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater, 2002,50:4603-4616.
    [80]Tong W P, Tao N R, Wang Z B, etc. Nitriding iron at lower temperatures [J]. Science, 2003,299:686-688.
    [81]Wang Z B, Tao N R, Tong W P. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment [J]. Acta Materialia,2003, 51:4319-4329.
    [82]Belova I.V., Murch G.E. Diffusion in nanocrystalline materials [J]. Journal of Physics and Chemistry of Solids,2003,64:873-878.
    [83]Wang Z B, Tao N R, Tong W P, etc. Diffusion of Cr in Nanostructured Fe and Low Carbon Steel Produced by means of Surface Mechanical Attrition [J] Treatment. Defect and Diffusion Forum,2006,249:147-154.
    [84]Chen Y, Schuh C A. Contribution of triple junctions to the diffusion anomaly in nanocrystalline materials [J]. Scripta Materialia,2007,56(5):1451-1456.
    [86]Horvath J, Bittinger R, Gleiter H. Diffusion in nanocrystalline material [J]. Soild State Commun,1987,62:319-322.
    [87]陈达.纳米微晶材料的扩散机制[J].材料学报,1995,31(8):340-345.
    [88]Kolobov Y R, Grabovetskaya G P, Ratochka I V. etc. Diffusion-induced creep of polycrystalline and nanostructured metals [J]. PII,1999,9773:311-316.
    [89]Wang Z B, Tao N R, Tong W P, etc. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003,51:4319-4329.
    [90]Wang Z B, Tao NR, Tong WP, etc. Diffusion of Cr in Nanostructured Fe and Low Carbon Steel Produced by means of Surface Mechanical Attrition Treatment [J]. Defect and Diffusion Forum,2006,249:147-154.
    [91]Wang Z W, Wang Y B, Liao X Z,etc. Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials [J]. Scipta Materialia,2009,60:52-55.
    [92]Lu K. Lu J., Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Mat Sci Eng A,2004,375-377:38-45.
    [93]Tao N R, Wang Z B, Tong W P, etc. An investigation of surface nano-crystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater, 2002,50:4603-4616.
    [94]Zhang H W, Hei Z K, Liu G, etc. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Mater, 2003,51:1871-1881.
    [95]Lu L, Shen Y F and Chen X H.Ultrahigh strength and high electrical conductivity in copper [J]. Science.2004,304:422-426.
    [96]Zhang Y, Tao N R and Lu K. Effect of stacking-fault energy on deformation twin thickness in Cu - Al alloys [J]. Scripta Materialia.2009,60:211-213.
    [97]Zhao Y H, Horita Z and Langdon T G. Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu-Zn alloys:Influence of stacking fault energy [J]. Materials Science and Engineering A.2008,474:342-347.
    [98]Sun P L, ZhaoY H and Cooley J C. Effect of stacking fault energy on strength and ductility of nanostructured alloys:An evaluation with minimum solution hardening [J]. Materials Science and Engineering A.2009,525:83-86.
    [99]Sakurai M, Nakajima F, Fukumoto T, etc. Development of electron beam ion source for nanoprocess using highly charged ions [J]. Nuclear Instruments and Methods in Physics Research B,2005,235:519-523.
    [100]黄岳山,蒙继龙,刘正义.金属钛的离子注入表面改性[J].暨南大学学报,1997,18:66-68.
    [1]Liu G, Wang S C, Lou X F, etc. Low carbon steel with nanostructured surface layer induced by high-energy shot peening [J]. Scripta mater,2001,44:1791-1795.
    [2]Wei Y H, Liu B S, Hou L F, etc. Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechanical attrition treatment [J], Journal of Alloys and Compounds,2006,452:336-342.
    [3]Ni Z, Wang X, Wang J, etc. Characterization of the phase transformation in a nanostructured surface layer of 304 stainless steel induced by high-energy shot peening [J]. Physica B,2003,334:221-228.
    [4]Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Materials Science & Engineering A,2004, (375-377):38-45.
    [5]Padmanabhan K. Mechanical properties of nanostructured materials [J]. Materials Science & Engineering A,2001, (304-306):200-205.
    [6]Zhang H W, Hei Z K, Liu G, etc. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia,2003,51:1871-1881.
    [7]Tao N R, Wang Z B, Tong W P, etc. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater, 2002,50:4603-4616.
    [8]毕海香.纯铜表面纳米化及其扩散性能研究[D].太原:太原理工大学,2008.
    [9]Tao N R, Sui M L, Lu J, etc. Surface nanocrystallozation of iron induced by ultrasonic shot peening [J]. Nanostruct.Mater,1999,11(4):433-440.
    [10]张洪旺,刘刚,黑祖昆,等.表面机械研磨诱导AISI304不锈钢表层纳米化组织与性能[J].金属学报,2003,39:342-346.
    [11]刘宝胜.表面纳米化镁合金的显微结构、变形机理及纳米表层的性能研究[D].太原理工大学硕士研究生学位论文,2007.
    [12]胡兰青,李茂林,等.铝合金表面纳米化处理及纤维结构特征[J].中国有色金属学报,2004,14:2016-2020.
    [13]Gertsmen V Y, Birringer R, Valiev R Z, etc. On the structure and strength of ultrefia-grained copper produced by severe plastic deformation [J]. Scripta Metall Materialia,1994,30:229-234.
    [14]Yu B, Woo P, Erb U. Corrosion behaviour of nanocrystalline copper foil insodium hydroxide solution [J]. Scripta Materialia,2007,56:353-356.
    [15]Garbacz H, Pisarek M. Corrosion resistance of nanostructured titanium [J]. Biomolecular Engineering,2007,24:559-563.
    [16]KIM S H, AUST K T. A comparison of the corrosion behaviyr of polycrystalline and nanocrystalline cobalt [J]. Scripta Materialia,2003,48(9):1379-1384.
    [17]陶乃熔.超声喷丸表面纳米化微观结构及机理的研究[D].沈阳:东北大学,1999.
    [18]Li W, Liu P, Ma F C. High-temperature surface alloying of nanocrystalline nickel produced by surface mechanical attrition treatment. J Alloy Comp.2011,509: 518-522.
    [19]Jiang P, Wei Q, Hong Y S. In situ synthesis of nanocrystalline intermetallic layer during surface plastic deformation of zirconium. Surface & Coatings echnology.2007, 202:583-589.
    [20]Li W, Wang X D and Meng Q P. Interdiffusion of alloying elements in nanocrystalline Fe-30 wt.% Ni alloy during surface mechanical attrition treatment and its effect on transformation. Scripta Materialia.2008,59:344-347.
    [1]程国安,梁昌林,朱学涛.MEVVA源强流Ti离子注入纯铜表面层的结构与性能研究[J].北京师范大学学报,2005,41(4):376-379
    [2]张通和,吴瑜光.离子注入表面优化技术[M].北京:冶金工业出版社,1993.
    [3]赵阳培,黄因慧.电沉积纳米材料的研究进展[J].材料科学与工程学报,2003,21(1):126-129.
    [4]Kakas D, Skoric B, Rakita M. Tribological behavior of duplex coating improved by ion implantation[J]. Thin Solid Films,2004,459:152-155.
    [5]Okada A, Aso Y, Hosoya H. Tungsten ion implantation into copper by use of metal arc-plasma electro-magnetically accelerated to several [J]. Materials Science and Engineering A,2003,350:202-206.
    [6]张光华,钟士谦.离子注入技术[M].北京:机械工业出版社,1982.
    [7]Jiang Q K, Qin C L, Amiya K. Enhancement of corrosion resistance in bulk metallic glass by ion implantation [J]. Intermetallics,2008,16:225-229.
    [8]张通和,吴瑜光,刘安东.V和C双注入钢纳米结构和抗磨损特性[J].微细加工技术,2003,2:17-21.
    [9]Ovidko I A, Sheinerman A G. Triple junction nanocracks in deformed nanocrystalline materials [J]. Acta Materialia,2004,52:1201-1209.
    [10]Safonov V I, Marchenko I G, Kartmazov G N. High dose low temperature Ti and Al implantation in metals [J]. Surface and Coatings Technology,2003,174-175: 1260-1263.
    [11]Wen M, Gua J F, Liu G, etc. Formation of nanoporous titania on bulk titanium by hybrid surface mechanical attrition treatment [J]. Surface & Coatings Technology, 2007,201:6285-6289.
    [12]Wang Z B, Tao N R, Tong W P. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003,51:4319-4329.
    [13]陈勇军,史庆南,左孝青,等.金属表面改性—离子注入技术的发展与应用[J].表面技术,2003,32(6):427-430.
    [14]万发荣.金属材料的辐射损伤[M].北京:科学出版社,1993,35-78.
    [15]胡庚祥,钱苗根.金属学[M].上海,上海科学技术出版社,1980.
    [16]Chang Y Y, Wang D Y. Corrosion behavior of CrN coatings enhanced by niobium ion implantation[J]. Surface & Coatings Technology,2004,188-189:478-483.
    [17]Gertsmen V Y, Birringer R, Valiev R Z, Gleiter H. On the structure and strength of ultrefina-grained copper produced by severe plastic deformation [J]. Scripta Metall Materialia,1994,30:229-234.
    [18]Kolobov Y R, Grabovetskaya G P, Ratochka I V. etc. Diffusion-induced creep of polycrystalline and nanostructured metals [J]. PII,1999,9773:311-316.
    [19]张通和,吴瑜光,邓志威,等.钛注入钢中纳米钛铁相结构的抗腐蚀特性[J].中国科学(E辑),1999,29(6):498-505.
    [20]陈飞,周海,姚斌.镁合金表面离子注Ti耐蚀性能的研究[J].表面技术,2007,6(3):7-10.
    [1]Tucka J R, Korsunsky A M, Davidsona R I, etc. Modelling of the hardness of electroplated nickel coatings on copper substrates [J]. Surface and Coatings Technology,2000,127:1-8.
    [2]Wurschum R, Herth S and Brossmann U. Diffusion in nanocrystalline metals and alloys-a status report [J]. Adv Eng Mater.2003,5:365-371.
    [3]胡庚祥,钱苗根.金属学[M].上海,上海科学技术出版社,1980
    [4]毕海香.纯铜表面纳米化及其扩散性能研究[D].太原:太原理工大学,2008
    [5]杜华云.铁基合金表面纳米化过程及相关金属学问题研究[D].太原:太原理工大学,2010
    [6]陈达.纳米微晶材料的扩散机制[J].金属学报,1995,31:340-345.
    [7]Tong W P, Liu C Z, Wang W, etc. Gaseous nitriding of iron with a nanostructur-ed surface layer [J]. Scripta Materialia,2007,57:533-536.
    [8]Tao N R, Wang Z B, Tong W P, etc. An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment [J]. Acta Mater, 2002,50:4603-4616.
    [9]Wang Z B, Tao N R, Tong W P. Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003,51:4319-4329.
    [10]Belova I V, Murch G E. Diffusion in nanocrystalline materials [J]. Journal of Physics and Chemistry of Solids,2003,64:873-878.
    [11]Tong W P, Tao N R, Wang Z B, etc. Nitriding iron at lower temperatures [J]. Science, 2003,299:686-688.
    [12]林万明,卫英慧,杜华云.纯铜表面纳米化对镍扩散的影响[J].金属热处理,2009,24:12-15.
    [1]Lu K, and Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. J.Mater.Sci.Eng.A.2004,375-377:38-45.
    [2]Yu B, Woo P, Erb U. Corrosion behaviour of nanocrystalline copper foil insodium hydroxide solution [J]. Scripta Materialia,2007,56:353-356.
    [3]Garbacz H, Pisarek M. Corrosion resistance of nanostructured titanium [J]. Biomolecular Engineering,2007,24:559-563.
    [4]Kim S H, Austk T. A comparison of the corrosion behaviyr of polycrystalline and nanocrystalline cobalt [J]. Scripta Materialia,2003,48(9):1379-1384.
    [5]Romankov S, Sha W, Kaloshkin S D. Fabrication of Ti-Al coatings by mechanical alloying method [J]. Surf. Coat. Technol.2006,201:3235-3245.
    [6]Suryanarayana C. Mechanical alloying and milling [J]. Prog. Mater. Sci.2001,46: 1-184.
    [7]陶乃熔.超声喷丸表面纳米化微观结构及机理的研究[D].沈阳:东北大学,1999.
    [8]Li W, Liu P, Ma F C. High-temperature surface alloying of nanocrystalline nickel produced by surface mechanical attrition treatment [J]. J Alloy Comp.2011,509: 518-522.
    [9]Takacs L, Torosyan A R.Surface mechanical alloying of an aluminumplate [J]. J. Alloys Compd.2007,434-435:686-688.
    [10]Jiang P, Wei Q, Hong Y S. In situ synthesis of nanocrystalline intermetallic layer during surface plastic deformation of zirconium [J]. Surface & Coatings echnology. 2007,202:583-589.
    [11]Li W, Wang X D, Meng Q P. Interdiffusion of alloying elements in nanocrystalline Fe-30 wt.% Ni alloy during surface mechanical attrition treatment and its effect on transformation [J]. Scripta Materialia.2008,59:344-347.
    [12]Romankov S, Komarov S V. Fabrication of TiN coatings using mechanical millingtech-niques [J]. Int.J.Refract.Met.HardMater.2009,27:492-497.
    [13]Farahbakhsh I, Zakeria A, Manikandan P. Evaluation of Nanostructured coating layers formed on Ni balls during mechanical alloying of Cu powder [J]. Applied Surface Science.2010,358:2354-2359.
    [1]徐恒均等,材料科学基础[M].北京:北京工业大学出版社,2001:381
    [2]杨银辉,严彪,张俊宝,等.金属材料表面自身纳米化研究进展[J].材料导报,2009,23(11):17-21.
    [3]王镇波,雍兴平,陶乃镕,等.表面纳米化对低碳钢摩擦磨损性能的影响[J].金属学报,2001,37(12):1251-1255.
    [4]Roland T, Retraint D, Lu K, etc. Fatigue life improvement through surface nanostructuring of stainless steel by means of surface mechanical attrition treatment[J]. Scripta Materialia,2006,54:1949-1954.
    [5]Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment[J]. Mater Sci Eng A,2004,377:38-42.
    [6]Wang K, Tao N R, Liu G, etc. Plastic strain-induced grain refinement at the nanometer scale in copper[J]. Acta Materialia,2006,54:5281-5291.
    [7]Wei Y H, Liu B S, Hou L F, etc. Characterization and properties of nanocrystalline surface layer in Mg alloy induced by surface mechanical attrition treatment[J]. Journal of Alloys and Compounds,2008,452(2):336-342.
    [8]Zhang H W, Hei Z K, Liu G, etc. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J]. Acta Materialia, 2003,51:1871-1881.
    [9]张洪旺,刘刚.表面机械研磨诱导AISI304不锈钢表面层纳米化[J].金属学报,2003,3(4):25-29.
    [10]Suryanarayana C. Nanocrystalline materials[J]. International Materials Reviews,1995, 40(2):41-64.
    [11]Nie X, Wang R, Ye Y, etc. Calculations of stacking fault energy for fee metals and their alloys based on an improved embedded-atom method[J]. Solid State Commun., 1995,96(10):729-734.
    [12]Li W, Li D Y. Exploring the application of the Kelvin method in studying the history prior to wear and the onset of wear[J]. Wear,2002,253:746-751.
    [13]Li W, Li DY. Variations of work function and corrosion behaviors of deformed copper surfaces [J]. Applied Surface Science,2005,240:388-395.
    [1]林肇琪.有色金属材料学[M].哈尔滨:东北工学院出版社,1986.
    [2]Liu G, Wang S C, Lou X F, etc. Low carbon steel with nanostructured surface layer induced by high-energy shot peening [J]. Scripta mater,2001,44:1791-1795.
    [3]Wei Y H, Liu B S, Hou L F, etc. Characterization and properties of nano-crystalline surface layer in Mg alloy induced by surface mechanical attrition treatment [J], Journal of Alloys and Compounds,2006,452:336-342.
    [4]Ni Z, Wang X, Wang J, etc. Characterization of the phase transformation in a nanostructured surface layer of 304 stainless steel induced by high-energy shot peening [J]. Physica B,2003,334:221-228.
    [5]Lu K, Lu J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment [J]. Materials Science & Engineering A,2004, (375-377):38-45.
    [6]Zhang H W, Hei Z K, Liu G, etc. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia, 2003,51:1871-1881.
    [7]卢柯,周飞.纳米晶体材料的研究现状[J].金属学报,1997,33(1):99-106.
    [8]Koch C C. The synthesis and structure of nanocrystalline materials produced by mechanical attrition:A review [J]. Nanostructure Materials,1993,2:109-129
    [9]Gertsmen V Y, Birringer R, Valiev R Z, Gleiter H. On the structure and strength of ultrefina-grained copper produced by severe plastic deformation [J]. Scripta Metall Materialia,1994,30:229-234
    [10]Lu K, Lu J. Nanostructured surface layer on metallicmaterials induced by surface mechanical attrition treatment [J]. Materials Science and Engineering A,2004,375 (37):38-45.
    [11]Zhang H W, Hei Z K, Liu G, etc. Formation of nanostructured surface layer on AISI304 stainless steel by means of surface mechanical attrition treatment [J]. Acta Materialia,2003,51:1871-1881.
    [12]Sui M L, Patu S, He Y Z. Influence of interfaces on the mechanical properties in polycrystalline Ni-P alloys with ultrafine grains [J]. Scr Metall et Mater,1991,25: 1537-1542.
    [13]Lu K, Lu J. Surface nanocrystallization (SNC) of metallic materials presentation of the concep t behind a new app roach [J]. J Mater.Sci. Technol.,1999,15 (3):1932197
    [14]Zhu K Y, Lu K, Lu J. Nanostructure formation mechanism of a-titanium using[J] SMAT. Acta Mataterials,2004,52:4101-4110
    [15]张洪旺,刘刚,黑祖昆等.表面机械研磨诱导AISI304不锈钢表层纳米化[J].金属学报,2003,39(4):342-346
    [16]Ren J W, Shan A D, Zhang J B, etc. Surface nanocrystallization of Ni3Al by surface mechanical attrition treatment [J]. Materials Letters,2006,60:2076-2079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700