用户名: 密码: 验证码:
稳健波束形成与稀疏空间谱估计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阵列信号处理是现代信号处理技术的重要分支,在雷达、声纳、无线通信、医学成像等多种军事和国民经济领域具有广泛的应用。阵列信号处理可以分为波束形成和空间谱估计两大方面内容。针对这两方面内容,本文分别就非理想条件下的稳健波束形成技术,以及基于稀疏信号重建的空间谱估计方法展开研究。在对现有理论和方法进行调研的基础上,本文提出了一些新的稳健波束形成和高分辨空间谱估计方法。其主要创新性成果有:
     1)针对波束形成方法中的导向矢量失配问题,提出了新的导向矢量矫正方法。该方法给出了一种基于二阶锥规划(Second-Order Cone Programming, SOCP)的迭代流程来近似原本的非凸(non-convex)优化问题,使问题可以有效的求解,并且该迭代流程的可解性和收敛性可以得到保证。与传统的算法相比,所提出的算法避免了使用等式约束,从而节省了系统自由度,进一步提升了波束形成器的性能。
     2)针对宽带波束形成器中的来波方向(Direction of arrival, DOA)失配以及主瓣频率响应不一致的问题,提出了一种主瓣幅度响应可控的宽带波束形成方法。算法采用不等式约束而非等式约束来控制主瓣幅度响应,在获得对DOA失配稳健性的同时可以节省更多的系统自由度。算法给出一种基于SOCP的迭代流程,转化了原本的非凸优化问题,使问题可以有效求解,并且适用于任意类型阵列。此外,该方法引入了均方响应浮动元素,进一步克服了宽带波束形成器主瓣响应的频域不一致问题。仿真结果验证所提方法的有效性。
     3)传统稳健波束形成方法大多基于Capon波束形成器框架下提出的。本文中,我们考虑在广义旁瓣相消器(Generalized Sidelobe Canceller, GSC)框架下设计稳健波束形成器。通过将传统GSC中的阻塞矩阵与自适应权值合并,我们发现这种框架带来的一个好处就是可以直接施加不等式凸约束来使波束形成器对DOA失配具有稳健性,避免了传统方法所经常涉及的非凸优化问题,使设计更为灵活和简便。另外,结合了最差性能最优化思想,算法进一步获得了对一般类型误差的稳健型。该方法可以将DOA失配和其他一般性误差分别对待,避免了传统最差性能最优化法设计容易过于保守的问题。
     4)提出了一种基于稀疏重建干扰噪声协方差矩阵的稳健波束形成方法。该方法利用一种叫做SPICE(Sparse Iterative Covariance-based Estimation)的稀疏空间谱估计方法,矫正对期望信号的观察方向,然后重建无信号的协方差矩阵。与传统基于采样协方差矩阵的波束形成器不同,重构的协方差矩阵不包含期望信号成分,从而波束形成器的稳健性大大增强。所提出的方法由于进一步利用了协方差矩阵结构的稀疏性,因而比现有重建方法的精度更高。另外,基于SPICE重构的协方差矩阵对相干信号引起的秩缺损有稳健性,进而使得提出的波束形成方法可以处理相干干扰存在的情况。
     5)针对现有的协方差矩阵重构法依赖于精确的阵列结构信息,无法处理阵列未知扰动的问题,作者提出了一种利用信号循环平稳性的协方差矩阵重构法。该算法在构造干扰噪声协方差矩阵时无需已知阵列的结构和响应信息,因而不受阵列中未知扰动的影响。另外,算法的设计基于信号的循环平稳信息,而不依赖于信号的空间位置信息,因此可用于干扰方向距离期望信号很近的情况。仿真结果表明,在阵列系统存在未知扰动时,所提出算法优于现有的协方差矩阵重构法,特别是在干扰信号能量较大或干扰距离期望信号很近的时候。
     6)提出了一种联合利用信号空间稀疏性和循环平稳特性的空间谱估计算法。该算法考虑对信号的共轭循环自相关矩阵进行稀疏重建,并使用加权l1范数来约束稀疏性。由于利用了信号的循环平稳性,所提出算法可以仅对感兴趣的循环平稳信号进行方位估计而忽略干扰,因此其他干扰信号可以在距离期望信号任意近的位置。另外,所提出方法利用了信号的空间稀疏性,因此进一步提高了其空间分辨力。仿真结果证明了所提出方法的有效性。
Array signal processing techniques are widely applied to the fields of Radar, Sonarwireless communication, medical imaging, etc. It can be divided into two main parts in thearray signal processing: adaptive beamforming and spatial spectrum estimation techniques.Corresponding to each part, this dissertationion focuses on the issue of robust beamformingdesign and sparse-signal-reconstruction-based spatial spectrum estimation. Based on a deepstudy on the related theory and existing algorithms, the dissertation has developed some newmethods on the robust beamforming and high resolution spatial spectrum estimation. Themain contributions are as follows.
     1) The problem of steering vector mismatch for the robust beamformer design isconsidered and a steering vector calibration method is proposed. The proposed technique canobtain the SV directly and efficiently by iterating second-order cone programming. Moreover,the feasibility and convergence of the proposed algorithms can be guaranteed. The proposedbeamformer avoids the equality constraints in the conventional method, thus more degrees offreedom are saved.
     2) A wideband beamformer with mainlobe control is proposed. To make the beamformerrobust against direction of arrival (DOA) mismatch, inequality rather than equality constraintsare used to restrict the mainlobe response, thus more degrees of freedom are saved. Theconstraints involved are nonconvex, therefore are linearly approximated so that thebeamformer can be obtained efficiently by iterating a second-order cone program and can beapplied to arbitrary types of arrays. Moreover, the response variance element is introduced toachieve a frequency invariant beamwidth. The simulation results demonstrate theeffectiveness of the proposed method.
     3) A robust beamformer is proposed by modifying the generalized sidelobe canceler(GSC) and using the concept of worst-case performance optimization. With the GSC-likestructure, convex constraints can be directly applied to make the beamformer robust againstDOA mismatch. Then, the beamformer is improved to be robust against arbitrary systemimperfections by applying the worst-case optimization method. The DOA mismatch and othergeneral imperfections can be treated separately in the beamformer, thus an over-conservativerobustness design may be avoided.
     4)By introducing the sparse iterative covariance-based estimation (SPICE) approach, a robust beamformer with joint robustness against the desired signal mismatch and theinterference coherence is proposed. With the SPICE, we firstly calibrate the look directionmismatch, and then reconstruct the interference-plus-noise covariance matrix (INCM) toreplace the conventional sample covariance matrix. This is shown to greatly improve therobustness of adaptive beamformers since a quasi signal-free environment is provided.Moreover, since the SPICE is robust to signal coherence, the proposed beamformer cansuppress the coherent interferences.
     5) An INCM reconstruction method is proposed by exploiting the cyclostationarity ofinterference signals. In contrast to the existing INCM reconstruction methods, the proposedtechnique is based on the knowledge of the interferences’ cycle frequencies and needs noinformation of the array structure, thus it can deal with unknown perturbations in the array.Moreover, the proposed technique is suitable to the case when the locations of theinterferences and desired signal are close. The numerical simulations show that the proposedmethod improves the robustness of adaptive beamformers and has superior performance to theexisting INCM reconstruction methods especially for strong interferences.
     6) A DOA estimation technique is proposed by jointly exploiting the signalcyclostationarity and spatial sparsity. Based on the cyclic conjugate correlation matrix, theproposed estimator exhibits the signal selectivity at a desired cycle frequency, thus thenumber and characteristics of the interference can be arbitrary and unknown. Moreover, byusing the sparse representation framework with the weighted l1-norm minimization, theresolution and accuracy of DOA estimation can be greatly improved. The effectiveness of theproposed method is examined by numerical examples.
引文
[1] Trees H. L. V., Detection, estimation, and modulation theory [M]. Part IV: Optimum arrayprocessing. John Wiley&Sons, New York, NY,2002.
    [2]王永良,陈辉,彭应宁,等.空间谱估计理论与算法[M].北京,清华大学出版社,2004.
    [3] Veen B. D. V. and Buckley K. M., Beamforming: a versatile approach to spatial filtering[J]. IEEE Acoustic, Speech, Signal Processing Magazine, April.1988:4-24.
    [4] Godara L. C., Application of antenna arrays to mobile communications.II. Beam-formingand direction-of-arrival considerations [J]. Proceedings of the IEEE,1997,85(8):1195-1245.
    [5] Chang D. C., and Hu C. N., Smart antennas for advanced communication systems [J].Proceedings of the IEEE,2012,100(7):2233-2249.
    [6]鄢社锋,马远良,传感器阵列波束优化设计及应用[M].北京:科学出版社.2009.
    [7] Li J. and Stoica P., Eds., Robust adaptive beamformer [M]. New York: Wiley,2005.
    [8] Vorobyov S.A., Principles of minimum variance robust adaptive beamforming design [J].Signal Processing,2013, In Press: http://dx.doi.org/10.1016/j.sigpro.2012.10.021
    [9]刘聪锋,刘晓军,廖桂生,稳健自适应波束形成算法综述[J].中国电子科学研究院学报,2009,4(6):560-565.
    [10]Capon J., High resolution frequency-wavenumber spectrum analysis [J]. Proc. IEEE,1969,57(8):1408-1418.
    [11]Cox H., Resolving power and sensitivity to mismatch of optimum array processors [J].Journal of the Acoustical Society of America,1970,58(6):947-949.
    [12]Gordara L. C. Error analysis of the optimal antenna-array processor [J]. IEEE Trans.Aerospace and Electronic Systerms,1986,22(4):395-409.
    [13]刘凯,梁国龙,张光普,等.初探阵列误差对矢量阵波束形成系统的影响[J],系统仿真学报,2012,4:848-853.
    [14]Vural A. M., Effects of perturbation on the performance of optimum/adaptive arrays [J].IEEE Trans. Aerospace and Electronic Systerms,1979,15(1):76–87.
    [15]Godara L. C., The effect of phase-shift errors on the performance of an antenna-arraybeamformer [J]. IEEE J. Ocean Engineering,1985,10(7):278-284,.
    [16]Widrow B., Duvall K. M., Gooch R. P., et al, Signal cancellation phenomena in adaptiveantennas: causes and cures [J]. IEEE Trans. Antennas and Propagation,1982,30:469-478.
    [17]Takao K., Fujita H., and Nishi T., An adaptive array under directional constraint [J]. IEEETrans. Antennas and Propagation,1976,24(5):662-669.
    [18]Kim J. W., Un C. K., An adaptive array robust to beam pointing error [J]. IEEE Trans.Signal Processing,1992,40(6):1582-1584.
    [19]Bell K. L., Ephraim Y., and Trees H. L. V., A Bayesian approach to robust adaptivebeamforming [J]. IEEE Trans. Signal Processing,2000,48(2):386-398.
    [20]Jablon N. K., Adaptive beamforming with the generalized sidelobe canceller in thepresence of array imperfections [J]. IEEE Trans. Antennas and Propagation,1986,34(8):996-1012.
    [21]Gershman A. B., Turchin V. I., and Zverev V. A., Experimental results of localization ofmoving underwater signal by adaptive beamforming [J]. IEEE Trans. Signal Processing,1995,43(10):2249–2257.
    [22]Ringelstein J., Gershman A. B., and B hme J. F., Direction finding in randominhomogeneous media in the presence of multiplicative noise [J]. IEEE Signal ProcessingLetters,2000,7(10):269-272.
    [23]陈红利,阵列误差校正方法及其工程实现研究[D],西安,西安电子科技大学硕士论文,2010.
    [24]武思军,稳健的自适应波束形成算法研究[D],哈尔滨,哈尔滨工程大学博士论文,2005.
    [25]Hong Y. J., Yeh C. C., and Ucci D. R., The effect of a finite-distance signal source on afar-field steering applebaum array-two dimensional array case [J]. IEEE Trans. Antennasand Propagation,1988,36(4):468-475.
    [26]Goldberg J. and Messer H., Inherent limitations in the localization of a coherentlyscattered source [J]. IEEE Trans. Signal Processing,1998,46(12):3441-3444.
    [27]Lee J. H. and Cheng K. P., Adaptive array beamforming with robust capabilities underrandom phase perturbations [J]. IEEE Trans. Signal Processing,2005,53(1):365-371.
    [28]Applebaum S. P. and Chapman D. J., Adaptive arrays with main beam constraints [J].IEEE Trans. Antennas and Propagation,1976,24(5):650–662.
    [29]Er M. H. and Cantoni A., Derivative constraints for broad-band element space antennaarray processors [J]. IEEE Trans. Acoustic, Speech, Signal Processing,1983,31(6):1378-1393.
    [30]Cox H., Zeskind R. M., and Owen M. H., Robust adaptive beamforming [J]. IEEE Trans.Acoustic, Speech, Signal Processing,1987,35(10):1365-1376.
    [31]Carlson B. D., Covariance matrix estimation errors and diagonal loading in adaptivearrays [J]. IEEE Trans. Aerospace and Electronics System.1988,24:397-401.
    [32]Feldman D. D. and Griffiths L. J., A projection approach for robust adaptivebeamforming [J]. IEEE Trans. Signal Processing,1994,42(4):867-876.
    [33]Chang L. and Yeh C. C., Performance of DMI and eigenspace-based beamformers [J].IEEE Trans. Antennas and Propagation,1992,40(11):1336-1347.
    [34]Thomas J. K., Scharf L. L., and Tufts D. W., The probability of a subspace swap in theSVD [J]. IEEE Trans. Signal Processing,1995,43(3):730-736.
    [35]Huang F., Sheng W. and Ma X., Modified projection approach for robust adaptive arraybeamforming [J]. Signal Processing,2012,10:1758-1763.
    [36]贺顺,杨志伟,廖桂生,迭代子空间跟踪和结构约束的自适应波束形成算法[J].信号处理,2012,2:226-231.
    [37]Vorobyov S. A., Gersham A. B., and Luo Z. Q., Robust adaptive beamforming usingworst-case performance optimization: A solution to the signal mismatch problem [J].IEEE Trans. Signal Processing,2003,51(2):313-324.
    [38]林静然,彭启琮,邵怀宗,等.最坏情况下的鲁棒自适应波束形成算法性能分析[J].电子学报,2006,34(12):2161-2166.
    [39]Lorenz R. G. and Boyd S. P., Robust minimum variance beamforming [J]. IEEE Trans.Signal Processing,2005,53(5):1684-1696.
    [40]Kim S. J., Magnani A., Mutapcic A., et al. Robust beamforming via worst-case SINRmaximization [J]. IEEE Trans. Signal Processing,2008,56(4):1539-1547.
    [41]Shahbazpanahi S., Gershman A. B., Luo Z. Q., et al. Robust adaptive beamforming forgeneral-rank signal models [J]. IEEE Trans. Signal Processing,2003,51(9):2257-2269.
    [42]Vorobyov S. A., Gershman A. B., Luo Z. Q., et al. Adaptive beamforming with jointrobustness against mismatched signal steering vector and interference nonstationarity [J].IEEE Signal Processing Letters,2004,11(2):108-111.
    [43]Vorobyov S. A., Chen H., and Gershman A. B., On the relationship between robustminimum variance beamformers with probabilistic and worst-case distortionless responseconstraints [J]. IEEE Trans. Signal Processing,2008,56(11):5719-5724.
    [44]宋昕,汪晋宽,刘福来,等.顽健自适应波束形成算法[J].通信学报,2009,30(6):7-12.
    [45]Jin W., Jia W. M., Yao M. L., et al. Robust adaptive beamforming based on iterativeimplementation of worst-case performance optimization [J]. Electronics Letters, vol.2012,48(22).
    [46]Li J., Stoica P., Wang Z., On robust capon beamforming and diagonal loading [J]. IEEETrans. Signal Processing.2003,51(7):1702-1715.
    [47]Stoica P., Wang Z., Li J., Robust Capon beamforming [J]. IEEE Signal ProcessingLetters,2003,10(6):172-175.
    [48]Li J., Stoica P., and Wang Z., Doubly constrained robust Capon beamformer [J]. IEEETrans. Signal Processing,2004,52(9):2407-2423.
    [49]戴凌燕,王永良,李荣锋,等.基于不确定集的稳健Capon波束形成算法性能分析[J].电子与信息学报,2009,31(12):2931-2936.
    [50]宋海岩,朴胜春,秦进平,矢量最优化稳健波束形成性能分析[J].电子学报,2012,7:1351-1357.
    [51]刘聪锋,廖桂生,基于模约束的稳健Capon波束形成算法[J].电子学报,2008,36(3):440-445.
    [52]刘聪锋,廖桂生,基于二次约束的稳健LCMP波束形成算法[J].电子学报,2010,38(9):1990-1996.
    [53]Ruebsamen M., Gershman A. B., Robust adaptive beamforming using multi-dimensionalcovariance fitting [J]. IEEE Trans. Signal Processing,2012,60(2):740-753.
    [54]Somasundaram S. D., Jakobsson A. and Parsons N. H., Robust and automaticdata-adaptive beamforming for multidimensional arrays [J]. IEEE Trans. Geoscience andRemote Sensing,2012,50(11):4642-4656.
    [55]Yu Z. L., Er M. H., A robust minimum variance beamformer with new constraint onuncertainty of steering vector [J]. Signal Processing2006,86:2243-2254.
    [56]Zhang W., Wang J., Wu S., Robust Capon beamforming against large DOA mismatch [J].Signal Processing,2013,93(4):804-810.
    [57]Nai S. E., Ser W., and Yu Z. L., Iterative robust minimum variance beamforming [J].IEEE Trans. Signal Processing,2011,59(4):1601-1611.
    [58]Lie J. P., Li X. H., Ser W., et al. Adaptive uncertainty based iterative robust Caponbeamformer [A]. Proc. of IEEE International Conference on Acoustics, Speech, andSignal Processing[C].2010, pp.2526–2529.
    [59]Lie J. P., Ser W., and See C. M. S., Adaptive uncertainty based iterative robust Caponbeamformer using steering vector mismatch estimation [J]. IEEE Trans. SignalProcessing,2011,59(9):4483-4488.
    [60]Hassanien A., Vorobyov S. A., and Wong K. M., Robust adaptive beamforming usingsequential quadratic programming: an iterative solution to the mismatch problem [J].IEEE Signal Processing Letters,2008,5:733-736.
    [61]Khabbazibasmenj A., Vorobyov S. A. and Hassanien A., Robust adaptive beamformingbased on steering vector estimation with as little as possible prior information [J]. IEEETrans. Signal Processing,2012,60(6):2974-2987.
    [62]Jia W., Jin W., Zhou S., et al. Robust adaptive beamforming based on a new steeringvector estimation algorithm [J]. Signal Processing,2013, In press:http://dx.doi.org/10.1016/j.sigpro.2013.03.015i.
    [63]Liu Y. and Wan Q., Sidelobe suppression for robust Capon beamforming withmainlobe-to-sidelobe power ratio maximization [J]. IEEE Antennas and WirelessPropagation Letters,2012,11:1218-1221.
    [64]Selen Y., Abrahamsson R., and Stoica P., Automatic robust adaptive beamforming viaridge regression [J]. Signal Processing,2008,88:33–49.
    [65]徐定杰,贺瑞,沈锋,等.基于收缩方法的稳健自适应波束形成算法[J].华中科技大学学报(自然科学版),2012,2:75-79.
    [66]Stoica P., Li J., Zhu X., et al. On using a priori knowledge in space-time adaptiveprocessing [J]. IEEE Trans. Signal Processing,2008,56(6):2598–2602.
    [67]Yang J., Ma X., Hou C. and Liu Y., Automatic generalized loading for robust adaptivebeamforming [J]. IEEE Signal Processing Letters,2009,16(3):219-222.
    [68]Du L., Yardibi T., Li J., et al. Review of user parameter-free robust adaptive beamformingalgorithms [J]. Digital Signal Processing,2009(19):567-582.
    [69]Liu W. and Ding S., An efficient method to determine the diagonal loading factor usingthe constant modulus feature [J]. IEEE Trans. Signal Processing,2008,5(12):6102-6106.
    [70]Chen C. Y. and Vaidyanathan P. P., Quadratically constrained beamforming robust againstdirection-of-arrival mismatch [J]. IEEE Trans. Signal Processing,2007,55(8):4139-4150.
    [71]Boyd S. and Vandenberghe L., Eds., Convex Optimization [M]. Cambridge UniversityPress,2004.
    [72]Luo Z. Q., Applications of convex optimization in signal processing and digitalcommunication [J]. Mathatic Programming,2003,97(7):177–207.
    [73]Lobo M., Vandenberghe L., Boyed S., et al. Applications of second-order coneprogramming [J]. Linear Algebra Application,1998,284:193–228.
    [74]Gershman A. B., Sidiropoulos N. D., Shahbazpanahi S., et al. Convex optimization-basedbeamforming [J]. IEEE Signal Processing Magazine,2010,27(June (3)):62-75.
    [75]Luo Z. Q., Ma W. K., Anthony M. C. S., et al. Semidefinite relaxation of quadraticoptimization problems [J]. IEEE Signal Processing Magazine,2010, May:20-34
    [76]彭建辉,基于凸优化理论的自适应波束形成技术[D].合肥,中国科技大学博士学位论文,2008
    [77]Yu Z. L., Ser W., Er M. H., et al. Robust adaptive beamformers based on worst-caseoptimization and constraints on magnitude response [J]. IEEE Trans. Signal Processing,2009,57(7):2615-2628.
    [78]Yu Z. L., Gu Z., Zhou J., et al. A Robust adaptive beamformer based on worst-casesemi-definite programming [J]. IEEE Trans. Signal Processing,2010,58(11):5914-5919.
    [79]Yu Z. L., Er M. H., and Ser W., Novel adaptive beamformer based on semidefiniteprogramming (SDP) with constraints on magnitude response [J]. IEEE Trans. Antennasand Propagation,2008,56(5):1297-1307.
    [80]Yu Z. L., Er M. H., Ser W., et al. Spectral factorization for integer-interval sampledsequence with applications in array processing [J]. Signal Processing.2008,88(7):1715-1724.
    [81]Nai S. E., Ser W., Yu Z. L., et al. A robust adaptive beamforming framework withbeampattern shaping constraints [J]. IEEE Trans. Antennas and Propagation,2009,57(7):2198-2203.
    [82]Liao B., Tsui K. M., and Chan S. C., Robust beamforming with magnitude responseconstraints using iterative second-order cone programming [J]. IEEE Trans. Antennas andPropagation,2011,59(9):3477-3482.
    [83]Choi Y. H., Robust adaptive array using Taylor series expansion [J]. Electronics Letters,2011,47(15):840-841.
    [84]王勇,刘宏伟,纠博,等. MIMO雷达稳健的发射波束形成算法[J].电子与信息学报,2012,34(2):318-323.
    [85]刘聪锋,稳健的自适应波束形成与空时自适应处理算法研究[D].西安,西安电子科技大学博士学位论文,2008.
    [86]宋昕,复杂环境下的鲁棒自适应波束形成算法的研究[D].沈阳,东北大学博士学位论文,2008.
    [87]Liu W. and Weiss S., Ed., Wideband Beamforming: Concepts and Techniques [M]. JohnWiley and Sons, Chichester, UK,2010.
    [88]Frost O. L., III, An algorithm for linearly constrained adaptive array processing [J].Proceedings of the IEEE,1972,60(8):926-935.
    [89]Yan S. F., Ma Y. L., Hou C. H., Optimal array pattern synthesis for broadband arrays [J].Journal of the Acoustical Society of America,122(5):2686-2696.
    [90]Zhao Y., Liu W., and Langley R. J., Adaptive wideband beamforming with frequencyinvariance constraints [J]. IEEE Trans. Antennas and Propagation,2011,59(4):1175-1184.
    [91]Zhao Y., Liu W., Robust wideband beamforming with frequency response variationconstraint subject to arbitrary norm-bounded error [J]. IEEE Trans. Antennas andPropagation.2012,60(5):2566-2571.
    [92]林静然,彭启琮,邵怀宗,等.基于麦克风阵列的宽带健壮自适应波束形成算法[J].电子学报2006,27(12):132-138.
    [93]Griffiths L. J. and Jim C. W., An alternative approach to linearly constrained adaptivebeamforming [J]. IEEE Trans. Antennas and Propagations,1982, AP-30(1):27-34.
    [94]王永良,丁前军,李荣峰,自适应阵列处理[M].北京:清华大学出版社,2009.
    [95]Mallipeddi R., Lie J. P., Suganthan P. N., et al. Robust adaptive beamforming based oncovariance matrix reconstruction for look direction mismatch [J]. Progress inElectromagnet Research Letters,2011,25:37-46.
    [96]Gu Y., Leshem A., Robust adaptive beamforming based on interference covariance matrixreconstruction and steering vector estimation [J]. IEEE Trans. Signal Processing,2012,60(7):3881-3885.
    [97]杨益新,声呐波束形成与波束域高分辨方位估计技术研究[D].西安,西北工业大学博士学位论文,2002.
    [98]冯杰,稳健波束形成与高分辨方位估计技术研究[D].西安,西北工业大学博士学位论文,2006.
    [99]崔晗,非理想阵列幅相响应下的空间谱估计算法研究[D].广州,华南理工大学博士论文,2012.
    [100] Krim H. and Viberg M. Two decades of array signal processing research: the parametricapproach [J]. IEEE Signal Processing Magazine,1996,13(4):67-94
    [101] Sehmidt R.O., Multiple emitter location and signal parameter estimation [J]. IEEE Trans.Antennas and Propagation,1986,34(3):276-280
    [102] Stoica P. and Nehorai A., MUSIC, maximum likelihood, and Cramer-Rao bound [J].IEEE Trans. Acoustic, Speech and Signal Processing,1989,37(5):720-741
    [103]杨志伟,贺顺,廖桂生.加权伪噪声子空间投影的修正MUSIC算法[J].信号处理,2011,27(1):1-5
    [104]游鸿,黄建国,金勇,等.基于加权信号子空间投影的MUSIC改进算法[J].系统工程与电子技术,2008,30(5):792-794
    [105] Rao B. D. and Hari K. V. S., Weighted subpace methods and spatial smoothing: analysisand comparison [J]. IEEE Trans. Signal Processing,1993,41(2):788-803
    [106]刘志刚,汪晋宽,王福利.基于实值分解技术的循环root-MUSIC算法[J].系统仿真学报,2006,18(9):2438-2441.
    [107] Krim H., Forster P. and Proakis J. G., Operator approach to performance analysis ofRoot-MUSIC and root min-norm [J]. IEEE Trans. Signal Processing,1992,40(7):1687-1696.
    [108] Zoltowski M. D., Silverstein S. D. and Mathews C. P., Beamspace Root-MUSIC forminimum redundancy linear arrays [J]. IEEE Trans. Signal Processing,1993,41(7):2502-2507.
    [109]郑春弟,解春维,李有才.基于实值特征值分解的求根MUSIC算法[J].数据采集与处理,2010,25(2):154-159
    [110] Rao B. D. and Hari K. V. S., Performance analysis of Root-MUSIC [J]. IEEE Trans.Acoustic, Speech and Signal Processing,1989,37(12):1939-1949
    [111] Roy R. and Kailath T., ESPRIT-estimation of signal parameters via rotational invariancetechniques [J]. IEEE Trans. Acoustics, Speech and Signal Processing,1989,37(7):984-995
    [112] Stoica P., Babu P. and Li J., New method of sparse parameter estimation in separablemodels and its use for spectral analysis of irregularly sampled data [J], IEEE Trans.Signal Processing,2011,59(1):35-47.
    [113] Stoica P., Babu P. and Li J., SPICE: A sparse covariance-based estimation method forarray processing [J]. IEEE Trans. Signal Processing,2011,59(2):629-638.
    [114] Choi Y. H., Adaptive nulling beamformer for rejection of coherent and noncoherentinterferences [J]. Signal Processing,2012,92:607-610.
    [115] Zhang L., Liu W., Robust beamforming for coherent signals based on thespatial-smoothing technique [J]. Signal Processing.2012,92:2747-2758.
    [116] Gardner W. A., Napolitano A., Paura L., Cyclostationarity: half a century of research [J].Signal Processing,2006,86:639-697.
    [117] Wu Q., Wong K. M., Blind adaptive beamforming for cyclostationary signals [J]. IEEETrans. Signal Processing,1996,44:2757-2767.
    [118] Zhang J., Liao G., Wang J., Robust direction fnding for cyclostationary signals withcycle frequency error [J]. Signal Processing,2005,85(12):2386-2393.
    [119] Lee J. H., Huang C. C., Robust cyclic adaptive beamforming using a compensationmethod [J]. Signal Processing,2012,92:954-962.
    [120] Lee J. H., Huang C. C., Robust adaptive beamforming for multiple signals of interestwith cycle frequency error [J]. EURASIP Journal on Advances in Signal Processing,2010(doi:10.1155/2010/873916)
    [121]周雷,张贤达,一种新的循环平稳盲自适应波束形成方法[J].清华大学学报(自然科学版),2000,7:47-50.
    [122]陈洪光,李飚,沈振康,一种稳健的循环平稳信号波达方向估计算法[J].通信学报,2005,2:119-122.
    [123] Tang H., Gershman A. B., Wong K. M., et al. Blind adaptive beamforming forcyclostationary signals with robustness against cycle frequency mismatch [A]. in Proc.2nd IEEE Workshop Sensor Array and Multichannel Signal Processing [C]. WashingtonDC, USA, Aug.2002, pp.18-22.
    [124] Liao B., Chan S. C., Adaptive beamforming for uniform linear arrays with unknownmutual coupling [J]. IEEE Antennas and Wireless Propagation Letters,2012,11:464-467.
    [125] Charbonnier P., Blanc-Féraud L., Aubert G., et al Deterministic edge-preservingregularization in computed imaging [J]. IEEE Trans. Image Processing,1997,6(2):298-310.
    [126] Sardy S., Tseng P., and Bruce A., Robust wavelet denoising [J]. IEEE Trans. SignalProcessing,2001,49(6):1146-1152.
    [127] etin M. and Karl W. C., Feature-enhanced synthetic aperture radar image formationbased on nonquadratic regularization [J]. IEEE Trans. Image Processing,2001,10(4):623-631.
    [128] Gorodnitsky I. and Rao B., Sparse signal reconstruction from limited data using FOCUSS:A re-weighted minimum norm algorithm [J]. IEEE Trans. Signal Processing,1997,45:600-616.
    [129] Cotter S., Rao B., Kreutz-delgado K., Sparse solutions to linear inverse problems withmultiple measurement vectors [J]. IEEE Trans. Signal Processing,2005,53(7),2477-2488.
    [130] Yardibi T., Li J., Stoica P., et al, Source localization and sensing: A nonparametriciterative adaptive approach based on weighted least squares [J]. IEEE Trans. AerospaceElectron Systerms,2010,46(1):425-443.
    [131] Malioutov D. M., etin M. and Willsky A. S., A sparse signal reconstructionperspective for source localization with sensor arrays [J]. IEEE Trans. Signal Processing,2005,53:3010-3022.
    [132] Fuchs J. J., Linear programming in spectral estimation: Application to array processing
    [A]. in Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing [C]. May1996,6:3161-3164.
    [133] Fuchs J. J., On the application of the global matched filter to DOA estimation withuniform circular arrays [J], IEEE Trans. Signal Processing,2001,49(4):702–709.
    [134] Hyder M. M. and Mahata K.,“Direction-of-Arrival estimation using a mixed normapproximation [J]. IEEE Trans. Signal Processing,2010,58(9):4646-4655.
    [135]李洪涛,贺亚鹏,肖瑶,等.基于压缩感知的单通道鲁棒自适应波束形成算法[J].电子与信息学报,2012,10:2421-2426.
    [136]王建,盛卫星,韩玉兵,等.基于压缩感知的自适应数字波束形成算法[J].电子与信息学报,2013,2:438-444.
    [137] Northardt E. T., Bilik I., and Abramovich Y. I., Spatial compressive sensing fordirection-of-arrival estimation with bias mitigation via expreted likelihood [J]. IEEETrans. Signal Processing,2013,61(5):1183-1195.
    [138] Candes E. J., Wakin M. B., and Boyd S. P., Enhancing sparsity by reweightedminimization [J]. J. Fourier Anal. Appl.,2008,14(5-6):877-905.
    [139] Zheng C., Li G., Zhang H., et al. An approach of DOA estimation using noise subspaceweighted minization [A]. in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process [C].2011:2856–2859.
    [140] Xu X., Wei X., and Ye Z., DOA estimation based on sparse signal recovery utilizingweighted-norm penalty [J]. IEEE Signal Processing Letters,2012,19(3):155-158.
    [141] Yin J. and Chen T., Direction-of-arrival estimation using a sparse representation ofarray covariance vectors [J]. IEEE Trans. Signal Processing,2011,59(9):4489-4493.
    [142] He Z. Q., Liu Q. H., Jin L. N., et al. Low complexity method for DOA estimation usingarray covariance matrix sparse representation [J]. Electronics Letters,2013,49(3).
    [143] Blanco L. and Nájar M., Sparse covariance fitting for direction of arrival estimation [J].EURASIP Journal on Advances in Signal Processing,2012,111(doi:10.1186/1687-6180-2012-111)
    [144] Liu Z. M., Huang Z. T. and Zhou Y. Y., Direction-of-arrival estimation of widebandsignals via covariance matrix sparse representation [J]. IEEE Trans Signal Processing2012,59(9):4256-4270.
    [145] Liu Z. M., Huang Z. T., Zhou Y. Y., et al. Direction-of-arrival estimation of noncircularsignals via sparse representation [J]. IEEE Trans. Aerospace and Electronic Systems,2012,48(3):2690-2698
    [146]何振清,刘庆华,欧阳缮,宽带协方差矩阵的多字典联合稀疏表示DOA估计[J].信号处理,2012,28(5):686-672.
    [147]李鹏飞,张旻,钟子发,基于空间角稀疏表示的二维DOA估计[J].电子与信息学报,2011,33(10):405-411.
    [148]李鹏飞,张旻,钟子发,等.基于空频域稀疏表示的宽频段DOA估计[J].电子与信息学报,2012,34(2):2402-2408
    [149]陈玉龙,黄登山,基于冗余字典稀疏表示的二维DOA估计[J].计算机工程与应用.2012,48(29):137-142.
    [150]刘寅,吴顺君,吴明宇,等.基于空域稀疏性的宽带DOA估计[J].航空学报,2012,11:245-251.
    [151]朱然刚,高斯色噪声下的相干信号DOA高分辨率估计[J].电路与系统学报,2012,5:69-76.
    [152] Schell S. V., Calabreta R. A., Gardner W. A., et al. Cyclic MUSIC algorithms forsignal-selective DOA estimation [A]. in Proc. Int. Conf. Acoust., Speech, Signal Process.
    [C]. Glasgow, U.K., May1989:2278-2281.
    [153] Gardner W. A., Simplification of MUSIC and ESPRIT by exploitation ofcyclostationarity [J]. Proceedings of the IEEE,1988,76(7):845–847.
    [154] Xu G. and Kailath T., Direction of arrival estimation via exploitation ofcyclostationarity-A combination of temporal and spatial processing [J]. IEEE Trans.Signal Processing,1992,40(7):1775-1786.
    [155]黄知涛,周一宇,姜文利,基于循环平稳特性的源信号到达角估计方法[J].电子学报,2002,3:372-375.
    [156] ChargéP., Wang Y., and Saillard J., An extended Cyclic MUSIC algorithm [J], IEEETrans. Signal Processing,2003,51(7):1695-1701.
    [157] Chargé P., Wang Y., and Saillard J., Cyclostationarity-exploiting direction FindingAlgorithms [J]. IEEE Trans. Aerospace and Electronic Syeterms,2003,39(3):1051-1056.
    [158]宋昕,汪晋宽,薛延波,等.鲁棒约束恒模自适应波束形成算法[J].电子学报,2006,34(10):1833-1837.
    [159] Lamare R. C., Sampaio-Neto R., Haardt M., Blind adaptive constrainedconstant-modulus reduced-rank interference suppression algorithms based oninterpolation and switched decimation [J], IEEE Trans. Signal Processing,2011,59(2):681-695.
    [160] Grant M. and Boyd S., CVX: Matlab Software for Disciplined Convex Programming[CP/OL]. http://stanford.edu/~boyd/cvx,2013

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700