用户名: 密码: 验证码:
外电场作用下精微机械的界面粘附特性研究与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于尺寸效应和表面效应,界面行为已经成为精微机械领域中的关键性基础问题,其导致的界面粘附失效是精微机械中最常见的失效模式之一。本论文针对精微机械的典型粘附失效形式,分别从固-固界面及固-液界面角度讨论了外电场作用下的界面粘附特性及规律。
     为了研究外电场作用下的固-固界面粘附特性,本文研制了力分辨率在10μN的微观粘着测试仪,可以测量不同环境湿度、外电场强度下各种接触材料在0.1-7mN范围内的接触粘着力。该仪器可研究外电场作用下的固-固界面粘附特性以及液体介质对外电场作用下的固-固界面粘附特性的影响。
     论文实验研究了外电场作用下固-固界面的粘附力及其变化规律,建立了针对球-面接触的粗糙表面扩散充电模型。利用该模型分析了接触充电时间、外电场强度、界面材料特性等对固-固界面粘附特性的影响,建立了最大电荷注入密度、等效充电时间常数与外电场强度、电介质材料性质之间关系的物理模型,并基于该模型揭示出不同电介质材料对固-固界面粘附特性的影响。
     论文将外电场作用下固-固界面粘着物理模型应用到射频MEMS开关设计,从引入表面形貌修正的C-V曲线揭示了三种开关失效模式的机理和规律,给出了考虑界面电荷积累效应的开关使用寿命计算模型,并提出了改进开关性能的新设计方案。通过对外电场作用下固-固界面粘附机理的分析,提出将液体介质引入固-固界面以实现对其界面粘附特性的改变与控制,并以甘油及十六烷作为典型的极性与非极性液体,应用微观粘着测试仪进行了相关的实验验证。
     本论文将动态石英晶振微天平(QCM)在液体测试中的响应函数拓展到双层膜模型,并在此基础上定量研究了外电场作用下5CB液晶近固-液界面(近壁面)层的粘弹性性质及相变行为。研究发现外电场作用将导致5CB近壁面层复剪切粘度降低,与体相液晶的电粘效应相反,同时电场与壁面的耦合作用导致近壁面层液晶的相变温度升高,且高于根据向列相模型得到的5CB液晶的相应理论值。论文利用液晶分子长棒模型从分子排列角度对其进行了解释,并发现电场导致的近壁面有序分子层的存在可以使液晶在边界润滑区产生较低摩擦系数的现象,提出了通过电场控制精密机械低速启动中的界面粘附问题的新思路。
The interface properties have become the basic key problem of micro-machine because of scale effect and surface effect. The interfacial adhesion failure is one of the most common failure models of micro-machine. This thesis investigates the interfacial adhesion properties under external electric field (EEF) from two points of view: solid-solid interface and solid-liquid interface, which focuses on the two kinds of classical model of adhesion failure: stiction and stick.
     For investigating the solid-solid adhesion properties under EEF, a micro-adhesion tester is made to measure the pull-off force during different humidity and EEF, with resolution of 10μN in the range of 0.1-7mN. The adhesion properties of solid-solid interface and the effect of liquid on solid-solid’s properties under EEF have been investigated by this tester.
     The adhesion and its’change rule of solid-solid interface under EEF are experimentally researched. The diffuse charging model of roughness surface for ball-plat contacted is constructed. The effect on solid-solid interface adhesion of charging time, EEF strength, material properties has been analyzed by this model. Then the physics model about the relation of EEF strength, material properties and the max charging density, constant charing time is constructed. And the research of different materials on the solid-solid interface adhesion has been completed based on the physics model.
     The physics model discussed above is applied in the design of RF MEMS switches. The mechanism of three kinds of failure model of RF MEMS swithes have been explained from the C-V curve which considered the roughness. The life-time model of switches has bean constructed with charging effect, and the new design for improving the switches’performance is given. From the analysis of the adhesion mechanism of solid-solid interface under EEF, the liquid has been introduced to change and control the adhesion of solid-solid interface, which has been validated experimentally by the micro-adhesion tester use the classical polar liquid (glycerin) and non-polar liquid (n-hexadecane).
     This thesis extends the response function of quartz crystal microbalance (QCM) in liquid to two layers model. And then it analyzes the viscoelasticity and phase transition of the near-interface layer of 5CB liquid crystal under EEF based on this model. The investigation indicated that EEF can decrease the complex shear viscocity of near-interface layer of 5CB, which is opposite with the bulk properties. At the same time, the coupling effect of EEF and surface effect will increase the phase transition temperature of 5CB and the increasing level is higher than the theory prediction got by the nematic phase model. This thesis gives the explain of these experiments by molecular model of liquid crystal, and it is found that the ordering of near-interface layer caused by EEF can result in low coefficient of friction in boundary lubrication, which can be used to control the stiction during startup of micro-machine.
引文
[1]周兆英,王晓浩,叶雄英,王伯雄,李莎,刘卫丹.微型机电系统.中国机械工程, 2000, 11(1-2):163-169.
    [2]王琪民.微型机械导论.合肥:中国科学技术大学出版社, 2003.
    [3]邓昭,饶文琦,任天辉,余来贵,刘伟民,余新良.微机电系统的微观摩擦学研究进展.摩擦学学报, 2001, 21(6):494-498.
    [4]温诗铸.微型机械与纳米机械学研究.现代科学仪器, 1998, 1:24-27.
    [5]车录锋,徐志农,周晓军,程耀东.微型机械设计中某些理论问题的探讨.工程设计, 1998, 2:23-25.
    [6]温诗铸,丁建宁.微型机械设计基础研究.机械工程学报, 2000, 36(7): 39-42.
    [7] J. N. Israelachvili. Intermolecular and surface forces. London: Academic, 1990.
    [8] S. T. Patton, J. S. Zabinski. Failure mechanisms of capacitive MEMS RF switch contacts. Tribology Letters, 2005, 19(4):265-272.
    [9] G. M. Rebeiz. RF MEMS Theory, Design, and Technology. New Jersey: John Wiley & Sons, 2003.
    [10] W. M. van Spengen. MEMS reliability from a failure mechanisms perspective. Microelectronics Reliability, 2003, 43: 1049-1060.
    [11] H. R. Shea, H. B. Chan, etc. Effects of Electrical Leakage Currents on MEMS Reliability and Performance. IEEE Transactions on Device and Materials Reliability, 2004, 4(2): 198-207.
    [12] W. A. de Groot, J. R. Webster, etc. Review of Device and Reliability Physics of Dielectrics in Electrostatically Driven MEMS Devices. IEEE Transactions on Device and Materials Reliability, 2009, 9(2): 190-204.
    [13] X. Rottenberg, etc. Analytical Model of the DC Actuation of Electrostatic MEMS Devices With Distributed Dielectric Charging and Nonplanar Electrodes. J. MEMS, 2007, 16(5): 1243-1254.
    [14] P. Czarnecki, X. Rottenberg, etc. New Insights into Charging in Capacitive RF MEMS switches. IEEE CEP08 RPS-CDR 46th Annual International Reliability Physics Symposium, Phoenix, 2008: 496-505
    [15] S. T. Patton, W. D. Cowan, J. S. Zabinski. Performance and Reliability of a New MEMS Electrostatic Lateral Output Motor. IEEE International Reliability Physics Proceedings, San Diego, CA., 1999: 179-188.
    [16] S. T. Patton, J. S. Zabinski. Effects of dielectric charging on fundamental forcesand reliability in capacitive microelectromechanical systems radio frequency switch contacts. J. Appl. Phys, 2006, 99(9), 094910.
    [17] L. M. Terman. An investigation of surface states at a silicon/silicon oxide interface employing metal–oxide–silicon diodes. Solid State Electron, 1962, 5(5): 285–299.
    [18] C. Goldsmith, J. Ehmke, etc. Lifetime Characterization of Capacitive RF MEMS Switches. IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2001: 227-230.
    [19] J. R. Reid. Dielectric charging effects on capacitive MEMS actuators. IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2001.
    [20] X. Yuan, etc. Modeling and Characterization of Dielectric-Charging Effects in RF MEMS Capacitive Switches. IEEE MTT-S International Microwave Symposium, Phoenix, AZ, 2005: 753-756.
    [21] A. I. Vakis, S. C. Lee, etc. Dynamic Head-Disk Interface Instabilities With Friction for Light Contact (Surfing) Recording. IEEE Transactions on Magnetics, 2009, 45(11): 4966-4971.
    [22] S. K. Yu, B. Liu, etc. Dynamic Stability Analysis for Surfing Head-Disk Interface. IEEE Transactions on Magnetics, 2009, 45(11): 4979-4983.
    [23] B. Liu, M. S. Zhang, etc. Lube-Surfing Recording and Its Feasibility Exploration. IEEE Transactions on Magnetics, 2009, 45(2): 899-904.
    [24] K. C. Eapen, S. T. Patton, etc. Lubrication of microelectromechanical systems (MEMS) using bound and mobile phases of Fomblin Zdol. Tribology Letters, 2002, 12(1): 35-41.
    [25] Y. L. Chen, C. A. Helm, J. N. Israelachvil. Molecular Mechanisms Associated with Adhesion and Contact Angle Hysteresis of Monolayer Surfaces. J. Phys. Chem. 1991, 95: 10736-10747.
    [26] A. D. Berman, W. A. Ducker, J. N. Israelachvili. Origin and characterization of different stick-slip friction mechanisms. LANGMUIR, 1996, 12(19): 4559-4563
    [27] J. P. Gao, W. D. Luedtke, U. Landman. Friction control in thin-film lubrication. J. Phys. Chemi. B., 1998, 102(26): 5033-5037.
    [28] W. M. van Spengen, R. Puers, etc. A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches. J. Micromech. Microeng., 2004, 14(4): 514–521.
    [29] Z. Peng, X. Yuan, J. C. M. Hwang, D. Forehand, and C. L. Goldsmith. Top vs. bottom charging of the dielectric in RF MEMS capacitive switches. Proc. Asia-Pacific Microw. Conf., 2006: 1535–1538.
    [30] J. R. Reid, R. T. Webster. Measurements of charging in capacitive microelectro- mechanical switches. Electron. Lett., 2002, 38(24): 1544–1545.
    [31] X. Rottenberg, B. Nauwelaers, etc. Distributed dielectric charging and its impact on RF MEMS devices. 34th Eur. Microw. Conf., 2004, 1: 77–80.
    [32] R. W. Herfst, H. G. A. Huizing, etc. Characterizationof dielectric charging in RF MEMS capacitive switches. Proc. ICMTS, 2006: 133–136.
    [33] R. W. Herfst, P. G. Steeneken, etc. Center-shift method for the characterization of dielectric charging in RF MEMS capacitive switches. IEEE Trans. Semicond. Manuf., 2008, 21(2): 148–153.
    [34] G. J. Papaioannou, G. Wang, D. Bessas, and J. Papapolymerou. Contactless dielectric charging mechanisms in RF-MEMS capacitiveswitches. 1st Eur. Microw. Integr. Circuits Conf., 2006: 513–516.
    [35] J. R. Reid, R. T. Webster, and L. A. Starman. Noncontact measurement of charge induced voltage shift in capacitive MEM-switches. IEEE Microw. Wireless Compon. Lett., 2003, 13(9): 367–369.
    [36] H. San, L. Zhan, P. Xu, G. Li, and X. Chen. Actuation voltage waveform dependence of charge accumulation in RF MEMS switches. Proc. SPIE: MEMS/MOEMS Technol. Appl. III, 2007: 683.
    [37] J. R.Webster, C.W. Dyck, etc. Process-induced trapping of charge in PECVD dielectrics for MEMS capacitive switches. IEEE Int. Rel. Phys. Symp., 2005: 330–336.
    [38] X. Garros, C. Leroux, and J.-L. Autran. An efficient model for accurate capacitance–voltage characterization of high-k gate dielectrics using a mercury probe. Electrochem. Solid-State Lett., 2002, 5(3): F4–F6.
    [39] A. Martin, P. O’Sullivan, and A. Mathewson. Dielectric reliability measurement methods: A review. Microelectron. Reliab., 1998, 38(1): 37–72.
    [40] S. Zafar, A. Callegari, E. Gusev, and M. V. Fischetti. Charge trapping in high-k gate dielectric stacks. IEDM Tech. Dig., 2002: 517–520.
    [41] J.R. Reid. Simulation and Measurement of Dielectric Charging in Electrostatically Actuated Capacitive Microwave Switches. Proc. Modeling and simulation of Microsystems, San Juan, Puerto Rico, 2002: 250-253.
    [42] P. M. Osterberg and S. D. Senturia. M-TEST: A Test Chip for MEMS Material Property Measurement UsingElectrostatically Actuated Test Structures. J. MEMS, 1997, 6(2): 107-118.
    [43] E. K. Chan, K. Garikipati, etc. Characterization of Contact Electromechanics Through Capacitance–Voltage Measurements and Simulations. J. MEMS, 1999,8(2): 208-217.
    [44] R. K. Gupta. Electrostatic Pull-in Test Structure Design for In-Situ Mechanical Property Measurements of Microelectromechanical Systems (MEMS). The Ph.D. Thesis, 1997, MIT.
    [45]李锐,廖小平.硅基铝T形梁MEMS可变电容的设计与模拟.电子元件与材料, 2005, 24(1): 41-44.
    [46]张立宪.射频(RF) MEMS开关的模拟、制备和力学分析.硕士论文, 2003,中科院力学所.
    [47]袁晓林,黄庆安.电容式RF开关介电电荷及相关可靠性模型及模拟.传感技术学报, 2006, 19(1): 87-92.
    [48] J. M. Huang, K. M. Liew, etc. Mechanical design and optimization of capacitive micromachined switch. Sensors and Actuators A, 2001, 93: 273-285.
    [49]王洪喜,贾建援,樊康旗.求解静电驱动微梁变形的数值与解析方法.机械设计与研究, 2005, 21(2): 35-38.
    [50]茅惠兵,忻佩胜,胡梅丽,赖宗声.微机电微波?射频开关的力学分析及其工艺研究.微电子学, 2003, 33(4): 273-275.
    [51] D. J. DiMaria.“The properties of electron and hole traps in thermal silicon dioxide layers grown on silicon”in The Physics of SiO2 and its Interfaces, S. T. Pantelides. New York: Pergamon, 1979: 160–178.
    [52] X. Yuan, Z. Peng, J. C. M. Hwang, D. Forehand, and C. L. Goldsmith. Acceleration of dielectric charging in RF MEMS capacitive switches. IEEE Trans. Device Mater. Rel., 2006, 6(4): 556–563.
    [53] X. Yuan, Z. Peng, etc. A Transient SPICE Model for Dielectric-Charging Effects in RF MEMS Capacitive Switches. IEEE Transactions on electron devices, 2006, 53(10): 2640-2648.
    [54] Z. Peng, X. Yuan, J. C. M. Hwang, D. I. Forehand, and C. L. Goldsmith. Superposition model for dielectric charging of RF MEMS capacitive switches under bipolar control-voltage waveforms. IEEE Trans. Microw.Theory Tech., 2007, 55(12): 2911–2918.
    [55] D. Felnhofer, K. Khazeni, M. Mignard, etc. Device physics of capacitive MEMS. Microelectron.Eng., 2007, 84 (9/10): 2158–2164.
    [56] B. V. Deryagin, N. A. Krotova. Adhesion of solids. New York: Consultants Bureau, 1978.
    [57] S.T. Pattona, J.S. Zabinski. Fundamental studies of Au contacts in MEMS RF switches. Tribology Letters, 2005, 18(2): 215-230
    [58] S. T. Patton, K. C. Eapen, etc. Lubrication of microelectromechanical systemsradio frequency switch contacts using self-assembled monolayers. J. Appl. Phys., 2007, 102: 024903.
    [59] K. Boschkova, B. Kronberg, etc. Study of thin surfactant films under shear using the tribological surface force apparatus. Tribology International, 2001, 34: 815–822.
    [60] H. N. Patrick, G. G. Warr, S. Manne, I. A. Aksay. Self-assembly structures of nonionic surfactants at graphite/solution interface. Langmuir, 1997, 3:4349–56.
    [61] J. N. Israelachvili, P. M. McGuiggan, A. M. Homola. Dynamic properties of molecularly thin liquid films. Science, 1988, 240: 189–191.
    [62] J. van Alsten, S. Granick. Molecular tribometry of ultrathin liquid films. Phys. Rev. Lett., 1988, 61: 2570–2573
    [63] P. F. Luckham, and S. Manimaaran. A Nanorheological Study of Adsorbed Polymer Layers. Macromolecules 1997, 30: 5025-5033.
    [64] J. Frechette, T. K. Vanderlick. Double Layer Forces over Large Potential Ranges as Measured in an Electrochemical Surface Forces Apparatus. Langmuir, 2001, 17: 7620-7627.
    [65] J. Frechette, T. K. Vanderlick. Electrocapillary at Contact: Potential-Dependent Adhesion between a Gold Electrode and a Mica Surface. Langmuir, 2005, 21: 985-991.
    [66] J. Frechette, T. K. Vanderlick. Control of Adhesion and Surface Forces via Potential-Dependent Adsorption of Pyridine. J. Phys. Chem. B, 2005, 109: 4007-4013.
    [67] D. A. Antelmi, J. N. Connor, etc. Electrowetting Measurements with Mercury Showing Mercury/Mica Interfacial Energy Depends on Charging. J. Phys. Chem. B, 2004, 108: 1030-1037
    [68] J. N. Connor, R. G. Horn. Measurement of Aqueous Film Thickness between Charged Mercury and Mica Surfaces: A Direct Experimental Probe of the Poisson-Boltzmann Distribution. Langmuir, 2001, 17: 7194-7197
    [69] H. Zeng, Y. Tian, etc. New SFA Techniques for Studying Surface Forces and Thin Film Patterns Induced by Electric Fields. Langmuir, 2008, 24: 1173-1182.
    [70]李贵才,朱生发,杨苹,黄楠.石英晶体微天平在蛋白吸附领域的研究进展.传感器世界, 2007, 12: 6-10.
    [71] D. C. Ash, M. J. Joyce, etc. Viscosity measurement of industrial oils using the droplet quartz crystal microbalance. Meas. Sci. Technol., 2003, 14: 1955-1962.
    [72] J. Li, C. Thielemann, etc. Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators:evaluation in the impedance analysis mode. Biosensors and Bioelectronics, 2005, 20: 1333-1340.
    [73] V. Danek, M. Chrenkova, D. K. Nguyen, etc. Structural and thermodynamic aspects of niobium deposition in the system LiF-KF-K2NbF7. J. Mol. Liq., 2000, 88: 277-298.
    [74] K. Sato, T. Ebihara, E. Adachi, S. Kawashima, etc. Possible involvement of aminotelopeptide in self assembly and thermal stability of collagen I. J. Biol.Chem., 2000, 275: 5870-5875.
    [75] K. K. Kanazawa. Frequency of a Quartz Microbalance in Contact with Liquid. Anal. Chem., 1985, 57: 1770-1771.
    [76] C. E. Reed, K. K. Kanazawa. Physical description of a viscoelastically loaded AT-cut quartz resonator. J. Appl. Phys., 1990, 68(5): 1993-2001.
    [77] S. J. Martin, V. E. Granstaff, etc. Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading. Anal. Chem., 1991, 63: 2272-2281.
    [78] G. Ohlsson, C. Langhammer, etc. A nanocell for quartz crystal microbalance and quartz crystal microbalance with dissipation-monitoring sensing. Review of Scientific Instruments, 2009, 80: 083905.
    [79] A. Domack and D. Johannsmann. High frequency effective viscosities of nematic liquid crystals with tilted orientation. Appl. Phys. Lett., 2002, 80(25): 4750-4752
    [80] H. Muramatsu, F. Iwasaki. Monitoring of the Changes of Dynamic Viscoelastic Properties of Liquid Crystals-During the Orientation with Voltage Pulses Using a Quartz Crystal Resonator. Mol. Cryst. Liq. Cryst., 1995, 258: 153-162.
    [81]贺四清.离子型表面活性剂水溶液中的电控摩擦机理及响应研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2009.
    [82] Y. Nakanishi, T. Murakami, H. Higaki. Effects of electric field on lubrication ability of sodium hyaluromnate solution. Nippon Kikai Gakai Ronbunshu (C Hen). 1996, 62: 2359-2366.
    [83]翟文杰,三本雄二.外加电场对边界润滑下钢/钢摩擦副的摩擦磨损性能的影响.摩擦学学报, 2000, 20(6): 435-438.
    [84] S. C. Tung, S. S. Wang. In situ electro-charging for friction reduction and wear resistant film formation. Tribol Trans, 1991, 34: 479-486.
    [85]胡波.电控摩擦现象的电化学机理和实验研究[博士学位论文].北京:清华大学精密仪器与机械学系, 2005.
    [86] G. Z. Sauerbrey.Verwendung von Schwingquarzen zur Wagung Dunner Schichten und zur Mikrowagung.Physik, l959, 155(2): 206-222.
    [87] KSV QCM-Z500 Operation Manual v.3
    [88]温诗铸,黄平.摩擦学原理(第三版).北京:清华大学出版社, 2008.
    [89] B. N. J. Persson. Contact mechanics for randomly rough surfaces. Surface Science Reports, 2006, 61: 201-227.
    [90] C. M. Mate. Tribology on the Small Scale. London, U.K.: Oxford Univ. Press, 2008.
    [91] J. A. Greenwood and J. B. P. Williamson. Contact of nominally flat surfaces. Proc. R. Soc. Lond. A, Math. Phys. Sci., 1966, 295(1442) :300–319.
    [92] K. L. Johnson. Contact Mechanics. Cambridge, U.K.: Cambridge Univ. Press, 1987.
    [93] G. Zavarise, M. Borri-Brunetto, M. Paggi. On the resolution dependence of micromechanical contact models. Wear, 2007, 262(1-2): 42-54
    [94] P. R. Nayak. Random process model of rough surfaces. J. Lubr. Technol., 1971, 93(3): 398.
    [95] K. N. G. Fuller, D. Tabor. Effect of surface-roughness on adhesion of elastic solids. Proc. R. Soc. London, Ser. A., 1975, 345(1642): 327-342.
    [96] B. N. J. Persson. Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E., 2002, 8(4): 385-401.
    [97] B. N. J. Persson. Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett., 2001, 87(11): 116101.
    [98] B. N. J. Persson, E. Tosatti. The effect of surface roughness on the adhesion of elastic solids. J. Chem. Phys., 2001, 115(12): 5597-5610.
    [99] A. W. Bush, R. D. Gibson, T. R. Thomas. ELASTIC CONTACT OF A ROUGH SURFACE. Wear, 1975, 35(1): 87-111.
    [100] R. W. Herfst, etc. Characterization of dielectric charging in RF MEMS capacitive switches. ICMTS, 2006, Austin, TX: 133-136.
    [101] S. Mellé, D. de Conto, etc. Reliability Modeling of Capacitive RF MEMS. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(11) : 3482-3488.
    [102] S. Mellé, D. de Conto, etc. Failure Predictive Model of Capacitive RF-MEMS. Microelectronics Reliability, 2005, 45: 1770–1775.
    [103] S. Mellé, D. de Conto, etc. Modeling of the dielectric charging kinetic for capacitive RF-MEMS. IEEE MTT-S International Microwave Symposium, 2005, Long Beach, CA, USA: 757-760.
    [104]吴银锋,万江文,于宁.介质层充电对电容式RF MEMS开关的影响.传感技术学报, 2006, 19(5): 1955-1959.
    [105]范钦珊.材料力学.北京:清华大学出版社, 2004
    [106]熊毅,张向军,温诗铸.驻极体材料用于提高RF MEMS开关驱动性能的机理及实验研究.清华大学学报, 2010 (in Press)
    [107]彭国琳.驻极体.南京理工大学学报(自然科学版), 1979, 3: 242-164.
    [108]宋聚平,夏钟福等.恒栅流负电晕充电的Si基SiO2驻极体的电荷稳定性.功能材料, 1999, 30(6): 646-648.
    [109]夏钟福,吕美安等.二氧化硅薄膜驻极体的动态电荷特性.应用科学学报, 1995, 13(1): 21-28.
    [110]王久敏,陈坤基等.氮化硅介质中双层纳米硅薄膜的两级电荷存储.物理学报, 2006, 55(11): 6080-6085.
    [111]周远翔,卜丹等.纳秒级脉冲电压作用下聚丙烯膜反极性充电现象的研究.中国电机工程学报, 2005, 25(1): 87-91.
    [112] E. Chan, etc. Characterization of contact electromechanics through capacitance-voltage measurements and simulations. J. Microelectromech. Syst., 1999, 8(2): 208~217.
    [113] J. R. Reid, R. T. Webster. Measurements of charging in capacitive microelectromechanical switches. Electronics Letters, 2002, 38(24): 1544-1545.
    [114] D. Maugis. Contact, adhesion, and rupture of elastic solids. New York : Springer, 2000.
    [115] B. Bhushan. Adhesion and stiction: Mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Technol. B., 2003, 21(6): 2262-2296.
    [116]熊毅,张向军等.微纳间隙受限液体的界面黏着机理研究.物理学报, 2009, 58(3): 1826-1832.
    [117] P. W. Chudleigh. Charging of polymer foils using liquid contacts. Appl. Phys. Lett., 1972, 21(11): 547-548.
    [118] P. W. Chudleigh. Mechanism of charge transfer to a polymer surface by a conducting liquid contact. J. Appl. Phys., 1976, 47(10): 4475-4483.
    [119] P. W. Chudleigh, R. E. Collins, G. D. Hancock. Stability of liquid charged electrets. Appl. Phys. Lett., 1973, 23(5): 211-212.
    [120] R. S. Engelbrecht. Electrostatic recording on insulators by nonwetting conducting liquids. J. Appl. Phys., 1974, 45(8): 3421-3423.
    [121] W. H. Briscoe, R. G. Horn. Direct Measurement of Surface Forces Due to Charging of Solids Immersed in a Nonpolar Liquid. Langmuir 2002, 18: 3945-3956.
    [122] M. F. Hsu, E. R. Dufresne, D. A. Weitz. Charge Stabilization in NonpolarSolvents. Langmuir 2005, 21: 4881-4887.
    [123] Z. Olszewski, R. Duane, C. O. Mahony. Effect of environment humidity on the C-V characteristics of RF-MEMS capacitive switch. Proc. MEMSWAVE 2008, Heraklion: Crete.
    [124] J. Luo, etc. Gas bubble phenomenon in nanoscale liquid film under external electric field. Appl. Phys. Lett., 2006, 89: 013104.
    [125]温诗铸,雒建斌.纳米薄膜润滑研究.清华大学学报(自然科学版), 2001, 41(4/5): 63-68,76.
    [126] G. McHale, etc. Influence of viscoelasticity and interfacial slip on acoustic wave sensors. J. Appl. Phys., 2000, 88(12): 7304-7312.
    [127] E. Benes, Improved quartz crystal microbalance technique. J. Appl. Phys., 1984, 56(3): 608-626.
    [128] M. Rodahl, B. Kasemo. On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sens. Actuators A, 1996, 54(1-3): 448-456.
    [129] S. Jen, N. A. Clark, etc. Raman Scattering from a Nematic Liquid Crystal: Orientational Statistics. Phys. Rev. Lett., 1973, 31(26): 1552-1556.
    [130]沈明武,雒建斌,等.液晶添加剂的纳米级润滑性能与机理.科学通报, 2001, 46(7): 603-609.
    [131] P. Sheng. Boundary-layer phase transition in nematic liquid crystals. Phys. Rev. A., 1982, 26(3): 1610-1617.
    [132] K. Negita, S. Uchino. Rheological Study on the Shear-Induced Structural Changes in Liquid Crystalline Phases of Octylcyanobiphenyl. Mol. Cryst. Liq. Cryst., 2002, 378: 103-112.
    [133] T. J. Sluckin, A. Poniewierski. Novel Surface Phase Transition in Nematic Liquid Crystals: Wetting and the Kosterlitz-Thouless Transition. Phys. Rev. Lett., 1985, 55(26): 2907-2910.
    [134] S. M. Chang, J. M. Kim, etc. Analysis of the phase transition of polymer blends using quartz crystal analyzer. Polymer, 1995, 37(16): 3757-3759.
    [135] P. G. de Gennes. Short range order effects in isotropic phase of nematics and cholesterics. Mol. Cryst. Liq. Cryst., 1971, 12(3):193.
    [136] P. G. de Gennes, J. Prost. The Physics of Liquid Crystal [M]. Oxford :Clarendon Press, 1993.
    [137] N. J. Mottram, C. M. Care, etc. Control of the nematic-isotropic phase transition by an electric field. Phys. Rev. E., 2006, 74: 041703.
    [138] F. M. Aliev, etc. Dielectric relaxation in liquid crystals confined in a quasi-one-dimensional system. Journal of Non-Crystalline Solids, 2005, 351:2690–2693.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700