用户名: 密码: 验证码:
基于沥青石料表面改性的油石界面粘结剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国的沥青混凝土公路普遍出现沥青路面的早期水损害现象。不仅在降雨量比较大的南方地区沥青路面的早期水损害问题比较严重,在降雨量相对较小的北方地区也都不同程度的出现了沥青路面早期水损害。沥青路面早期水损害出现的非常快,严重影响了交通运输业的发展。水损害的发生大大缩短了公路的使用寿命,缩短了沥青公路的养护和维修周期,增加了养护和维修的费用。因此沥青公路的早期水损害问题不但对高速公路的服务水平产生较大的影响,而且造成巨大的直接、间接经济损失,因此系统研究沥青路面早期水损害的防治和防止措施有着重大的经济和社会意义。
     目前提高沥青与集料的粘附性的方法主要有两方面:一是使用与沥青粘结较好的碱性集料;二是采取一些抗剥落措施或使用抗剥落剂。
     这两方面方法在一定程度上都可以改善沥青与集料的粘附性,但都存在着不足。使用碱性集料时,沥青混合料的水稳定性有一定提高,但同时也损失了沥青混合料的强度和耐疲劳性能。并且,目前的抗剥落措施和抗剥落剂都不能从根本上防止水损害的发生。因为它们与集料之间的连接强度都没有氢键的键能大,一旦有水进入沥青混凝土内部,亲水的集料表面会与水以氢键结合,同时把沥青从集料表面置换出来导致沥青膜发生剥离。并且上述的几种方法存在着增加工作量、长期效果不好等不足。因此,基于水损害发生的机理,找到一种抗剥离效果更好、热稳定性更强、使用方便、更加环保、更经济实用的方法来提高沥青路面水稳定性具有非常大的意义。
     本文从改变沥青与集料的表面性质入手,通过界面改性使石料表面由亲水变为亲油从而达到抵抗水损害的目的。
     使用硅烷对花岗岩集料进行改性时,应先将硅烷配制成水解溶液。水解溶剂应采用(水+醇)混合溶剂。而醇解和单一去离子水水解的方式均不宜采用。水解液的配比和水解时间的控制对改性效果有很大的影响。
     根据硅烷偶联剂水解研究得到的最佳配比和水解时间配制硅烷改性剂溶液对花岗岩集料进行表面预处理改性;使用熔融的铝酸酯偶联剂,采用浸涂的方法改性花岗岩集料。
     通过亲油化值试验、扫描电镜分析、红外光谱分析、差热热重试验、能量色散X射线光谱(EDX)分析研究了偶联剂对集料表面改性的反应条件、作用机理、热稳定性、及改性效果。通过对改性沥青接触角的观察分析了使用整体掺拌法的可行性。
     采用冻融劈裂试验,发现改性沥青混合料的在提高路面水稳定性方面有明显效果。对于目前水损害问题的解决提出了一些建议。
Asphalt concrete road appeard phenomena of early water damage widespreadly in asphalt pavement in our country. Early water damage is not only serious in the South with heavy rainfall, but also appeared in varying degrees in the north with relatively little rainfall. Asphalt pavement early water damage occurs very quickly, and seriously affects the development of transportation. The occurence of water damage significantly shortened the life of highway, and shortened the asphalt road maintenance and repair cycles, increased the cost of maintenance and repair. Early water damage of asphalt highway problems not only have a greater impact on highway level of service, and cause significant direct and indirect economic losses, so a system study on control and preventive measures of asphalt pavement early water damage has a significant economic and social significance.
     Currently, there are two main aspects of method in increasing the adhesion of asphalt and aggregates: first, use the alkaline aggregate and asphalt bonded better; the second is to take some anti-stripping measures or anti-stripping agent.
     Both methods can be to a certain extent improve the adhesion of asphalt and aggregates, but there is a shortage. When using alkaline aggregate, the water stability of asphalt mixture has improved, but it also has lost strength and resistance of asphalt mixtures fatigue properties. Also, current anti-stripping measures and anti-stripping agent will not be able to fundamentally prevent water damage from occurring. Because the hydrogen bonds between them and aggregate less than bond energy, once the water goes into asphalt concrete, aggregates of hydrophilic surface and water to hydrogen bonding, while replacing asphalt from aggregate cause stripping asphalt membrane. And there are some shortages of above methods, such as increasing works, long term and bad effects, etc. Therefore, based on the occuring mechanism of water damage, locate a thermal stability of anti-stripping performance better, more powerful, easy to use, more environmentally friendly and more economical and practical way to enhance the water stability of asphalt pavement with a very significant meaning. In this paper, starting with changing the surface properties of asphalt and aggregate, through interface modification of the stone surface from hydrophilic to lipophilic and thus achieve the purpose of resistance to water damage. Using silane to granite aggregates when a modification is made, it should first be silane hydrolysis solution preparation. Hydrolysis of solvent should be used (water + alcohol) mixtures. Alcohol solution and a single hydrolysis of deionized water should not be used. Composition of hydrolysis of hydrolysis time control has a great effect on modification effect. According to obtained by hydrolysis of silane coupling agent composition and hydrolysis time-optimal preparation of silane-modified agent solution to surface modification of granite aggregates; using molten aluminum acid ester coupling agent, using granite aggregates modified by dipping method. By lipophilic values test, scanning electron microscope analysis, infrared spectroscopy, differential thermal thermogravimetric test, energy-dispersive x-ray spectroscopy (EDX) analysis of coupling agent on the set of reaction conditions, mechanisms of surface modification of materials, thermal stability, and modification of effect. The feasibility of using whole-doped mixed method is analysis through the observing of contact angle of modified asphalt. In SongYuan area for a test of road repair, road surface through the following observation is discoverd that modified repair materials improve the stability of water and have a significant effect of fatigue resistance.
引文
[1]张登良.沥青路面.人民交通出版社.
    [2]原健安,张登良.沥青与集料粘附性研究.中国公路学报,1995年4月.
    [3]赵可,原健安.聚合物改性沥青与矿料粘附性的研究.中国公路学报,2000年4月.
    [4]沈金安.解决高速公路沥青路面水损害早期损害的技术途径.公路,2000年5月.
    [5] Arkles.BtaliloringSurafcewithsilnaesChemTeeh.1977,(7):766.
    [6]蔡宏国.申建一硅烷偶联剂及其进展[J].现代塑料加工应用,1993,5(5):47-51.
    [7] T.F.ChildandW.J.vanOoij , APPlieationof Silane Technologyot Perveni Corrosion of Metalsnad Improve Paint Adhesion[J].TransIMF,1999,77 (2):64-70.
    [8]何敏婷.偶联剂在涂料及复合材料中的应用[J].现代涂料与涂装,2002,(2):32-34.7.R.C
    [9] E.P.Plueddemna.InterafeeonPolymerMatrixComPosites[J].AedamemiePress ,1974:1-10.
    [10]魏伯荣,蓝立文,张双存.硅烷偶联剂对白炭黑硫化胶性能的影响[J].特种橡胶制品,1992,13(6):14-17.
    [11]官少华,刘儒栋.硅烷偶联剂MB一69的应用研究[J].轮胎工业,1997,17(9):535-537.12
    [12]贝逸翔,黄继泰.硅烷偶联剂对粘土表面改性研究[J].华侨大学自然科学版,1990,11(3):278-283.
    [13] FisehereHR,GieigensLH.KosteTrPM.ActaPolymeriea,1999,(50):122.
    [14]黄玉强,江盛玲,张彦奇.LLDPE/纳米510:复合材料的动态力学性能[J].高分子材料科学与工程,2004,20(4):115-118.
    [15]杨桂娣,林巧佳.纳米5102改性脉醛树脂的研究[J].几木材工业,2004,18(3):7-9.
    [16]刘竞超,李小兵,杨亚辉.偶联剂在环氧树脂/纳米510:复合材料中的应用.中国塑料,2000,14(9):45-48.
    [17]尚修勇,朱子康.偶联剂对PFSio:纳米复合材料形态结构及性能的影响[J].复合材料学报,2000,17(4):15-19.
    [18]王平华,严满清.表面处理pp从1203性能与结晶的影响[J].现代塑料加工应用,2003,15(3):18-20.
    [19]王平华,严满清,唐龙祥.纳米粒子表面修饰与改性510:纳米粒子表面接枝聚合[J].高分子材料科学与工程,2003,19(5):183-186.
    [20]古风才,赵竹首,李英慧.表面修饰二氢化锡纳米微晶的制备与表征[J].耳物理化学学报,2003,19(7):621-625.
    [21]张东兴,黄龙男,王荣国.硅烷偶联剂对滑石粉、空心玻璃微珠表面改性的研究明[J].纤维复合材料,2000,(2):10-12.
    [22]赵慧君,张中杰,王德平.硅烷偶联剂对磁性纳米微球的磁性能影响[J].功能材料,2004,35(2):157-159.
    [23]周春华,尹衍升,师瑞霞.超细Fe3AI粉末表面处理偶联剂的用量及其作用机理[J].北工学报,2004,55(6):998-1001.
    [24]林星,姜力强.纳米材料改性苯丙乳液的制备研究[J]。化学与粘合,(2004) l:12-14.
    [25]张武英,罗强,修玉英.硅烷偶联剂改性水性聚氨酷的研究,2002,23(5):5-8.
    [26]陈瑞珠,胡晓丹,潘恩黎.钦合金的粘接件的湿热耐久性研究明[J].中国胶粘剂,2001,11(3):11-13.
    [27]段洪东,李鹏,徐桂云.有机硅烷偶联剂对丙烯酸醋胶粘剂粘接作用的研究[J].中国胶粘剂,2000,9(3):15-17.
    [28]龚跃法,张振波.宋宇宏.利用有机氟硅试剂对玻璃表面的化学处理[J].华中理工大学学报,1995,23(9):120-123
    [29]杨晨.曾汉民.PPS用Es共混物界面改性的研究[J].宇航材料工艺,1993,(3):55-58.
    [30]王国宏.李定或纳米TIO:的表面改性研究[J].北工时刊,2004,18(4):25-27.
    [31]沈新章,金名惠.甲基丙烯酸对纳510:微粒表面的原位聚合改性[J].应用化学,2003,20(10):1003-1005.
    [32]黄汉生.硅烷偶联剂及其应用技术动向[J].化工新型材料,1995, 23-28.
    [33]渡边谦哉.硅烷偶联剂的最新进展[J].橡胶参考资料,1993,23(4):1-5.
    [34]王淑荣.硅烷偶联剂的开发现状及发展趋势田[J].精细石油化工,1995,(5):33-37.
    [35]李国莱,张慰盛,管从胜重防腐涂料[M].北京:化学工业出版社,1999:17.
    [36]韩季璋.工程设计中如何选用防腐涂料(一)[J].全面腐蚀控制,1997,11(4):32-38.
    [37]张圣麟.酸洗除锈工艺的试验研究[J].表面技术,2002, 35-37.
    [38]于兴文.达克罗技术研究进展闭.腐蚀与防护,2001,(22) l:1-4.
    [39]魏计文.金属防腐新工艺—达克罗田.武钢技术,2002,40(5):58-60.
    [40] ChildTF.andvanooijW.J.APPlieation of SilaneTeehn of gytoPverentCoorrsion of Metalsand Imporve paint Adhesion[J] , TrnasIM , 1999 ,77(2):64-70.
    [41] WJ.nooij , TChild.portecting metal swithsilaneocu Plinggaents Chemteeh.1998,28(2):26-35.
    [42] G.PSundararajan,WJ.vanooij.Silanebased Pretreatments of rauto motive steels.Surface Engineenrig,2000[J],16(4):315-320
    [43]徐溢.硅烷试剂防腐蚀工艺研究[J].材料保护,2001,34(l)l:32-34,
    [44]赖深.耐高温防腐蚀涂料的研制[D].湖南大学,2002:25-27.
    [45] Lytton, R.L, Use of Geotextiles for Reinforcement and Strain Relief in Asphalt Concrete, Geotextiles and Remembrances [J], vol.8, no.3.1989
    [46] Majidzadeh, K. et al, Improved Methods to Eliminate Reflection Cracking, Report FHWA/RD-86/075, Federal Highway Administration, Washington, D. C. 1985.
    [47] Monismith, C.L. et al. Reflection Cracking: Analyses, Laboratory Studies, and Design Considerations, Proceedings of Association of Asphaltic Paving Technologies[C], Vol.49, 1980.
    [48] Proceeding of the Second International RILEM Conference, Reflective Cracking in Pavements[C]. Liege, Belgium, 1993.
    [49] Proceeding of the Third International RILEM Conference on Reflective Cracking in Pavements[C], Maastricht, the Netherlands, 1996.
    [50] Ye Guozhong, Fatigue shear and Fracture Behavior of Rubber Bituminous Pavement, Proceeding of the third international RILEM Conference, Reflective Cracking in Pavements[C]. 1996.
    [51]公路工程试验规程汇编[M],北京,人们交通出版社编,2001。
    [52]赖春晓.涂膜起泡和剥离的形成机理及防止方法[J].全面腐蚀控制,2001,16(2):15-18.
    [53]刘志文,刘敬福,李赫亮.表面处理对环氧胶涂层剪切强度的影响[J].表面技术,2002,31(3):12-14.
    [54] W.A.Zisman. Surface chemistry of Plastics reinforced by strong fibers[J].Product Research and Development,1963,8(2):98-111.
    [55] E.P.Plueddeman. Interface on Polymer Matrix Composites[J].Acadmemic Press,1974:1-10.
    [56]王胜先,林薇薇,段洪东.硅烷改性丙烯酸系乳胶涂料抗蚀性的阻抗谱研究田.中国腐蚀与防护学报,1998,18(l):62-66.
    [57]尹志岚,袁媛,刘昌胜.硅烷偶联剂对不诱钢表面膜基结合强度的影响[J].功能高分子学报,2004,17(2):298-303.
    [58]袁绍暇,刘洪珠,张英二氟碳聚合物涂料的高性能及其应用[J].现代涂料与涂装,2000,(4):7-9.
    [59]叶鹏.氟树脂与聚苯硫醚共混改性涂料及涂层研究.
    [60]罗国钦,卢迪斯,林既森.氟树脂防粘涂料的自分层性[J].涂料工业,2001,(3)38-4.0
    [61] WJ.Vanooij,TChild.portecting metal swtihsilaneuoc Plinggaents Chemteeh,1998,28(2):26-35.
    [62]杜作栋.陈剑华有机硅化学[M].北京:高等教育出版社,1990:184-206.
    [63]晨光化工研究院有机硅编写组.有机硅单体及聚合物[M].北京:化学工业出版社,1986:124-140.
    [64] Noll W.Chemisty rnadTeehnologyofSiliocnes.NewYorkrnad London:Aeademie Press,1968.
    [65]王楠,徐溢,杨立华.硅烷试剂防腐蚀工艺研究[J].材料保护,2001,34(11):32-34.
    [66]黄汉生.硅烷偶联剂及其应用技术动向团北工新型材料,1995,(11):23-28
    [67] Subarmanian·Silanecou Plinggaentsofrocorrsion Portection·University of Cincinnati,1999.
    [68]吴纪森.有机硅及其应用[M].北京:科学技术文献出版社,1990:309.
    [69] Uddin , W. ; Hackett, R.M . Pavement nondestructive evaluation using finite-element dynamic analysis.The International Society for Optical Engineering, v 2945, 1996, p 282-293
    [70] Cross, Stephen A.;Brown, E. Ray. Selection of aggregate properties to minimize rutting of heavy duty pavements , ASTM Special Technical Publication, n 1147, 1992, p 45-67
    [71] Walrond, George ;Christiansen, Don Source. Airfield pavement structural evaluations, current practice and future needs. Airport Pavement Innovations Theory to Practice, 1993, p 110-125
    [72] Iung, T. ; Pineau, A.Dynamic crack propagation and crack arrest investigated with a new specimen geometry: Part I: Experimental and numerical calculations. Fatigue and Fracture of Engineering Materials & Structures, v 19, n 11, Nov, 1996, p 1357-1367
    [73] the People's Republic of China Trade Standard. Standard Specification forConstruction and Acceptance of Highway Modified Asphalt Pavements[S].Beijing: China Communications Press,1999.
    [74] Shen Jin′an.Modified Asphalt and SMA Pavement[M].Beijing: China Communications Press,1999.
    [75] Lv Weimin.Design Principles and Methods of Bituminous Mixtures[M]. Shanghai: Tongji University Press,2001.
    [76] Yang Linjiang,Li Jingxuan.Production and Application of Modified Asphalt[M]. Beijing: China Communications Press,2001.
    [77] Using surface energy measurements to select materials for asphalt pavement[R].Washington DC:National Cooperative Highway Research Program,2006.
    [78] RONLD L Terrel,SALEH AI-Swailmi. Walter Sensitivity of asphalt-Aggregate Mixes:Test Selection [R]. SHRP,1994
    [79]沙庆林.高速公路沥青路面的水破坏及其防治措施(下).国外公路,20(4),2000
    [80] Lottman, R.P. "Predicting Moisture-Induced Damage to Asphaltic Concrete Field Evaluation", NCHRP Report 246, May 1982.
    [81] The Asphalt Institute. Drainage of asphalt pavement structures (MS-15). Lexington, KY: The Asphalt Institute, 1996
    [82] Harvey J. Performance of CAL/APT drained and undrained pavements under HVS loading.TRB 981561,1997,11
    [83]谈慕华,黄蕴元.表面物理化学[M].北京:中国建筑工业出版社,1985.23-150.
    [84]韩世纲.物理化学[M].西安:西安交通大学出版社,1987.4-10.
    [85]孙长新,王秉纲.高炉重矿渣在沥青混凝土路面中的应用研究[J].中国公路学报,1994, 7(2):9-14.
    [86] ZHANG Ting-li,HU Rong-zu,ZHANG Ming-nan,WANG Ya-ping,LIANG Yan-jun,WANG Yuan.The Polymerization Thermokinetics of Pyrrole in the Presence of Iron Trichloride[J].Chinese Journal of Polymer Sciense,1991,9(1):21-23.
    [87] JTJ014-97,公路沥青路面设计规范〔S〕.
    [88] National Cooperative Highway Research Program Report 459 ,Characterization of Modified Asphalt Binders in Superpave Mix Design[M],2001.P3~10.
    [89] Haleh Azari,Richard H.McCuen,Kevin D.Stuart , Optimum compaction temperature for modified binders[J],ASCE/September/October 2003,P531~537.
    [90] Yetkin Yildirim, Mansour Solaimanian, and Thomas W. Kennedy,Mixing and Compaction Temperatures for Hot Mix Asphalt Concrete[M],Research Project 0-1250 of South Central Superpave Center,2000.
    [91]王捷,贾渝,改性沥青混合料拌和与压实温度确定方法综述[J],公路,2002(12),P99~103.
    [92]陈华鑫,芦军等,改性沥青的粘度特性和施工温度控制[J],石油沥青,2003,17(4),P43~46.
    [93]中华人民共和国行业标准,公路沥青路面施工技术规范(JTG F40-2004)[S],2005.
    [94] Lytton, R.L, Use of Geotextiles for Reinforcement and Strain Relief in Asphalt Concrete, Geotextiles and Remembrances [A], vol.8, no.3.1989
    [95] Majidzadeh, K. et al, Improved Methods to Eliminate Reflection Cracking, Report FHWA/RD-86/075, Federal Highway Administration, Washington, D. C. 1985
    [96] Monismith, C.L. et al. Reflection Cracking: Analyses, Laboratory Studies, and Design Considerations, Proceedings of Association of Asphaltic Paving Technologies[C], Vol.49, 1980
    [97] Proceeding of the Second International RILEM Conference, Reflective Cracking in Pavements[C]. Liege, Belgium, 1993
    [98] Proceeding of the Third International RILEM Conference on Reflective Cracking in Pavements[C], Maastricht, the Netherlands, 1996
    [99] Ye Guozhong, Fatigue shear and Fracture Behavior of Rubber Bituminous Pavement, Proceeding of the third international RILEM Conference, Reflective Cracking in Pavements[C]. 1996
    [100] the People's Republic of China Trade Standard. Standard Specification for Construction and Acceptance of Highway Modified Asphalt Pavements[S].Beijing: China Communications Press,1999.
    [101] Shen Jin′an.Modified Asphalt and SMA Pavement[M].Beijing: China Communications Press,1999.
    [102] Lv Weimin.Design Principles and Methods of Bituminous Mixtures[M]. Shanghai: Tongji University Press,2001.
    [103] Yang Linjiang,Li Jingxuan.Production and Application of Modified Asphalt[M]. Beijing: China Communications Press,2001.
    [104] Yang Jun,etc.Research on Performance Appraisement for Polymer ModifiedAsphalt[J].Journal of Highway and Transportation Research and Development,2000,vol.17(4):10-13.
    [105] Liu Boquan,etc.Performance Appraisement for Modifiers of Asphalt[J].Petroleum Asphalt,2001(1):35-37.
    [106] Chen Xiaodong. the image’s binary segmentation algorithmic base on the two-dimension intensity threshold. He Bei province Scientific college journal, 1995,No3.4
    [107] Shen Ruiqing. determining the threshold of textile fibre binary digital image. Wu Han textile industry college journal, 1994,Vol. 7, No. 1
    [108] F. Deravi. Gray level thresholding using second-order statistics. Pattern Recognit-ion Lett. 1, 1983, (5): 417-422
    [109] Rafael C. Gonzalez,Richard E. Woods, Ruan Qiuqi, Ruan Yuzhi. Digital image processing. Electronic industry publishing house,2003.
    [110] W.T. Chen et al. A fast 2-D entropic thresholding algorithm. Pattern Recogni-tion, 1994, 27(2): 885-893
    [111] Wu, T.H. Hong, A. Rosenfeld. Threshold selection using quantrees. IEEE Trans. On Pattern Analysis and Mach. Intell, 1982, 4 (1): 90-94
    [112] Sha Aimin,half rigidity pavement material structure and performance, Bei Jing:the people traffic publishing house,1998.3
    [113] R.L.Lytton: Petersen Asphalt Conference: (2002).
    [114] F.M.Fowkes, Y.C.Huang and B.A.Shah: Colloid and Surfaces, Vol. 29 (1988) No.1,p.243-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700