用户名: 密码: 验证码:
锌基材料的环保型无铬钝化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢铁镀锌后通常要对其表面的锌进行钝化处理,在传统工艺中,通常采用六价铬作为钝化成膜剂,这是因为铬酸盐钝化膜有许多优点,例如工艺简单、成本低、钝化膜的耐蚀性高,钝化膜在受到损伤后可以自我修复,另外,铬酸盐钝化膜通常呈彩虹色因而具有一定的装饰作用。然而由于六价铬酸盐具有很强的毒性,可使人体的某些器官癌变,并对或环境造成很大的危害,因此许多发达国家纷纷立法禁止六价铬相关工艺的应用及产品的生产和流通。
     本文的主要内容是研究并采用无毒环保型钝化剂来提高镀锌板的耐蚀性,希望可以找到取代传统六价铬钝化工艺的方法。实验所采用的钝化剂包括了无机和有机两大类,其中无机体系重点研究了铝酸盐、钛酸盐和稀土铈盐三种钝化剂;有机体系选择了KH-792、KH-560、KH-570、BTSE这四种有机硅烷作为钝化剂;实验还研究了无机钝化剂与有机硅烷之间的复合钝化作用。结果发现,在无机钝化剂中,稀土钝化效果相对较好,而有机无机复合是提高钝化膜耐蚀性的有效途径之一,实验最后还提出了一种表达钝化膜自修复性能优劣的方法,即“自修复效率”,并据此研究比较了多种钝化膜自修复性能的大小。本论文的主要工作主要有如下几点:
     (1)研究了在钼酸盐体系中,磷酸根的存在与否对钝化膜耐蚀性的影响,并将磷酸根的作用与硫酸根、硝酸根进行了对比,实验发现磷酸可与钼酸形成磷钼杂多酸,这种酸在钝化膜中所成的难溶盐对耐蚀性的提高有较大作用,而其它类型的酸根则不具有这一功能。另外,实验还研究了一些有机添加剂如单宁酸、植酸与钼酸盐的协同钝化作用,它们也能在一定程度上提高钼酸盐体系钝化膜的耐蚀性,另外,由于有机添加剂的加入使得钝化膜的颜色有所改变,因而可以提高钝化膜的装饰性。实验最后还探讨了磷钼酸盐钝化的机理。
     (2)研究比较了在钛盐体系中,三氯化钛、四氯化钛、硫酸氧钛和硫酸钛作为钛盐体系钝化剂的优缺点,并研究了钛盐钝化工艺中,钝化液各组分所起的作用以及钝化工艺操作条件的影响,以及钛盐钝化的机理。结果发现,采用成本相对较低廉的硫酸钛同样可以达到与硫酸氧钛和三氯化钛同样的钝化效果,且其钝化效果优于钼酸盐体系。
     (3)研究了两种截然不同的稀土铈盐钝化工艺,一种采用常规的酸性溶液进行快速钝化,钝化时间为1min左右;而另一种采用中性溶液进行缓慢钝化,钝化时间需要一个星期。结果发现,酸性快速钝化所获得的钝化膜的耐蚀性不及铬酸盐钝化膜;中性缓慢钝化所获得的钝化膜的耐蚀性虽然优于铬酸盐钝化膜,但处理时间过长,不宜工业化应用。另外,在不影响钝化膜耐蚀性的前提下,本文研究了几种方法来缩短钝化时间,发现暴气钝化法有一定的作用。
     (4)研究了上述四种有机硅烷在与无机钝化剂复合前后所形成的钝化膜的形貌及耐蚀性的变化,并分析了复合钝化的机理及有机无机各组分的作用。实验发现,上述四种有机硅烷与钼酸盐、钛酸盐或铈盐复合后,钝化膜的耐蚀性有一定程度的提高,提高的程度与有机硅烷种类、无机钝化剂的特性以及两者之间的配比有较大关系。
     (5)研究和评价了无铬钝化膜和传统铬酸盐钝化膜自修复作用发生的机理,并提出了一个新概念:“自修复效率”,用它能够比较钝化膜自修复作用的大小。实验还研究了几种有代表性的钝化膜的自修复效率,并将其与铬酸盐钝化膜进行了比较。结果发现,目前实验所得到的所有种类的钝化膜的自修复效率均大大低于铬酸盐钝化膜。
Zinc or zinc alloy coatings on steels applied by electrodeposition or hot dipping are wildly used to give protections for steels. The passivation process of zinc is a usual treatment for the galvanized steels. In conventional practice, a very popular way to reduce the corrosion rate of zinc was the use of chemical conversion layers based on hexavalent chromium ions, which can increase the passivation tendency of the zinc. This procedure is quite effective also for improving the adhesion of organic coatings deposited on the zinc surface, but there is a serious environmental problem associated with the use of Cr6+ in the formation of chromate conversion films for galvanized steels because of the high toxicity and the strong carcinogensis of the Cr6+ ions. So it is necessary to investigate alternative methods for corrosion protection for the use of chromium salts, which are now restricted by environmental protection legislation all over the world.
     In this paper, environmentally friendly chromate-free conversion coatings will be developed on zinc surface in comparison with traditional chromate treatments. Molybdate, titanium salt and cerium salt were selected as inorganic passivators, and silane coupling agents (SCA) include KH-792, KH-560, KH-570 and BTSE were selected as organic passivators. What is more, compound passivation between organic and inorganic passivators was investigated. The results showed that the cerium based conversion film was relatively better than molybdate or titanium based conversion film, and the compound effect between organic and inorganic passivators could increase the corrosion resistance to some extent. Finally, a new conception, "self-healing efficiency" was proposed to evaluate the self-healing abilities of films. Here are the main works we done.
     (1) Molybdate passivation system was investigated. The effect of the phosphate radical, sulfate radical or nitrate radical in conversion solution were studied, and the result showed that molybdophosphoric heteropoly acid was formed by phosphoric acid and molybdate, yet sulfate radical or nitrate radical exhibit no such performance. Moreover, some additives such as tannic acid or phytic acid were confirmed that they can increase the corrosion resistance as well as the ornament of the passivation films. Finally, the mechanism of the forming of molybdophosphoric heteropoly film was discussed.
     (2) As a kind of inorganic passivator, titanium trichloride, titanium tetrachloride, titanyl sulfate and titanium sulfate were investigated, and the contributions of each constituent in conversion solution were stuied. The result showed that the conversion film formed on zinc by the relatively cheap titanium sulfate was no less than titanium trichloride or titanyl sulfate, and generally, conversion coatings form by titanium salt exceeded that of molybdate.
     (3) Two kinds of quite different cerium based passivation methods were applied to form conversion coatings on zinc, one is carried out in an acidic conversion solution with a very fast passivation procedure less than 1 min, the other is carried out in a neutral conversion solution with a very long passivation procedure more than 1 week. The result showed that the conversion film formed in the acidic solution compare unfavourably with the one formed in the neutral solution. However, the passivation time of the latter method is too long to be applied industrially. Several feasible solutions to this problem therefore were studied to reduce the passivation time, and aeration was found to be a relatively better method.
     (4) In this part, silane coupling agents were used as passivators, and four kinds of SCA include KH-792, KH-560, KH-570 and BTSE were investigated befor and after they compound with three kinds of inorganic passivators include molybdate, titanium salt and cerium salt. The compound effect between SCA and inorganic passivators changed the microstructural aspects of the films, and in the meantime, increased the corrosion resistance of the conversion films. But which worth the whistle is that the corrosion resistance of the film raised by the compound effect depends largely on the sort of SCA and inorganic passivators as well as the mixture ratio between them.
     (5) The self healing ability of chromium include and chromium free conversion coating was investigated, and a new conception, "self-healing efficiency" was proposed to evaluate the self-healing abilities of films. The result showed that the self-healing efficiency of all chromium free conversion coating was far below the conventional Cr6+ conversion film.
引文
[1]陈锦虹,卢锦堂,许乔瑜,镀锌层无铬钝化研究的进展.腐蚀科学与防护技术,2003,15(5):277-280
    [2]周渝生,无铬钝化技术研究的进展.钢铁,2003,38(4):68-71
    [3]吴海江,陈锦虹,卢锦堂,镀锌层无铬钝化耐蚀机理的研究进展.材料保护,2004,37(3)
    [4]Ogawa H, Omata H, Itoh I, et al. Auger Electron Spectroscopic and Electrochemical Analysis of the Effect of Alloying Elements on the Passivation Bahavior of Stainless Steels. Corrosion,1978,34(2):52-60
    [5]马建权,田冰,程兴德,镀锌钢板有机无铬钝化技术研究的进展.轧钢,2007,24(1)
    [6]Sax N I, R J Lewis Sr. Dangerous Properties of Industrial Materials. Van Nostrand Reinhold, New York,1989,2(7):745
    [7]I. Biestek, J. Weber. Conversion Coatings. Pertcullis Press Ltd,1976
    [8]陈亚,李士嘉,王春林.现代实用电镀技术[M].北京:国防工业出版社,2003
    [9]Wilcox, D. R. Gabe, M. E. Warwick. The Development of Passivation Coatings by Cathodic Reduction in Sodium Molybdate Solutions. Corrosion Science,1988, 28(6):577-579
    [10]陈锦虹,卢锦堂,许乔瑜等,镀锌层上有机物无铬钝化涂层的耐蚀性.材料保护,2002,35(8):29-31
    [11]安茂忠,电镀理论与技术.哈尔滨工业大学出版社,2004,9
    [12]沈品华,屠振密,电镀锌及锌合金.机械工业出版社,2001,11
    [13]G. D. Wilcox, D. R. Gabe. Passivation Studies using Group ⅥA Anions, Part 4: Cathodic redox reactions and film formation. British Corrosion Journal,1984, 19(4):196-198
    [14]Bruce R. W. Hinton. Corrosion Prevention and Chromates, the End of an Era. Metal Finishing.1991,89(9):55-59
    [15]"Toxicological Profile for Chromium" Agency for Toxic Substances, U.S. Public Health Service, Report No. ATSDR/TP-88/10, July,1989
    [16]Bishep C V, Foley T J, Frank J M. Coating solutions of trivalent chromium for coating zinc surfaces [P]. US Patent Number:4171231,1979-10-16
    [17]任艳萍,陈锦虹,镀锌层的三价铬钝化.华南理工大学研究生报,2004,18(4):70-73
    [18]周金保,镀锌层无铬钝化工艺的新进展.电镀与环保,1991,11(5):7-8
    [19]Aoki K. Composition for form ing chromate coating [P]. US Patent Number: 4126490,1978-11-21
    [20]Sam P K. Desirable feathers of non-chromate conversion coating process [J]. Plating and Surface Finishing,2004,91 (3):38-44
    [21]Morchead C N. Non-chromated rinses as replacements for chromated rinses [J]. Products Finishing,2000,64 (5):54-57
    [22]Barnes C, Ward J J. Trivalent chromium passivated processes [J]. Trans IMF, 1982,60(1):55-62
    [23]张景双,夏保佳,屠振密等,锡锌合金镀层的无铬和低铬钝化.电镀与涂饰,2002,24(3):9
    [24]Freeman D B, Lilley R D. The pretreatment for steel and galvanized steel for organic finishing. Trans. Inst. Met. Finish.1981,59(2):40
    [25]Roman L, Blidariu M, Cristescu Cetal. Study of Conversion Coatings on Zinc Deposition Obtained from Low Pollution Solutions. Trans IMF,1996,74(5): 171-175
    [26]蔡加勒,黄令,周绍民.三价铬彩虹色钝化[P].中国专利:1290981A,2003-01-15.
    [27]周漠银.钼酸盐在金属表面处理中的的应用[J].材料保护,2000,22(3):18-21
    [28]Barnes C, ward J B, Sehmbhi T S, et al. Non-chromate pssivation treatment for zinc. Trans. Inst. Met. Finish.,1982,60(2):45
    [29]Warwick M E. Passivation and corrosion resistance of Sn-Zn alloy electrodeposits on steel [J]. Plating and Surface Finishing,1987,74 (2):12-14
    [30]Wilcox G D, Gabe D R. Chemical Molybdate Conversion Treatments for Zinc. Met. Fin.,1988,86 (9):71
    [31]Tang P T, Mdler P. Mdybdate-based alternatives to chromating as a passivation treatment for zinc [J]. Plating and Surface Finishing,1987,67 (2):32-35
    [32]黄可坤,无铬钝化液[P].中国专利:1556246A,2004-12-22
    [33]夏保佳,杨哲龙,张景双.锡锌合金镀层钼酸盐及耐蚀性研究[J].表面技术,1993,22(3):108-111
    [34]Bijimi D, Gaba D R. Passivation studies using group ⅥA anions (Ⅲ). Anodic treatment of zinc[J]. Br. Corm. J.,1983,18:138
    [35]Wilcox G D, Gaba D R. Passivation studies using group VIA anions (V). cathodic treatment of Zinc[J]. Br. Corm. J.,1987,22(4):254.
    [36]Shigeki Kirihara, Kobe, Tsutomu Ohshima, Kakogaw, both of Japan. Method for anticorrosive treatment of galvanized steel. US Pat,4385940,1983-5-31
    [37]Wilcox G D, Wharton J A. A Review of Chromate Free Passivation Treatments for Zinc and Zinc Alloys. Trans IMF,1997,75(6):140
    [38]韩廷亮,罗韦因,刘钧泉.镀后处理技术与研究发展动态.全国电子电镀学术研讨会论文集[C].重庆:重庆表面技术工程学会,2004,71-73
    [39]安成强,郝建军,牟世辉.镀锌钢板无铬钝化技术的发展.表面技术,2003,32(4):6-8
    [40]卢锦堂,孔纲,陈锦虹等.热镀Zn层钼酸盐钝化工艺[J].腐蚀科学与防护技术,2001,13(1):46
    [41]Tang P T, Bech-Nielsen G, Her P M. Molybdate Based Alternatives to Chromating as a Passivation Treatment for Zinc. Plat & Surf Fin,1994,81(11): 20
    [42]Tang P T, Bech-Nielsen G, Her P M. Molybdate Based Passivation of Zinc. Trans IMF,1997,75(4):144
    [43]Wharton J A, Wilcox G D, Baldwin K R. Non-chromate Conversion coating Treatment for Electrodeposited Zinc-Nickel alloys [J]. Trans. IMF,1996,74(6): 210
    [44]Wilcox G D, Gabe D R, Warwick M E. Molybdate Passivation Treatments for Tinplate. Trans. IMF,1988,66(3):89
    [45]Han Keping, Fang Jingli. Decorative and Protective Conversion Films on Nickel Plate. Met. Fin.,1996,94(6):97
    [46]Han Keping, Fang Jingli. A Protective Decorative Cathodic Conversion Coating on Steel. Materials and Corrosion (German),1996,47(7):387
    [47]Kurosawa K, Fukushima T. Effect of pH of An Na2MoO4-H3PO4 Type Aqueous Solution on the Formation of Chemical Conversion coatings on Steels. Corrosion Sci.,1989,29(9):1103
    [48]D. R. Cowieson, A. R. Scholefield. Passivation of Tin-Zinc Alloy Coated Steel. Transactions of the institute of the Metal Finishing,1985,63(2):56-58
    [49]Bijimi D, Gabe D R. Passivation Studies Using Group ⅥA Anions, Part 1: Anodic Treatment of Tin. Br Corros J,1983,18(2):88
    [50]Bijimi D, Gabe D R. Passivation Studies Using Group ⅥA Anions, Part 2: Cathodic Treatment of Tin. Br Corros J,1983,18(2):93
    [51]Kader J M, Warraky A A, Aziz A M. Corrosion inhibition of mild steel by Sodium tungstate in neutral solution part Ⅰ:behavior in distilled water[J]. Br. Corm. J,1998.33(2):139
    [52]李燕,陆柱,吴羡蓉,钨酸盐与苯骈三氮唑协同缓蚀机理的探讨.华东理工大学学报,2002,28(1):66-70
    [53]屠振密,张景双,安茂忠.电镀锌基合金工艺的发展及应用[J].电镀与精饰,1998,20(2):18
    [54]韩克平,叶向荣,方景礼.镀锌层表面硅酸盐防腐膜的研究.腐蚀科学与防护技术,1997,9(2):167
    [55]卢燕平,屈祖玉,梅淑文等.改性低铬钝化膜耐蚀性的研究[J].电镀与涂饰,2000,19(4):14-17
    [56]Wynn P C. Replacing hexavalent chromium in passivation on zinc plated parts [J]. Products Finishing,2001,65(5):55-62
    [57]Chen Z W, Kennon N F, See J B, et al. Technigalva and other developments in batch hot-dip galvanizing [J]. JOM,1992,44 (1):22
    [58]钱余海,戴毅刚,陈红星等,镀锌(合金)钢板无/低铬钝化技术研究状况[J].腐蚀科学与防护技术,2004,16(4):221-224
    [59]Deck P D, Reichgott D W. Characterization of chromium-free no-rinse prepaint coatings on aluminum and galvanized steel [J]. Met. Fin.,1992,90 (9):27.
    [60]T Schram, G Goeminne, H Terryn, et al. Study of the composition of zirconium based chromium free conversion layers on aluminium. Trans IMF,1995,73(3): 91
    [61]Gal-Or L, Silbarman I, Chalm R. Electrolytic ZrO2 [J]. J. Electrochem Soc., 1991,138(7):1939
    [62]S S Grofman. Pretreatment of Aluminum for Painting Computers and Business Machines. Met. Fin.,1985,83 (5):41
    [63]Bethencourt M, Botana F J, Calvino J J, et al. Lanthanide Compounds as Environmentally-Friendly Corrosion Inhibitors of Aluminium Alloys:a review[J]. Corrosion Science.,1998,40 (11):1803-1819
    [64]Hinton B R W, Wilson L. The corrosion inhibition of zinc with cerous chloride [J]. Corrosion Science,1989,29 (8):967-985.
    [65]Geary M, Breslin C B. The influence of dichromate and cerium passivation treatment on the dissolution of Sn-Zn coating [J]. Corrosion Science,1997, 39(8):1341-1350.
    [66]H. K. Ping, W. J. Kui. Decorative and Protective Coatings on Zinc Using Rare Earths. Transactions of Metal Finishing Association of India,1996,5(2):83-86
    [67]龙晋明,韩夏云,杨宁等.锌和镀锌钢的稀土表面改性[J].稀土,2003,24(5):52-56
    [68]李鸿宾,陈建设,刘辉,魏绪钧.热镀锌表面铈盐钝化.材料与冶金学报,2002,1(3):203-205
    [69]王济奎,方景礼.镀锌层表面混合稀土转化膜的研究.中国稀土学报,1997,15(1):31-34.
    [70]蒋馥华,张萍.锌镀层稀土钝化处理及其在氯化钠溶液中的溶解[J].电镀与涂饰,1999,18(4):1-5
    [71]Schriever, P Mattlfias. Non-chromate doxide coating for aluminum substrates [P]. US Pat,5468307,1995
    [72]Kim H J, Song Y K. Proc. SURFIN'96, Cleveland, USA,123,1996
    [73]Mcconkey B H, Tannin based rust conversion coatings [J]. Corros. Australas, 1995,20(5):17
    [74]梁启民,张丽娜.镀锌层单宁酸钝化[J].电镀与精饰,1986,23(1):31
    [75]张安富.镀锌系钢板表面处理新工艺[J].表面技术,1991,20(5):29
    [76]张洪生,杨晓蕾,陈熹.植酸在金属防护中的应用[J].腐蚀科学与防护技术,2002,14(4):242
    [77]张洪生.无毒植酸在金属防护中的应用.电镀与涂饰,1999,18(4):38-41
    [78]朱传方,胡腊生.植酸在镀锌钝化中的应用.精细化工,1995,12(5):54-60
    [79]Wippermann K, Schultze J W, Kessel R, et al. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives [J]. Corrosion Science,1991,32 (2):205
    [80]金井洋.无铬表面处理镀锌钢板及无铬预涂层电镀锌钢板.世界钢铁,2000,6板线材专集:17-19
    [81]海野茂.适用于电器设备的无铬表面处理电镀锌钢板的性能,川崎制铁技报,2001,332:82-87
    [82]尾田富男.绿色涂层技术GX(无铬表面处理钢板)开发,神户制钢技报,2001,51(1):53-55
    [83]世界金属导报.日本钢铁工业镀锌板生产现状.2002,3,12
    [84]US Patent,5662967, Non-chromium passivation method for galvanized metal surfaces [P].1997-9-2
    [85]EP Patent,0792922, Chromate-free protective coating [P].1997-9-3
    [86]Edwin E P著,梁发思,谢世杰译,硅烷和钛酸酯偶联剂[M],上海:上海科学技术文献出版社,1978:2
    [87]周宁琳.有机硅聚合物导论[M].北京:科学出版社,2000,168-172
    [88]蔡宏国,申建一.硅烷偶联剂及其进展[J].现代塑料加工应用,1993,5(5):47-51
    [89]T F Child, W J van Ooij, Application of Silane Technology to Prevent Corrosion of Metals and Improve Paint Adhesion [J].Trans IMF,1999,77(2):64-70
    [90]何敏婷.偶联剂在涂料及复合材料中的应用[J].现代涂料与涂装,2002,(2):32-34
    [91]W J Van Ooij, T Child. Protection metals with silane coupling agents, Chemtceh, 1998,28(2):26-35
    [92]G P Sundararajan, W J Van Ooij, Silane based pretreatments for automotive steels. Surface Engineering,2000,16(4):315-320
    [93]W J Van Ooij. Metal Preteated with an aqueous solution containing a dissolved inogranic silicate or aluminate, ogranofunctional and a nonfunctional silane for enhance corrosion resistance [P], US.5433976, July 18,1995
    [94]W J Van Ooij. Metal substrate with enhanced corrosion resistance and improved paint adhesion [P], US.5455080, October 3,1995
    [95]W J Van Ooij. Metal substrate with enhanced corrosion resistance and improved paint adhesion [P], US.5539031, July 23,1996
    [96]徐溢,硅烷试剂防腐蚀工艺研究[J],材料保护,2001,34(11):32-34
    [97]赖琛,耐高温防腐蚀涂料的研制[D],湖南大学,2002,25-27.
    [98]赖春晓,涂膜起泡和剥离的形成机理及防止方法闭[J],全面腐蚀控制,2001,16(2):15-18
    [99]刘志文,刘敬福,李赫亮.表面处理对环氧胶涂层剪切强度的影响[J],表面技术,2002,31(3):12-14
    [100]王胜先,林薇薇,段洪东.硅烷改性丙烯酸系乳胶涂料抗蚀性的阻抗谱研究[J],中国腐蚀与防护学报,1998,18(1):62-66
    [101]尹志岚,袁媛,刘昌胜.硅烷偶联剂对不诱钢表面膜基结合强度的影响[J],功能高分子学报,2004,17(2):298-303
    [102]王建明,曹楚南,林海潮.在KOH溶液中几种季铵盐在Zn表面上吸附及其缓蚀行为[J].腐蚀科学与防护技术,1996,8(2):104-107
    [103]Guhde D J. US Pat,4351675,1982
    [104]Ramunas J M, Arthus E M. Inorg. Chem.,1980,19(6):1646
    [105]朱传方,李中华,熊云.羟乙叉基二膦酸在镀锌及无铬钝化中的作用[J].材料保护,1994,27(7):9-10
    [106]陈旭俊等.乙酸胺钼酸盐的缓蚀作用与机理[J],中国腐蚀与防护学报,1995,15(4):279-284
    [107]龚洁,陈旭俊等.有机钼酸盐MDTA对碳钢的缓蚀作用和机理[J].腐蚀与 防护,1999,20(2):62
    [108]木冠南,刘光恒.稀土钇(Ⅲ)离子和非离子表面活性剂对锌的缓蚀协同效应[J].腐蚀与防护,2002,23(2):51-53
    [109]Susai Rajendran, Apparao B V, Palaniswamy N. Synergistic and Antagonistic Effects Existing among Polyacrylamide Phenyl Phosphonate and Zn2+on the Inhibition of Corrosion of Mild Steel in a Neutral Aqueous Environment [J]. J Electrochemica Acta,1998,44:533-537
    [1]Gabe D R, Gould S E. Black molybdate conversion coatings [J]. Surface & Coatings Technology,1988,35:79-83
    [2]Bellezze T, Roventi G, Fratesi R. Electrochemical study on the corrosion resistance of molybdate based conversion layers on zinc coatings [J]. Surface & Coatings Technology,2000,123:321-330
    [3]郑环宇,安茂忠,赖勤志.镀锌层无铬钝化工艺的研究[J].材料保护,2005,38(9):18-23
    [4]张平.镀锌层无铬钝化工艺[J].电镀与精饰,1992,14(5):31-33
    [5]吴以南.锌镀层的三价铬钝化[J].电镀与环保,2003,23(3):30-32
    [6]Robertson W D. Molybdate and Tungstate as Corrosion Inhibitors and the Mechanism of Inhibition. Journal of the Electrochemical Society,1951,98(3): 94-96
    [7]单玉桥,于晓中,李力,胡云明.镀锌钢板无铬钝化工艺技术的研究[C].全国电子电镀学术研讨会论文集,2004,218-222
    [8]肖鑫,龙有前,钟萍,祁燕飞.锌镀层钼酸盐-氟化锆体系钝化工艺研究[J].腐蚀科学与防护技术,2005,17(3):184-188
    [9]杨熙珍,杨武.金属腐蚀电化学热力学:电位-pH图及其应用[M].北京:化学工业出版杜,1991,231-235
    [10]刘小虹,颜肖慈.镀锌层钼酸盐转化膜及其耐蚀机理[J].电镀与环保,2002,22(6):7-12
    [11]J A Wharton, D H Ross, G M Treacy, G D Wilcox, K R Baldwin. An EXAFS investigation of molybdate-based conversion coatings [J]. Journal of Applied Electrochemistry.2003, (33):553-561
    [12]M S Vukasovich, G G Van Riper. Proceedings of the Seventh European Symposium on Corrosion Inhibitors,1990,673-676
    [13]V S Sastri, Corrosion Inhibitors, Wiley, Chichester,1998,854-856
    [14]L Fedrizzi, L Ciaghi, P L Bonora, R Fratesi, G Roventi. J. Appl. Electrochem. 1992, (22):247
    [15]Yakimenko G Y, Andryuschchenko F K, Kharchemco E P, Valenya E P. Metallov Zashchita, Transl.,1977, (13):123-128
    [16]L Xia, R L McCreery. J. Electrochem. Soc.,1999, (146):3696-3671
    [17]张在富,有机铁锈转化剂工艺[J].材料保护,2000,33(2):36-37
    [18]A Devasenapathi, V S Raja, Corrosion [J].1996,52(4):243-248
    [19]M Yamaguchi, H Nishihara, K Aramaki. Corros. Sci.1994, (36):241-250
    [1]章葆澄,朱立群等.代镉新镀层—锌钛合金镀层组织与性能的研究[J].新技术新工艺,1994,(1):33-34
    [2]洪海云,陈贻炽,朱立群.钛基体上氧化铝膜层的耐高温和耐腐蚀性能研究[J].材料保护,2005,38(6):18-21
    [3]丁楠,杨飞,朱立群.钝化工艺参数对镀锌钛盐钝化膜色泽的影响[J].材料保护,2008,41(5):45-49
    [4]史美伦.交流阻抗图谱及其应用[M].北京:国防工业出版社,2001
    [5]B Demri, D Muster, J Materials, Processing Technol.1995, (55):311-318
    [6]C Gabrielli, M Keddam, F Minouflet-Laurent, K Ogle, H Perrot, Electrochim. Acta,2003, (48):965
    [7]R G Duarte, A C Bastos, A S Castela, M G S Ferreira. A comparative study between Cr-containing and Cr-free films for coil coating systems [J]. Progress in Organic Coatings,2005, (52):320-327
    [8]M Kendig, A J Davenport, H S Isaacs, Corros. Sci.,1993, (34):41-46
    [9]卢燕平,屈祖玉.镀锌层低铬钝化膜的改性与耐腐蚀性研究[J]. 材料保护, 2003,36(4):35-37
    [1]Hinton B R W, Arnott D R, Ryan N E. The inhibition of aluminum corrosion by cerium cations [J]. Metals Forum,1984,7 (4):211-217.
    [2]Hinton B R W, Ryan N E, Arnott D R, et al. The inhibition of aluminum alloy corrosion by rare earth metalcat ions [J]. corrosion Australas,1985,10 (3): 12-17
    [3]Arnott D R, Hinton B R W, Ryan N E. Cationic film forming inhibitors for the corrosion protection of AA 7075 aluminum alloy in chloride solutions [J]. Materials Performance,1987,26 (8):42-47
    [4]Hinton B R W. Corrosion inhibition with rare earth metal salts [J]. Journal of Alloys and Compounds,1992,180:15-25
    [5]Hinton B R W, Arnott D R, Ryan N E. Cerium conversion coatings for the corrosion protection of aluminum [J]. Materials Forum,1986,9 (3):162-173
    [6]Mansfeld F, Wang V, Shih H. Development of "stainless aluminum" [J]. J. Electrochem. Soc.,1991,138 (12):74-75
    [7]Mansfeld F, Wang V. Corrosion protection of high copper aluminum alloy by surface modification [J]. British Corrosion Journal,1994,29(3):194-200
    [8]Shoji Hiromasa, Sakashita Masao. Surface treated metallic materials with corrosion resistance and surface treatment used therefore [P]. Japan Patent:WO 28291,1996
    [9]张晓刚,王天芳,夏喜.稀土盐对锌电极在NH4C1介质中的缓蚀作用研究[J].化学研究与应用,1997,9(5):22-25
    [10]孙克宁,刘兰毅,石伟等.镀锌层无铬钝化工艺研究[J].材料保护,2002,35(12):35-36
    [11]方达经,林安,甘复兴.铝材Sn-Ni混合盐电解着枪色参数研究[J].装备环境工程,2006,3(4):27-31
    [12]Hughes A E. XPS and SEM characterization of hydrated cerium oxide conversion coating [J]. Surface and Interface Analysis,1995,23 (7):540-550.
    [13]Hinton B R W, Arnott D R. The characteristics of corrosion inhibiting films formed in the presence of rare earth cat ions [J]. Microstructural Sci.,1989, (17): 311
    [14]Hinton B R W. Corrosion inhibit ion with rare earth metal salts [J]. J. Alloys and Compounds,1992, (180):15-25
    [1]Ulf Bexell, T Mikael Grehk. A corrosion study of hot-dip galvanized steel sheet pre-treated with y-mercaptopropyltrimethoxysilane. Surface & Coatings Technology.2007, (201):4734-4742
    [2]Motoaki Hara, Ryoichi Ichino, Masazumi Okido, Nobuaki Wada. Corrosion protection property of colloidal silicate film on galvanized steel. Surface & Coatings Technology.169-170 (2003) 679-681
    [3]Robert P Socha, Jan Fransaer. Mechanism of formation of silica-silicate thin films on zinc. Thin Solid Films.488 (2005) 45-55
    [4]Robert P Socha, Nicolas Pommier, Jan Fransaer. Effect of deposition conditions on the formation of silica-silicate thin films. Surface & Coatings Technology.201 (2007)5960-5966
    [5]Basker Veeraraghavan, Dragan Slavkov, et al. Synthesis and characterization of a novel non-chrome electrolytic surface treatment process to protect zinc coatings. Surface and Coatings Technology.167 (2003) 41-51
    [6]魏伯荣,蓝立文,张双存.硅烷偶联剂对白炭黑硫化胶性能的影响[J].特种橡胶制品,1992,13(6):14-17
    [7]贝逸翔,黄继泰.硅烷偶联剂对粘土表面改性研究[J].华侨大学自然科学版,1990,11(3):278-283
    [8]官少华,刘儒栋.硅烷偶联剂MB-69的应用研究[J].轮胎工业,1997,17(9):535-537
    [9]王双红,刘常升,单凤君.镀锌板的有机硅烷钝化技术及其研究进展[J].腐蚀科学与防护技术,2008,20(1):35-38
    [1]蒋雄,锌镀层铬酸钝化膜的形成机理及其色泽成因的探讨.材料保护,1976,12(1)
    [2]K. Aramaki, Corros. Sci.42 (2000) 1975.
    [3]K. Aramaki, Corros. Sci.42 (2000) 2023.
    [4]方景礼等.镀锌层表面H4PMo11V040杂多酸转化膜的研究.表面技术,1996,25(4)
    [5]G P Thim, M A S Oliveira, E D A Oliveira, F C L Melo. Sol-gel Silica Film Preparation from Aqueous Solutions for Corrosion Protection. J. Non-Cryst. Solids. ,2000,273:124-125.
    [6]K. Aramaki, Corros. Sci.43 (2001) 2201.
    [7]R. K. Her. The Chemistry of Silica:Solubility, Polymerization, Colloid and Surface Properties and Biochemistry. John Wiley& Sons, NY,1979.
    [8]Hyung-Joon Kima, Jinming Zhang, Roe-Hoan Yoon, Richard Gandour. Development of environmentally friendly nonchrome conversion coating for electrogalvanized steel. Surface & Coatings Technology,188-189 (2004) 762-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700