用户名: 密码: 验证码:
功能性多肽的设计、合成及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着多肽合成技术和高效液相纯化、分析等技术的迅速发展,多肽类化合物作为一类重要的生物活性分子,越来越受到研究人员的关注。其中,多肽类物质的生物兼容性、特异性蛋白识别能力、易于修饰、易降解等特点,使其广泛受到药物开发者的青睐,成为药物研究中一个新的活跃领域。近年来,研究人员发现,一些短肽能够通过氢键、静电作用力,疏水作用以及π-π堆积等方式,白组装成各种有序的纳米结构,从而使其在药物的包覆、运输、缓释,生物传感、催化剂以及纳米器件等研究领域产生了广泛应用。基于以上考虑,在本论文中,设计合成了系列功能性多肽,并研究了其作为抗肿瘤靶向药物和神经退行性疾病阻断剂的活性。同时,针对与老年痴呆病理相关的淀粉样蛋白的自组装功能,设计合成了易于自组装成纳米纤维的短肽,并研究了其在催化材料和生物传感方面的应用。本论文的主要内容包括:
     (1)通过液相多肽合成法合成了Fc-RGD和Fc-Am-RGD,利用MTT细胞毒性法和流式细胞仪法研究了它们的抗肿瘤活性,并用高效液相色谱-电化学联用法(HPLC-EC)研究了B16细胞对其摄取能力。研究发现,Fc-RGD和Fc-Am-RGD相对于它们的母体RGD和二茂铁具有更强的抗癌活性,且在二茂铁和RGD之间插入柔性片段6-氨基己酸的Fc-Am-RGD表现出了最强的抗肿瘤活性,其IC5o值为5.2±1.4μmol·L-1。另外HPLC-EC的研究结果也证实了Fc-Am-RGD穿透B16细胞膜的能力比Fc-RGD强。
     (2)合成了GPR三肽,GPR-Fca和Fc-GPR。通过ThT荧光分析法和原子力显微镜研究了合成物质对Ap聚集的影响,并利用电化学方法研究了其与Ap的相互作用。研究结果表明:Fc-GPR不能抑制Aβ的聚集,而GPR和GPR-Fca则能有效抑制Ap的聚集以及解聚己形成的Ap纤维,而GPR-Fca的抑制聚集和解聚能力都要强于其母体GPR。特别是,GPR-Fca能够显著降低因Ap的聚集而引起的神经细胞毒性。同时,GPR-Fca还表现出了很强的抗酶解能力和较好的亲脂性。
     (3) α-syn的聚集和聚集物的神经细胞毒性在帕金森病(PD)的致病机理中扮演中重要的角色。而Cu2+能促进α-syn的聚集以及Cu2+存在下α-syn聚集物神经细胞毒性显著增加的现象更是让人们深信α-syn-Cu2+聚集物在PD中的重要作用。以α-syn的原生序列77VAQKTV82为识别肽设计合成了甲基化的VAQTKmV作为α-syn-Cu2+聚集的阻断剂。通过ThT荧光法和AFM研究了其抑制α-syn-Cu2+聚集的过程,并用MTT法研究了其对α-syn-Cu2+聚集物引起的神经细胞毒性的抑制作用。研究发现,VAQTKmV不仅能有效地抑制α-syn-Cu2+的聚集,而且能显著降低由α-syn-Cu2+的聚集所引起的神经细胞毒性。
     (4)细胞内蛋白α-syn的构象变化以及聚集过程被认为与PD的病理学紧密相关,它以α-螺旋结构的形式聚集在突触前末端。通过将无定形的α-syn加入到三氟乙醇和水的混合液中使其转换成α-螺旋结构,利用电化学和紫外光谱的方法研究了Cu+和Cu2+与其结合能力,并发现a-螺旋结构的α-syn与Cu+的结合能力较之与Cu2+的结合能力高两个数量级,比无定形结构α-syn与Cu2+的结合能力则更是高出三个数量级之多。通过对含有游离Cu2+、无定形α-syn-Cu2+以及a-螺旋α-syn-Cu2+的溶液中H202和OH·的检测发现,α-螺旋结构的α-syn对Cu+的高稳定作用能显著降低自由基的产生。
     (5)通过固相法合成了能自组装成带正电荷纳米纤维的苯胺-GGAAKLVFF多肽。通过静电作用,将带负电的Pt纳米粒子直接固定到多肽纤维表面。这种Pt纳米粒子负载的多肽纤维在催化氧还原方面具有非常高的催化活性,可能会在燃料电池领域产生潜在的应用价值。
     (6)将苯胺连接到自组装型的淀粉样多肽片段GGAAKLVFF的N端,通过多肽固相合成的方法合成了Aniline-GGAAKLVF(AP)。AP不仅能够自组装成多肽纳米纤维,其露在纤维表面的苯胺单体还能够在H2O2和HRP的作用下实现聚合,形成高电化学活性的聚苯胺外壳。因此,结合苯胺在HRP催化下的聚合特性及聚合后聚苯胺良好的电化学信号构建了以自组装多肽纳米纤维为模板的,具有较高灵敏度和选择性的核酸传感器。
Due to the inherent biocompatibility, biodegradability, specific protein recognition ability, easy to modify and purify at laboratory, peptides have been extensively used in the field of drug research and development. More importantly, during the last decade, researchers have demonstrated that some peptides can self-assembly into various well-ordered nanostructures which are attractive to many applications (e.g., drug delivery, biosensor, catalysis, nanodevice and so on). Their ability to form such structures is due to structural complementarities coupled with hydrogen bonding, electrostatic interaction, hydrophobic affinity and π-stacking (aromatic amino acids). Based on the above considerations, we designed and synthesized a series of peptides, and studied their applications in the field of antitumor, anti-neurodegerative disease, catalysis and biosensior.
     (1) Ferrocenoyl RGD conjugates Fc-RGD and Fc-Am-RGD (Am:6-aminohexanoic acid) were synthesized, and the antitumor activities in vitro were investigated. The cell uptake of the conjugates by B16murine melanoma cells was measured using HPLC-electrochemical method. The antitumor activities of the conjugates were also evaluated by MTT and flow cytometric measurements. The experimental results revealed that Fc-RGD and Fc-Am-RGD exhibit more effective antitumor activities than their parent compounds RGD and Fc-COOH. Moreover, it is found that Fc-Am-RGD yields the lowest IC50values of5.2±1.4μmol·L-1toward B16cells. The HPLC-electrochemical studies confirmed the insertion of flexible alkyl spacer Am between Fc and RGD significantly increases the cell uptake toward B16cells and consequently improves the antitumor activity. Our results suggest that Fc-RGD and Fc-Am-RGD conjugates are potential candidates for cancer treatment.
     (2) The conjugates of ferrocene and Gly-Pro-Arg (GPR) tripeptide, GPR-Fca and Fc-GPR (Fc:ferrocene; Fca:ferrocene amino acid) were synthesized by HOBt/HBTU protocol in solution. These ferrocene GPR conjugates were employed to inhibit Aβ(1-42) fibrillogenesis and to disaggregate preformed A(3fibrils. The inhibitory properties of ferrocene GPR conjugates on Aβ(1-42) fibrillogenesis were evaluated by thioflavin T fluorescence assay, and confirmed by AFM analysis. The interaction between the ferrocene GPR conjugates and Aβ(1-42) was monitored by electrochemical means. Our results showed that both GPR and GPR-Fca can significantly inhibit the fibril formation of Aβ(1-42), and cause disaggregation of the preformed fibrils. As expected, GPR-Fca shows stronger inhibitory effect on Aβ(1-42) fibrillogenesis than that of its parent peptide GPR. In contrast, Fc-GPR shows no inhibitory effect on fibrillogenesis of Aβ(1-42). Furthermore, GPR-Fca demonstrates significantly protection against Aβ-induced cytotoxicity and exhibits high resistance to proteolysis and good lipophilicity.
     (3) The aggregation and fibrillation of α-syn have been implicated as a causative factor in Parkinson's disease (PD). α-syn can binds to copper and the aggregation of α-syn is stimulated in the presence of copper attracted great attention. Particularly, recently studies have shown that the toxicity of α-syn aggregates significantly increased in the presence of copper, which make researchers to believe that α-syn-Cu2+aggregates play key role in PD. In this study,N-methylated peptide (VAQKTmV) was synthesized and employed as an inhibitor to prevent the aggregation of a-syn-Cu2+. The inhibitory properties of VAQKTmV on a-syn-Cu2+fibrillation were evaluated by ThT fluorescence assay, and confirmed by AFM analysis. Our results demonstrated that VAQKTmV can not only strongly inhibit the aggregation of α-syn-Cu2+, but also significantly prevent the α-syn-Cu2+-induced cytotoxicity toward SH-SY5Y cells.
     (4) In this study, circular dichroism confirmed that natively unstructured α-syn in aqueous solution was transformed to its α-helical conformation upon addition of trifluoroethanol. Electrochemical and UV-visible spectroscopic experiments reveal that both Cu+and Cu2+are stabilized, with the former being stabilized by about two orders of magnitude. Compared to unstructured α-syn, α-helical α-syn stabilizes Cu+by more than three orders of magnitude. Through the measurements of H2O2and hydroxyl radicals (OH·) in solutions containing different forms of Cu2+(free and complexed by unstructured or α-helical α-syn), we demonstrate that the significantly enhanced Cu+binding affinity helps inhibit the production of highly toxic reactive oxygen species, especially the hydroxyl radicals. Our study provides strong evidence that, as a possible means to prevent neuronal cell damage, conversion of the natively unstructured a-syn to its a-helical conformation in vivo could significantly attenuate the copper-modulated ROS production.
     (5) Self-assembly peptides, due to their inherent biocompatibility, molecular-recognition capability and functional flexibility, have been recognized as very useful building block for creating nanostructures. In this study, aniline-GGAAKLVFF peptide (AFP) was prepared by solid-phase synthesis. The AFP peptide can readily self-assemble into amyloid-like fibrils in a simple way, then the negatively charged Pt NPs were directly assemble onto the positively charged surface of the fibrils via electrostatic interaction. The Pt-AFP fibrils exhibited excellent electrocatalytic activities toward oxygen reduction, which is of special interest for polymer electrolyte fuel cells, batteries and other electrode applications.
     (6) Polyaniline has been of great interest to many researchers due to its excellent electrical properties, is a unique type of conducting polymer. In this study, aniline was conjugated to the N-terminal of amyloid-like peptide GGAAKLVFF by solid-phase synthesis. The aniline-GGAA-KLVFF peptide not only can readily self-assemble into fibrils in a simple way, but also forms polyaniline by the extruding aniline of peptide fibrils in the present of H2O2and HRP. The polyaniline nanowire retains polyaniline full electrochemical activity and was successfully used as signal amplification to fabricate a sensitive nucleic acid detecter.
引文
[1]Sewald N, Jakubke HD. Peptides:Chemistry and Biology. Wiley-VCH,2nd Ed. 2009.
    [2]Merrifield RB. Solid phase peptide synthesis. J. Am. Chem. Soc.1963, 85:2149-54.
    [3]闫美荣,刘庆平,苏秀兰.白细胞酯酶同工酶对胃癌诊断价值的探讨.中国组织化学与细胞化学杂志[J].1996,5(2):219-221.
    [4]Yan X, Zhu P, Li J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc. Rev.2010,6(39):1877-1890.
    [5]陶慰孙,李惟,姜涌明.蛋白质分子基础[M].北京:高等教育出版社,1995.
    [6]张志刚,曾碧慧.多肽固相合成的简化装置.实验室研究与探索[J].1999,12(5):72-4.
    [7]李越希,黄培堂.多肽在生物医药和诊断试剂中的应用.中华生化药物杂志[J].2001,22(4):208-10.
    [8]Assa-Munt N, Jia X, Laakkonen P, et al. Solution structures and integrin binding activities of an RGD peptide with two isomers. Biochemistry.2001, 40(8):2373-8.
    [9]Zhu J, Tang C, Kottke-Marchant K, et al. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides. Bioconj. Chem.2009,20(2):333-9.
    [10]Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion:RGD and integrins. Science 1987,238(4826):491-7.
    [11]Hynes RO. Integrins:a family of cell surface receptors. Cell 1987, 48(4):549-54.
    [12]Felding-Habermann B, Mueller BM, Romerdahl CA, et al. Involvement of integrin alpha V gene expression in human melanoma tumorigenicity. J. Clin. Invest.1992,89(6):2018-22.
    [13]Mitjans F, Sander D, Adan J, et al. An anti-alpha v-integrin antibody that blocks integrin function inhibits the development of a human melanoma in nude mice. J. Cell Sci.1995,108 (8):2825-38.
    [14]Ivaska J, Heino J. Adhesion receptors and cell invasion:mechanisms of integrin-guided degradation of extracellular matrix. Cell. Mol. Life Sci.2000, 57(1):16-24.
    [15]Plow EF, Haas TK, Zhang L, et al. Ligand binding to integrins. J. Biol. Chem. 2000,275(29):21785-8.
    [16]Soto C, Castano EM, Frangione B, et al. The alpha-helical to beta-strand transition in the amino-terminal fragment of the amyloid beta-peptide modulates amyloid formation. J. Biol. Chem.1995,270(7):3063-7.
    [17]Tjernberg LO, Naslund J, Lindqvist F, et al. Arrest of beta-amyloid fibril formation by a pentapeptide ligand. J. Biol. Chem.1996,271(15):8545-8.
    [18]Reches M, Porat Y, Gazit E. Amyloid fibril formation by pentapeptide and tetrapeptide fragments of human calcitonin. J. Biol. Chem.2002, 277(38):35475-80.
    [19]Ioudina M, Uemura E. A three amino acid peptide, Gly-Pro-Arg, protects and rescues cell death induced by amyloid beta-peptide. Exp. Neurol.2003, 184(2):923-9.
    [20]El-Agnaf OMA, Paleologou KE, Greer B, et al. A strategy for designing inhibitors of alpha-synuclein aggregation and toxicity as a novel treatment for Parkinson's disease and related disorders. FASEB J.2004,18(9):1315-49.
    [21]Madine J, Doig AJ, Middleton DA. Design of an N-methylated peptide inhibitor of alpha-synuclein aggregation guided by solid-state NMR. J. Am. Chem. Soc.2008,130(25):7873-81.
    [22]Kyle S, Aggeli A, Ingham E, et al. Production of self-assembling biomaterials for tissue engineering. Trends Biotechnol.2009,27(7):423-33.
    [23]Berchtold NC, Cotman CW. Evolution in the conceptualization of dementia and Alzheimer's disease:Greco-Roman period to the 1960s. Neurobiol. Aging 1998,19(3):173-89.
    [24]Huang M, Yuan M, Zhang XY. Progress in the treatment of Alzheimer's disease. Clin. J. Med. Offic.2010,38(12):307-9.
    [25]Brookmeyer R, Johnson E, Ziegler-Graham K, et al. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement.2007,3(3):186-91.
    [26]Backman L, Jones S, Berger AK, et al. Multiple cognitive deficits during the transition to Alzheimer's disease. J. Intern. Med.2004,256(3):195-204.
    [27]Arnaiz E, Almkvist O. Neuropsychological features of mild cognitive impairment and preclinical Alzheimer's disease. Acta Neurol. Scand. Suppl. 2003,179(10):34-41.
    [28]Molsa PK, Marttila RJ, Rinne UK. Survival and cause of death in Alzheimer's disease and multi-infarct dementia. Acta Neurol. Scand.1986,74(2):103-7.
    [29]刘斌,王晓良.蛋白质组学在阿尔采末病中的研究进展[J].生理科学进展,2006,37(1):11-6.
    [30]Hardy J, Selkoe DJ. Medicine-The amyloid hypothesis of Alzheimer's disease:Progress and problems on the road to therapeutics. Science 2002, 297(5580):353-6.
    [31]Mizushima N. A beta generation in autophagic vacuoles. J. Cell Biol.2005, 171(1):15-7.
    [32]Selkoe DJ. Alzheimer's disease:Genes, proteins, and therapy. Physiol. Rev. 2001,81(2):741-66.
    [33]Selkoe DJ. Cell biology of the amyloid beta-protein precursor and the mechanism of Alzheimer's disease. Annu. Rev. Cell Biol.1994,10:373-403.
    [34]Plant LD, Boyle JP, Smith IF, et al. The production of amyloid beta peptide is a critical requirement for the viability of central neurons. J. Neurosci.2003, 23(13):5531-5.
    [35]Jarrett JT, Berger EP, Lansbury PT, Jr. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation:implications for the pathogenesis of Alzheimer's disease. Biochemistry 1993, 32(18):4693-7.
    [36]Luo XG, Weber GA, Zheng JL, et al. C1q-calreticulin induced oxidative neurotoxicity:relevance for the neuropathogenesis of Alzheimer's disease. J. Neuroimmunol.2003,135(1-2):62-71.
    [37]Kukar T, Prescott S, Eriksen JL, et al. Chronic administration of R-flurbiprofen attenuates learning impairments in transgenic amyloid precursor protein mice. BMC Neurosci.2007,8(54):8-54.
    [38]Jekabsone A, Mander PK, Tickler A, et al. Fibrillar beta-amyloid peptide A beta(1-40) activates microglial proliferation via stimulating TNF-alpha release and H2O2 derived from NADPH oxidase:a cell culture study. Journal of Neuroinflammation.2006,3(24):3-24.
    [39]Bellucci A, Luccarini F, Scali C, et al. Cholinergic dysfunction, neuronal damage and axonal loss in TgCRND8 mice. Neurobiol. Dis.2006, 23(2):260-72.
    [40]Reyes AE, Chacon MA, Dinamarca MC, et al. Acetylcholinesterase-A beta complexes are more toxic than A beta fibrils in rat hippocampus-Effect on rat beta-amyloid aggregation, laminin expression, reactive astrocytosis, and neuronal cell loss. Am. J. Pathol.2004,164(6):2163-74.
    [41]Forloni G, Chiesa R, Smiroldo S, et al. Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25-35. Neuroreport. 1993,4(5):523-6.
    [42]Loo DT, Copani A, Pike CJ, et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc. Natl. Acad. Sci. USA 1993, 90(17):7951-5.
    [43]Kim HS, Lee JH, Lee JP, et al. Amyloid beta peptide induces cytochrome c release from isolated mitochondria. Neuroreport.2002,13(15):1989-93.
    [44]Doig AJ. Peptide inhibitors of beta-amyloid aggregation. Curr. Opin. Drug Discovery Dev.2007,10(5):533-9.
    [45]Tomiyama T, Shoji A, Kataoka K, et al. Inhibition of amyloid beta protein aggregation and neurotoxicity by rifampicin:Its possible function as a hydroxyl radical scavenger. J. Biol. Chem.1996,271(12):6839-44.
    [46]Iversen L. Amyloid diseases-Small drugs lead the attack. Nature 2002, 417(6886):231-3.
    [47]Yan J-W, Li Y-P, Ye W-J, et al. Design, synthesis and evaluation of isaindigotone derivatives as dual inhibitors for acetylcholinesterase and amyloid beta aggregation. Biorg. Med. Chem.2012,20(8):2527-34.
    [48]Sun Y, Zhang G, Hawkes CA, et al. Synthesis of scyllo-inositol derivatives and their effects on amyloid beta peptide aggregation. Biorg. Med. Chem. 2008,16(15):7177-84.
    [49]Adessi C, Soto C. Beta-sheet breaker strategy for the treatment of Alzheimer's disease. Drug Deliv. Res.2002,56(2):184-93.
    [50]Soto C, Sigurdsson EM, Morelli L, et al. Beta-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis:implications for Alzheimer's therapy. Nat. Med.1998,4(7):822-6.
    [51]Permanne B, Adessi C, Saborio GP, et al. Reduction of amyloid load and cerebral damage in a transgenic mouse model of Alzheimer's disease by treatment with a beta-sheet breaker peptide. FASEB J.2002,16(6):860-7.
    [52]Chacon MA, Barria MI, Soto C, et al. beta-sheet breaker peptide prevents A beta-induced spatial memory impairments with partial reduction of amyloid deposits. Mol. Psychiatry.2004,9(10):953-61.
    [53]Ashmarin IP. Glyprolines in regulatory tripeptides. Neurochem. J.2007, 1(3):173-5.
    [54]柏秀娟,尚延昌,炜王,等.帕金森病的研究进展.现代生物医学进展[J].2010,10(1):178-81.
    [55]Katzenschlager R, Head J, Schrag A, et al. Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology 2008,71(7):474-80.
    [56]Savica R, Grossardt BR, Bower JH, et al. Incidence and distribution of atypical parkinsonism in Olmsted County Minnesota,1991-2005. Mov. Disord. 2012,27:S393-S4.
    [57]Schober A. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res.2004,318(1):215-24.
    [58]Lesage S, Brice A. Parkinson's disease:from monogenic forms to genetic susceptibility factors. Hum. Mol. Genet.2009,18:R48-R59.
    [59]Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature 1997,388(6645):839-40.
    [60]Lee S-J. Origins and effects of extracellular alpha-synuclein:Implications in Parkinson's disease. J. Mol. Neurosci.2008,34(1):17-22.
    [61]Lee VMY, Trojanowski JQ. Mechanisms of Parkinson's disease linked to pathological alpha-synuclein:New targets for drug discovery. Neuron.2006, 52(1):33-8.
    [62]Vamvaca K, Volles MJ, Lansbury PT, Jr. The First N-terminal Amino Acids of alpha-Synuclein Are Essential for alpha-Helical Structure Formation In Vitro and Membrane Binding in Yeast. J. Mol. Biol.2009,389(2):413-24.
    [63]Binolfi A, Lamberto GR, Duran R, et al. Site-specific interactions of Cu(Ⅱ) with alpha and b-synuclein:Bridging the molecular gap between metal binding and aggregation. J. Am. Chem. Soc.2008,35(130):11801-12.
    [64]Jackson MS, Lee JC. Identification of the minimal copper(Ⅱ)-binding a-synuclein sequence. Inorg. Chem.2009,19(48):9303-7.
    [65]Lee JC, Gray HB, Winkler JR. Copper(Ⅱ) binding to a-synuclein, the Parkinson's protein. J. Am. Chem. Soc.2008,22(130):6898-9.
    [66]Dudzik CG, Walter ED, Millhauser GL. Coordination Features and Affinity of the Cu2+ Site in the alpha-Synuclein Protein of Parkinson's Disease. Biochemistry (Mosc).2011,50(11):1771-7.
    [67]Lucas HR, Lee JC. Effect of dioxygen on copper(Ⅱ) binding to alpha-synuclein. J. Inorg. Biochem.2010,104(3):245-9.
    [68]Koo H-J, Lee H-J, Im H. Sequence determinants regulating fibrillation of human alpha-synuclein. Biochem. Biophys. Res. Commun.2008, 368(3):772-8.
    [69]Giasson BI, Murray IVJ, Trojanowski JQ, et al. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J. Biol. Chem.2001,276(4):2380-6.
    [70]Li WX, West N, Colla E, et al. Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations. Proc. Natl. Acad. Sci. USA 2005, 102(6):2162-7.
    [71]El-Agnaf OM, Jakes R, Curran MD, et al. Aggregates from mutant and wild-type alpha-synuclein proteins and NAC peptide induce apoptotic cell death in human neuroblastoma cells by formation of beta-sheet and amyloid-like filaments. FEBS Lett.1998,440(1-2):71-5.
    [72]Zibaee S, Jakes R, Fraser G, et al. Sequence determinants for amyloid fibrillogenesis of human alpha-synuclein. J. Mol. Biol.2007,374(2):454-64.
    [73]El-Agnaf OMA, Irvine GB. Review:Formation and properties of amyloid-like fibrils derived from alpha-synuclein and related proteins. J. Struct. Biol.2000,130(2-3):300-9.
    [74]Hashimoto M, Hsu LJ, Sisk A, et al. Human recombinant NACP/alpha-synuclein is aggregated and fibrillated in vitro:relevance for Lewy body disease. Brain Res.1998,799(2):301-6.
    [75]Wright JA, Wang X, Brown DR. Unique copper-induced oligomers mediate alpha-synuclein toxicity. FASEB J.2009,23(8):2384-93.
    [76]Ding TT, Lee SJ, Rochet JC, et al. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry.2002,41(32):10209-17.
    [77]Kirik D, Rosenblad C, Burer C, et al. Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. J. Neurosci.2002,22(7):2780-91.
    [78]Li HT, Lin DH, Luo XY, et al. Inhibition of alpha-synuclein fibrillization by dopamine analogs via reaction with the amino groups of alpha-synuclein. FEBS J.2005,272(14):3661-72.
    [79]Winklhofer KF. The parkin protein as a therapeutic target in Parkinson's disease. Expert Opin. Therap. Target.2007,11 (12):1543-52.
    [80]Clements CM, McNally RS, Conti BJ, et al. DJ-1, a cancer- and Parkinson's disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc. Natl. Acad. Sci. USA 2006,103(41):15091-6.
    [81]Klucken J, Shin Y, Masliah E, et al. Hsp70 reduces alpha-synuclein aggregation and toxicity. J. Biol. Chem.2004,279(24):25497-502.
    [82]Du HN, Li HT, Zhang F, et al. Acceleration of alpha-synuclein aggregation by homologous peptides. FEBS Lett.2006,580(15):3657-64.
    [83]Semino CE. Self-assembling peptides:From bio-inspired materials to bone regeneration. J. Dent. Res.2008,87(7):606-16.
    [84]Zhang S, Holmes T, Lockshin C, et al. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. USA 1993,90(8):3334-8.
    [85]Zhang SG. Emerging biological materials through molecular self-assembly. Biotechnol. Adv.2002,20(5-6):321-39.
    [86]Zhang SG, Yan L, Altman M, et al. Biological surface engineering:a simple system for cell pattern formation. Biomaterials.1999,20(13):1213-20.
    [87]Gupta M, Bagaria A, Mishra A, et al. Self-assembly of a dipeptide-containing conformationally restricted dehydrophenylalanine residue to form ordered nanotubes. Adv. Mater.2007,19(6):858-61.
    [88]Zhang S, Rich A. Direct conversion of an oligopeptide from a beta-sheet to an alpha-helix:a model for amyloid formation. Proc. Natl. Acad. Sci. USA 1997, 94(1):23-8.
    [89]Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol.2002,20(1):16-21.
    [90]Zhang SG. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol.2003,21 (10):1171-8.
    [91]Horii A, Wang X, Gelain F, et al. Biological Designer Self-Assembling Peptide Nanofiber Scaffolds Significantly Enhance Osteoblast Proliferation, Differentiation and 3-D Migration. Plos One.2007,2(2):1932-6203.
    [92]Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers:A versatile scaffold for the preparation of self-assembling materials. Proc. Natl. Acad. Sci. U SA 2002,99(8):5133-8.
    [93]Holmes TC, de Lacalle S, Su X, et al. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl. Acad. Sci. U S A 2000,97(12):6728-33.
    [94]Wu Y, Zheng Q, Du J, et al. Self-assembled IKVAV peptide nanofibers promote adherence of PC 12 cells. J. Huazhong Univ. Sci. Techn.2006, 26(5):594-6.
    [95]Silva GA, Czeisler C, Niece KL, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science.2004, 303(5662):1352-5.
    [96]Tysseling-Mattiace VM, Sahni V, Niece KL, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J. Neurosci.2008,28(14):3814-23.
    [97]Guo J, Su H, Zeng Y, et al. Reknitting the injured spinal cord by self-assembling peptide nanofiber scaffold. Nanomed. Nanotechn. Biology Med.2007,3(4):311-21.
    [98]Fung SY, Yang H, Chen P. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide. Colloids and Surfaces B.2007,55(2):200-11.
    [99]Zarzhitsky S, Rapaport H. The interactions between doxorubicin and amphiphilic and acidic beta-sheet peptides towards drug delivery hydrogels. J. Colloid Interface Sci.2011,360(2):525-31.
    [100]Ruan L, Zhang H, Luo H, et al. Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis. Proc. Natl. Acad. Sci. USA.2009,106(13):5105-10.
    [101]Naskar J, Banerjee A. Concentration Dependent Transformation of Oligopeptide based Nanovesicles to Nanotubes and an Application of Nanovesicles. Chem. Asian J.2009,4(12):1817-23.
    [102]Zhao Y, Tanaka M, Kinoshita T, et al. Nanofibrous scaffold from self-assembly of beta-sheet peptides containing phenylalanine for controlled release. J. Control. Release.2010,142(3):354-60.
    [103]Zhang L, Li N, Gao F, et al. Insulin Amyloid Fibrils:An Excellent Platform for Controlled Synthesis of Ultrathin Superlong Platinum Nanowires with High Electrocatalytic Activity. J. Am. Chem. Soc.2012,134(28):11326-9.
    [104]Wang Y, Cao L, Guan S, et al. Silver mineralization on self-assembled peptide nanofibers for long term antimicrobial effect. J. Mater. Chem.2012, 22(6):2575-81.
    [105]Scheibel T, Parthasarathy R, Sawicki G, et al. Conducting nanowires built by controlled self-assembly of amyloid fibers and selective metal deposition. Proc. Natl.Acad. Sci.U S A.2003,100(8):4527-32.
    [106]Reches M, Gazit E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 2003,300(5619):625-7.
    [107]Kim JH, Lee M, Lee JS, et al. Self-Assembled Light-Harvesting Peptide Nanotubes for Mimicking Natural Photosynthesis. Angew. Chem. Intl. Ed. 2012,51(2):517-20.
    [108]Yan Y, Wang R, Qiu X, et al. Hexagonal Superlattice of Chiral Conducting Polymers Self-Assembled by Mimicking beta-Sheet Proteins with Anisotropic Electrical Transport. J. Am. Chem. Soc.2010,132(34):12006-12.
    [109]Ryu J, Park CB. Synthesis of Diphenylalanine/Polyaniline Core/Shell Conducting Nanowires by Peptide Self-Assembly. Angew. Chem. Intl. Ed. 2009,48(26):4820-3.
    [110]Beqa L, Fan Z, Singh AK, et al. Gold Nano-Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells. ACS Appl. Mater. Interfaces.2011,3(9):3316-24.
    [111]Barnes KR, Lippard SJ. Cisplatin and related anticancer drugs:Recent advances and insights. Met. Ions Biol. Sys.2004,42(2):143-77.
    [112]Kerman K, Kraatz H-B. Electrochemical probing of HIV enzymes using ferrocene-conjugated peptides on surfaces. Analyst 2009,134(12):2400-4.
    [113]Dive D, Biot C. Ferrocene conjugates of chloroquine and other antimalarials: the development of ferroquine, a new antimalarial. Chemmedchem.2008, 3(3):383-91.
    [114]Metzler-Nolte N. Medicinal applications of metal-peptide bioconjugates. Chimia 2007,61(11):736-41.
    [115]Ornelas C. Application of ferrocene and its derivatives in cancer research. New J. Chem.2011,35(10):1973-85.
    [116]Gasser G, Ott I, Metzler-Nolte N. Organometallic Anticancer Compounds. J. Med. Chem.2011,54(1):3-25.
    [117]Duivenvoorden WCM, Liu YN, Schatte G, et al. Synthesis of redox-active ferrocene pyrazole conjugates and their cytotoxicity in human mammary adenocarcinoma MCF-7 cells. Inorg. Chim. Acta.2005,358(11):3183-9.
    [118]Caldwell G, Meirim MG, Neuse EW, et al. Antineoplastic Activity of Polyaspartamide-Ferrocene Conjugates. Appl. Organomet. Chem.1998, 12(12):793-9.
    [119]Concepcion Gimeno M, Goitia H, Laguna A, et al. Conjugates of ferrocene with biological compounds. Coordination to gold complexes and antitumoral properties. J. Inorg. Biochem.2011,105(11):1373-82.
    [120]Tian YP, Sun ML, Ruan BF, et al. Synthesis, crystal structures, electrochemical studies and anti-tumor activities of three polynuclear organotin(IV) carboxylates containing ferrocenyl moiety. J. Organomet. Chem. 2011,696(20):3180-5.
    [121]Ishikawa A, Zhou YM, Kambe N, et al. Enhancement of star vector-based gene delivery to endothelial cells by addition of RGD-peptide. Bioconj. Chem. 2008,19(2):558-61.
    [122]Ryu EK, Choi N, Kim SM, et al. The use of the fusion protein RGD-HSA-TIMP2 as a tumor targeting imaging probe for SPECT and PET. Biomaterials.2011,32(29):7151-8.
    [123]Dal Pozzo A, Esposito E, Ni M, et al. Conjugates of a Novel 7-Substituted Camptothecin with RGD-Peptides as alpha(v)beta(3) Integrin Ligands:An Approach to Tumor-Targeted Therapy. Bioconj. Chem.2010,21(11):1956-67.
    [124]Liu Z, Jia B, Shi J, et al. Tumor Uptake of the RGD Dimeric Probe (99m)Tc-G(3)-2P(4)-RGD2 is Correlated with Integrin alpha(v)beta(3) Expressed on both Tumor Cells and Neovasculature. Bioconj. Chem.2010, 21(3):548-55.
    [125]Liu Z, Niu G, Shi J, et al. (68)Ga-labeled cyclic RGD dimers with Gly(3) and PEG(4) linkers:promising agents for tumor integrin alpha(v)beta(3) PET imaging. Eur. J. Nucl. Med. Mol. Imag.2009,36(6):947-57.
    [126]Shi J, Wang L, Kim Y-S, et al. Improving Tumor Uptake and Excretion Kinetics of (99m)Tc-Labeled Cyclic Arginine-Glycine-Aspartic (RGD) Dimers with Triglycine Linkers. J. Med. Chem.2008,51(24):7980-90.
    [127]Wei C-W, Peng Y, Zhang L, et al. Synthesis and evaluation of ferrocenoyl pentapeptide (Fc-KLVFF) as an inhibitor of Alzheimer's A beta(1-42) fibril formation in vitro. Bioorg. Med. Chem. Lett.2011,21(19):5818-21.
    [128]Yang DC, Fan L, Zhong YG Synthesis of protected RGD tripeptide. Chin. J. Org Chem.2003,23(5):493-8.
    [129]Petrovski Z, de Matos M, Braga SS, et al. Synthesis, characterization and antitumor activity of 1,2-disubstituted ferrocenes and cyclodextrin inclusion complexes. J. Organomet. Chem.2008,693(4):675-84.
    [130]Popova LV, Babin VN, Belousov YA, et al. Antitumor effects of binuclear ferrocene derivatives. Appl. Organomet. Chem.1993,7(2):85-94.
    [131]Meunier-Prest R, Bouyon A, Rampazzi E, et al. Electrochemical probe for the monitoring of DNA-protein interactions. Biosensors Bioelectron.2010, 25(12):2598-602.
    [132]Chen XY, Liu ZF, Liu SL, et al. Noninvasive imaging of tumor integrin expression using (18)F-labeled RGD dimer peptide with PEG(4) linkers. Eur. J. Nucl. Med. Mol. Imag.2009,36(8):1296-307.
    [133]Xiong XB, Huang Y, Lu WL, et al. Enhanced intracellular uptake of sterically stabilized liposomal Doxorubicin in vitro resulting in improved antitumor activity in vivo. Pharm. Res.2005,22(6):933-9.
    [134]Yang WH, Meng L, Wang H, et al. Inhibition of proliferative and invasive capacities of breast cancer cells by arginine-glycine-aspartic acid peptide in vitro. Oncol. Rep.2006,15(1):113-7.
    [135]Nguyen A, Marsaud V, Bouclier C, et al. Nanoparticles loaded with ferrocenyl tamoxifen derivatives for breast cancer treatment. Int. J. Pharm.2008, 347(1-2):128-35.
    [136]Tabert MH, Liu XH, Doty RL, et al. A 10-item smell identification scale related to risk for Alzheimer's disease. Ann. Neurol.2005,58(1):155-60.
    [137]Allen PB, Chiu DT. Alzheimer's disease protein A beta(1-42) does not disrupt isolated synaptic vesicles. Biochimica Et Biophysica Acta 2008, 1782(5):326-34.
    [138]Parker MH, Chen R, Conway KA, et al. Synthesis of (-)-5,8-dihydroxy-3R-methyl-2R-(dipropylamino)-1,2,3,4-tetrahydronaphtha lene:An inhibitor of beta-amyloid(1-42) aggregation. Biorg. Med. Chem. 2002,10(11):3565-9.
    [139]Biot C, Dessolin J, Ricard I, et al. Easily synthesized antimalarial ferrocene triazacyclononane quinoline conjugates. J. Organomet. Chem.2004, 689(25):4678-82.
    [140]Biot C, Taramelli D, Forfar-Bares I, et al. Insights into the mechanism of action of ferroquine. Relationship between physicochemical properties and antiplasmodial activity. Mol. Pharm.2005,2(3):185-93.
    [141]Top S, Vessieres A, Leclercq G, et al. Synthesis, biochemical properties and molecular modelling studies of organometallic specific estrogen receptor modulators (SERMs), the ferrocifens and hydroxyferrocifens:Evidence for an antiproliferative effect of hydroxyferrocifens on both hormone-dependent and hormone-independent breast cancer cell lines. Chem. Eur. J.2003,9(21):5223-36.
    [142]Barisic L, Rapic V, Metzler-Nolte N. Incorporation of the unnatural organometallic amino acid 1'-aminoferrocene-1-carboxylic acid (Fca) into oligopeptides by a combination of Fmoc and Boc solid-phase synthetic methods. Eur. J. Inorg. Chem.2006,6(20):4019-21.
    [143]Barisic L, Rapic W, Kovac V. Ferrocene compounds. Efficient syntheses of 1 '-aminoferrocene-1-carboxylic acid derivatives. Croat. Chem. Acta.2002, 75(1):199-210.
    [144]Liu X-F, Li X-Q, Ye W-L, et al. Synthesis of Ferrocenoyl-Labeled Tripeptide Fc-Gly-Pro-Arg(NO2)-OMe and Its Interaction with Cu(Ⅱ). Acta Phys-Chim. Sin.2010,26(9):2381-6.
    [145]LeVine H. Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol.1999,309(274-84.
    [146]Sciarretta KL, Gordon DJ, Meredith SC. Peptide-based inhibitors of amyloid assembly. In:Kheterpal I, Wetzel R, editors. Methods in Enzymology2006. p. 273-312.
    [147]Pallitto MM, Ghanta J, Heinzelman P, et al. Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry (Mosc).1999,38(12):3570-8.
    [148]Lowe TL, Strzelec A, Kiessling LL, et al. Structure-function relationships for inhibitors of beta-amyloid toxicity containing the recognition sequence KLVFF. Biochemistry.2001,40(26):7882-9.
    [149]Austen BM, Paleologou KE, Ali SAE, et al. Designing peptide inhibitors for oligomerization and toxicity of Alzheimer's beta-amyloid peptide. Biochemistry 2008,47(7):1984-92.
    [150]Findeis MA, Lee JJ, Kelley M, et al. Characterization of cholyl-leu-val-phe-phe-ala-OH as an inhibitor of amyloid beta-peptide polymerization. Amyloid 2001,8(4):231-41.
    [151]Crivori P, Cruciani G, Carrupt PA, et al. Predicting blood-brain barrier permeation from three-dimensional molecular structure. J. Med. Chem.2000, 43(11):2204-16.
    [152]Minick DJ, Frenz JH, Patrick MA, et al. A comprehensive method for determining hydrophobicity constants by reversed-phase high-performance liquid chromatography. J. Med. Chem.1988,31(10):1923-33.
    [153]Pinto A, Hoffmanns U, Ott M, et al. Modification with Organometallic Compounds Improves Crossing of the Blood-Brain Barrier of Leu(5)-Enkephalin Derivatives in an In Vitro Model System. ChemBioChem.2009, 10(11):1852-60.
    [154]Fink AL. The aggregation and fibrillation of a-synuclein. Acc. Chem. Res. 2006,9(39):628-34.
    [155]Spillantini MG, Crowther RA, Jakes R, et al. a-synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. U. S. A.1998, 11(95):6469-73.
    [156]Gordon DJ, Sciarretta KL, Meredith SC. Inhibition of beta-amyloid(40) fibrillogenesis and disassembly of beta-amyloid(40) fibrils by short beta-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry (Mosc).2001,40(28):8237-45.
    [157]Choi MY, Kim YS, Lim D, et al. The hexapeptide PGVTAV suppresses neurotoxicity of human alpha-synuclein aggregates. Biochem. Biophys. Res. Commun.2011,408(2):334-8.
    [158]Outeiro TF, Putcha P, Tetzlaff JE, et al. Formation of Toxic Oligomeric alpha-Synuclein Species in Living Cells. Plos One 2008,3(4):1932-6203.
    [159]El-Agnaf OMA, Salem SA, Paleologou KE, et al. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson's disease. FASEB J.2006,20(3):419-25.
    [160]Dexter DT, Wells FR, Lees AJ, et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease. J. Neurochem.1989,52(6):1830-6.
    [161]Pall HS, Williams AC, Blake DR, et al. Raised cerebrospinal-fluid copper concentration in Parkinson's disease. Lancet.1987,2(8553):238-41.
    [162]Binolfi A, Rasia RM, Bertoncini CW, et al. Interaction of alpha-synuclein with divalent metal ions reveals key differences:A link between structure, binding specificity and fibrillation enhancement. J. Am. Chem. Soc.2006, 128(30):9893-901.
    [163]Humphrey JM, Chamberlin AR. Chemical Synthesis of Natural Product Peptides:Coupling Methods for the Incorporation of Noncoded Amino Acids into Peptides. Chem. Rev.1997,97(20):2243-66.
    [164]Zhou B, Hao Y, Wang C, et al. Conversion of natively unstructured alpha-synuclein to its alpha-helical conformation significantly attenuates production of reactive oxygen species. J. Inorg. Biochem.2013,118:68-73.
    [165]Castellani RJ, Siedlak SL, Perry G, et al. Sequestration of iron by Lewy bodies in Parkinson's disease. Acta Neuropathol.2000,2(100):111-4.
    [166]Gaeta A, Hider RC. The crucial role of metal ions in neurodegeneration:the basis for a promising therapeutic strategy. Br. J. Pharmacol.2005, 8(146):1041-59.
    [167]Khan A, Ashcroft AE, Higenell V, et al. Metals accelerate the formation and direct the structure of amyloid fibrils of NAC. J. Inorg. Biochem.2005, 99(9):1920-7.
    [168]Rasia RM, Bertoncini CW, Marsh D, et al. Structural characterization of copper(Ⅱ) binding to alpha-synuclein:Insights into the bioinorganic chemistry of Parkinson's disease. Proc. Natl. Acad. Sci. U S A 2005,102(12):4294-9.
    [169]Liu L, Jiang D, McDonald A, et al. Copper Redox Cycling in the Prion Protein Depends Critically on Binding Mode. J. Am. Chem. Soc.2011, 133(31):12229-37.
    [170]Wang C, Liu L, Zhang L, et al. Redox reactions of the a-synuclein-Cu2+ complex and their effects on neuronal cell viability. Biochemistry.2010, 49(37):8134-42.
    [171]Jiang D, Men L, Wang J, et al. Redox reactions of copper complexes formed with different b-amyloid peptides and their neuropathalogical relevance. Biochemistry.2007,32(46):9270-82.
    [172]Jao CC, Hegde BG, Chen J, et al. Structure of membrane-bound alpha-synuclein from site-directed spin labeling and computational refinement. Proc. Natl. Acad. Sci. U S A 2008,105(50):19666-71.
    [173]Lucas HR, Lee JC. Copper(Ⅱ) enhances membrane-bound alpha-synuclein helix formation. Metallomics.2011,3(3):280-3.
    [174]Nadal RC, Rigby SEJ, Viles JH. Amyloid beta-Cu2+ Complexes in both Monomeric and Fibrillar Forms Do Not Generate H2O2 Catalytically but Quench Hydroxyl Radicals. Biochemistry.2008,47(44):11653-64.
    [175]Jayaraman G, Kumar TK, Arunkumar AI, et al.2,2,2-Trifluoroethanol induces helical conformation in an all beta-sheet protein. Biochem. Biophys. Res. Commun.1996,222(1):33-7.
    [176]Munishkina LA, Phelan C, Uversky VN, et al. Conformational behavior and aggregation of a-synuclein in organic solvents:Modeling the effects of membranes. Biochemistry.2003,9(42):2720-30.
    [177]Homoelle BJ, Beck WF. Solvent accessibility of the phycocyanobilin chromophore in the a subunit of C-phycocyanin:Implications for a molecular mechanism for inertial protein-matrix solvation dynamics. Biochemistry.1997,42(36):12970-5.
    [178]Hong L, Simon JD. Binding of Cu(Ⅱ) to Human alpha-Synucleins: Comparison of Wild Type and the Point Mutations Associated with the Familial Parkinson's Disease. J. Phys. Chem. B.2009,113(28):9551-61.
    [179]Bard AJ, Faulkner LR. Electrochemical methods. Fundamentals and applications. New York:John Wiley & Sons; 2001.
    [180]Binolfi A, Valiente-Gabioud AA, Duran R, et al. Exploring the structural details of Cu(I) binding to a-synuclein by NMR spectroscopy. J. Am. Chem. Soc.2011,2(133):194-6.
    [181]Fjorback AW, Varming K, Jensen PH. Determination of a-synuclein concentration in human plasma using ELISA Scand. J. Clin. Lab. Invest.2007, 4(67):431-5.
    [182]Madsen E, Gitlin JD. Copper and iron disorders of the brain. Annu. Rev. Neurosci.2007,30:317-37.
    [183]Wernimont AK, Yatsunyk LA, Rosenzweig AC. Binding of copper(Ⅰ) by the Wilson disease protein and its copper chaperone. J. Biol. Chem.2004, 13(279):12269-76.
    [184]Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol. Cell.2007,26(1):1-14.
    [185]Ye HC, Crooks RM. Electrocatalytic O2 reduction at glassy carbon electrodes modified with dendrimer-encapsulated Pt nanoparticles. J. Am. Chem. Soc. 2005,127(13):4930-4.
    [186]Wang C, Daimon H, Lee Y, et al. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc.2007, 129(22):6974-5.
    [187]Hu X, Wang T, Dong S. Rapid synthesis of cubic Pt nanoparticles and their use for the preparation of Pt nanoagglomerates. J. Nanosci. Nanotechn.2006, 6(7):2056-61.
    [188]Lai H-Y, Chen C-H. Highly sensitive room-temperature CO gas sensors:Pt and Pd nanoparticle-decorated In2O3 flower-like nanobundles. J. Mater. Chem. 2012,22(26):13204-8.
    [189]Huang H, Ong CY, Guo J, et al. Pt surface modification of SnO2 nanorod arrays for CO and H2 sensors. Nanoscale,2010,2(7):1203-7.
    [190]Hu FP, Shen PK, Li YL, et al. Highly Stable Pd-Based Catalytic Nanoarchitectures for Low Temperature. Fuel Cells. Fuel Cells 2008, 8(6):429-35.
    [191]Subhramannia M, Pillai VK. Shape-dependent electrocatalytic activity of platinum nanostructures. J. Mater. Chem.2008,18(48):5858-70.
    [192]Cademartiri L, Ozin GA. Ultrathin Nanowires-A Materials Chemistry Perspective. Adv. Mater.2009,21(9):1013-20.
    [193]Yang W, Wang X, Yang F, et al. Carbon nanotubes decorated with Pt nanocubes by a noncovalent functionalization method and their role in oxygen reduction. Adv. Mater.2008,20(13):2579-87.
    [194]Li X, Liu Y, Fu L, et al. Efficient synthesis of carbon nanotube-nanoparticle hybrids. Adv. Funct. Mater.2006,16(18):2431-7.
    [195]Han X, Li Y, Deng Z. DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays. Adv. Mater.2007, 19(11):1518.
    [196]Jiang LQ, Gao L. Modified carbon nanotubes:an effective way to selective attachment of gold nanoparticles. Carbon 2003,41(15):2923-9.
    [197]Guo S, Dong S, Wang E. Gold/platinum hybrid nanoparticles supported on multiwalled carbon nanotube/silica coaxial nanocables:Preparation and application as electrocatalysts for oxygen reduction. J. Phys. Chem. C.2008, 112(7):2389-93.
    [198]Guo S, Dong S, Wang E. Constructing carbon-nanotube/metal hybrid nanostructures using homogeneous TiO2 as a spacer. Small.2008,4(8):1133-8.
    [199]Cui H, Webber MJ, Stupp SI. Self-Assembly of Peptide Amphiphiles:From Molecules to Nanostructures to Biomaterials. Biopolymers.2010,94(1):1-18.
    [200]Kumar P, Pillay V, Modi G, et al. Self-assembling peptides:implications for patenting in drug delivery and tissue engineering. Recent Pat. Drug Deliv. Formul.2011,5(1):24-51.
    [201]Zhang L, Yagnik G, Peng Y, et al. Kinetic Studies of Inhibition of the Aβ(1-42) Aggregation Using a Ferrocene-tagged β-Sheet Breaker Peptide. Anal. Biochem.2003,2(434):292-7.
    [202]Krysmann MJ, Castelletto V, McKendrick JE, et al. Self-assembly of peptide nanotubes in an organic solvent. Langmuir.2008,24(15):8158-62.
    [203]Castelletto V, Hamley IW, Harris PJF, et al. Influence of the Solvent on the Self-Assembly of a Modified Amyloid Beta Peptide Fragment. I. Morphological Investigation. J. Phys. Chem. B.2009,113(29):9978-87.
    [204]Castelletto V, Hamley IW, Harris PJF. Self-assembly in aqueous solution of a modified amyloid beta peptide fragment. Biophys. Chem.2008,138(2):29-35.
    [205]Correa-Duarte MA, Liz-Marzan LM. Carbon nanotubes as templates for one-dimensional nanoparticle assemblies. J. Mater. Chem.2006,16(1):22-5.
    [206]Correa-Duarte MA, Sobal N, Liz-Marzan LM, et al. Linear assemblies of silica-coated gold nanoparticles using carbon nanotubes as templates. Adv. Mater.2004,16(23-24):2179-84.
    [207]Jin YD, Shen Y, Dong SJ. Electrochemical design of ultrathin platinum-coated gold nanoparticle monolayer films as a novel nanostructured electrocatalyst for oxygen reduction. J. Phys. Chem. B.2004,108(24):8142-7.
    [208]Song YJ, Challa SR, Medforth CJ, et al. Synthesis of peptide-nanotube platinum-nanoparticle composites. Chem. Commun.2004,9:1044-5.
    [209]Das TK, Prusty S. Review on Conducting Polymers and Their Applications. Polym. Plas. Techn. Eng.2012,51(14):1487-500.
    [210]Jiang L, Chi L. Strategies for High Resolution Patterning of Conducting Polymers. Lithography.2010,4(55):645-56.
    [211]Long Y-Z, Li M-M, Gu C, et al. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci.2011,36(10):1415-42.
    [212]Tran HD, Li D, Kaner RB. One-Dimensional Conducting Polymer Nanostructures:Bulk Synthesis and Applications. Adv. Mater.2009, 21(14-15):1487-99.
    [213]Lu X, Zhang W, Wang C, et al. One-dimensional conducting polymer nanocomposites:Synthesis, properties and applications. Prog. Polym. Sci. 2011,36(5):671-712.
    [214]Xia L, Wei Z, Wan M. Conducting polymer nanostructures and their application in biosensors. J. Colloid Interface Sci.2010,341(1):1-11.
    [215]Nickels P, Dittmer WU, Beyer S, et al. Polyaniline nanowire synthesis templated by DNA. Nanotechn.2004,15(11):1524-9.
    [216]Datta B, Schuster GB, McCook A, et al. DNA-directed assembly of polyanilines:Modified cytosine nucleotides transfer sequence programmability to a conjoined polymer. J. Am. Chem. Soc.2006,128(45): 14428-9.
    [217]Zou D, Cao Y, Qin M, et al. Formation of alpha-helix-based twisted ribbon-like fibrils from ionic-complementary peptides. Chem. Commun.2011, 47(26):7413-5.
    [218]Madine J, Davies HA, Shaw C, et al. Fibrils and nanotubes assembled from a modified amyloid-beta peptide fragment differ in the packing of the same beta-sheet building blocks. Chem. Commun.2012,48(24):2976-8.
    [219]Liu L, Busuttil K, Zhang S, et al. The role of self-assembling polypeptides in building nanomaterials. PCCP.2011,13(39):17435-44.
    [220]Moon K-S, Lee E, Lim Y-b, et al. Bioactive molecular sheets from self-assembly of polymerizable peptides. Chem. Commun.2008,34:4001-3.
    [221]Zemel H, Quinn JF. U.S. Pat.5.420.237A.1995.
    [222]Liu W, Cholli AL, Nagarajan R, et al. The role of template in the enzymatic synthesis of conducting polyaniline. J. Am. Chem. Soc.1999,121(49):11345-11355.
    [223]Liu W, Kumar J, Tripathy S, et al. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc.1999,121(1):71-8.
    [224]Jin Z, Su YX, Duan YX. A novel method for polyaniline synthesis with the immobilized horseradish peroxidase enzyme. Synth. Met.2001, 122(2):237-42.
    [225]Chance B. The Properties of the Enzyme-Substrate Compounds of Horse-Radish and Lacto-Peroxidase. Science.1949,109(2826):204-8.
    [226]He S, Song B, Li D, et al. A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis. Adv. Funct. Mater.2010,20(3):453-9.
    [227]Guo Y, Deng L, Li J, et al. Hemin-Graphene Hybrid Nanosheets with Intrinsic Peroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism. ACS Nano.2011,5(2):1282-90.
    [228]Gao Z, Rafea S, Lim LH. Detection of nucleic acids using enzyme-catalyzed template-guided deposition of polyaniline. Adv. Mater.2007,19(4):602-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700