用户名: 密码: 验证码:
基于无线传感器网络的大坝安全监测系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前的大坝安全监测系统主要采用“有线”方式,具有采集信号准确、抗干扰性好、产品系列化的特点,但利用有线传感器组成的监测网络布线量大、维护费用高,甚至在一些结构中无法实现布线。无线传感器网络(Wireless Sensor Network, WSN)具有微型化、集成化、节省安装时间和维护费用等优点,可以弥补上述不足。为此本文将WSN应用到大坝安全监测系统当中,并对大坝监测环境中的传感器及节点部署和数据融合等关键技术进行了研究。论文的主要内容包括:
     (1)以满足大坝采集信号传输距离远、功耗低的需求为目标,构建一种基于分簇无线传感器网络的大坝安全监测系统(Wireless Sensor Network for Dam Safety, DS-WSN)。该系统采用分簇和多跳的网络结构,保证了系统运行的高可靠性和低功耗,系统级ZigBee模块JN5139的应用使传感器节点具有体积小、通信距离远和功耗低的特点。同时,该系统通过汇聚节点可以与互联网和GPRS网络进行连接,以方便数据无线远程传输。与典型无线传感器网络结构比较结果表明,DS-WSN可靠性更高、功耗更低。
     (2)以大坝监测特点为依据,研究关键断面的确定方法和基于图论理论的传感器及传感器节点两级部署策略。首先采用有限元分析解决关键断面的确定问题,以满足大坝环境节点部署少而精的要求。然后以覆盖效率为目标,研究基于三圆全覆盖理论的大坝关键断面传感器覆盖策略,并利用空洞边界条件,基于最小覆盖圆理论,对覆盖空洞进行修复,以保证大坝断面传感器全覆盖。最后以信号衰减和屏蔽为约束条件,在监测廊道结构图的基础上,提出基于最大通信距离的连通点集生成骨干网的算法,并深入研究骨干网备用节点的冗余部署,可以有效解决大坝环境中传感器节点连通性问题。
     (3)在DS-WSN基础上,以大坝监测数据需求为目标,以无线传感器节点处理能力为约束条件,提出大坝同质+异质分级数据融合机制。簇成员和簇首节点的同质融合采用简单的阈值判断机制和加权融合算法有效减少数据传输量;与汇聚节点相连的PC机或计算机管理中心的异质融合采用基于主成分分析法的进化神经网络对大坝安全进行预测预报,该模型与传统神经网络预测模型相比,预测精度更高,运行时间更短。
     (4)开发了DS-WSN监测管理系统,可以实现对各种大坝监测数据的分析和管理,并对DS-WSN进行了监测实验。结果表明DS-WSN组网能力比较强、信号连通性好;所采集的数据传输可靠、精度很高;节点寿命较长,能够满足大坝安全监测需求。
Currently, the wired acquisition is mainly used in the dam monitoring system, and it has the characteristics of accurate signals, good anti-interference, and series product. Otherwise, the wired sensor monitoring network has some shortcoming:large wiring, high maintenance costs, and inability of wiring in some specified structures. In this paper, wireless sensor network is used to the dam safety monitoring based on its advantage of the miniaturization, integration, little installation time and low maintenance costs, and key technologies of sensors as well as nodes deployment and data fusion in wireless sensor networks for dam safety are studied. The main contents of the paper include:
     (1) In order to guarantee the long transmission distance of dam signals and low power consumption, Wireless Sensor Network for Dam Safety (DS-WSN) is presented making full use of the advantages of clustering and multi-hop. The clustering and multi-hop network structure are used in the system, which ensures high reliability and low power consumption. Besides, the JN5139ZigBee modules are applied, which guarantee that the sensor nodes have the characteristics of small size, long transmission distance and low power consumption. Furthermore, the system can connect to the Internet and the GPRS network through the sink node, which facilitates the remote transmission of the wireless signals. DS-WSN has higher reliability and lower power consumption than the typical wireless sensor network architecture.
     (2) According to the dam monitoring characterizes, the key sections are determined, and the deployment of sensors and sensor nodes is studied based on the graph theory. In order to ensure that fewer nodes can measure effectively, the finite element analysis method is adopted to determine the key sections. To ensure high cover efficiency, coverage strategies of the sensors on the dam key sections based on the full coverage theory of the three circles are researched, and based on the minimum coverage circle theory, the coverage holes are repaired by take advantage of the empty boundary conditions, which ensures full coverage of the key sections. In order to guarantee the effective transmission, on the basis of consideration of the influencing factors such as signal attenuation and shielding, according to the monitoring corridor topology diagram, a backbone network with connected set is raised based on the maximum communication distance. Besides, the redundancy deployment of the backbone network is considered to improve the sensor nodes connectivity in the dam environment.
     (3) On the basis of DS-WSN, to get proper monitoring data, the data fusion is researched according to data processing capacity of the dam sensors. The data fusion is divided into homogenous fusion and asynchronous fusion. Homogeneous fusion occurs mainly in the cluster member nodes and the cluster head, and a threshold determination mechanism and the adaptive weighted fusion algorithm are applied to reduce the amount of data transmission. While asynchronous fusion mainly occurs in computer management center or PC linked on the sink node, and an evolutionary neural network based on principal components analysis is used to forecast the dam safety. The comparison between the prediction model and the traditional neural networks indicates that the model predicts accurate, and is time-saving.
     (4) A dam safety monitoring and management system is developed to analyze and manage all kinds of the monitoring data. The monitoring experiment of DS-WSN shows that DS-WSN can network normally, the data transmission is reliable, the collected data are precise, the lives of the WSN nodes are long, which can meet the requirement of the dam safety monitoring.
引文
[1]中华人民共和国水利部.全国水利发展统计公报(2010年)[G].北京:中国水利水电出版社,2011.
    [2]王德厚.大坝安全与监测[J].水利电力科技,2006,32(1):1-9.
    [3]乔静.基于ZIGBEE的大坝安全监测系统设计[D]:(硕士学位论文).大连:大连理工大学,2012.
    [4]方卫华,王润英.大坝安全监测自动化的现状与展望[J].水利技术监督,2000,8(5):25-27.
    [5]Spencer B F. Opportunities and Challenges for smart sensing technology [C]. Proceedings of the 1st International Conference on Structural Health Monitoring and Intelligent Infrastructure, Tokoyo,Japan,2003:65-71.
    [6]汪秀丽.国外大坝安全管理[J].水利电力科技,2006,32(1):10-19.
    [7]赵志仁,徐锐.国内外大坝安全监测技术发展现状与展望[J].水电自动化与大坝监测,2010,34(5):52-57.
    [8]李端有,王志旺.水库大坝安全管理及发展动向分析[J].中国水利,2007,(6):7-9.
    [9]邵乃晨.大坝安全监测自动化进展和发展前景[J].大坝观测与土木测试,1993,17(4):4-8.
    [10]波纳尔迪P.意大利大坝监测自动化的发展[J].水利水电快报,1997,18(23):18-21.
    [11]赵全麟.意大利的大坝安全自动监测系统[J].人民长江,1991,22(4):67-72.
    [12]郦能惠.土石坝安全监测分析评估预报系统[M].北京:中国水利水电出版社,2003.
    [13]储海宁.我国大坝安全监控自动化的十年进展[J].人民长江,1991,22(4):1-10.
    [14]叶立秋.美国大坝安全和监测概况—中国水力发电工程学会组团访美纪实[J].水电自动化与大坝监测,1993,17(3):24-27.
    [15]方卫华.国内外水库安全管理与大坝安全监测现状与展望[J].水利水文自动化,2008,(4):5-10.
    [16]Dang N H, Rao V S. Embedded Systems for the Assessment of Structural Damages[R]. NDE for Health Monitoring and Diagnostics, San Diego,2002:4701-4718.
    [17]Amaravadi V, Rao V S, Mitchell K, et al. Structural Integrity Monitoring of Composite Patch Repairs Using Wavelet Analysis and Neural Network[R]. NDE for Health Monitoring and Diagnostics, San Diego,2002:4601-4617.
    [18]Inaudi D. Development of reusable software components for monitering data management,visualization and analysis[R]. Smart Structures and Materials, San Diego,2002: 4696-4702.
    [19]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评[J].地震工程与工程振动,2002,22(2):82-90.
    [20]Loh C H, Chen C H, Hsu T Y. Application of advanced statistical methods for extracting long-term trends in static monitoring data from an arch dam[J]. Structural Health Monitoring, 2011,10(6):587-601.
    [21]Serra C, Batista A L, Tavares A. Creep of dam concrete evaluated from laboratory and in situ tests[J]. Strain,2012,48:241-25.
    [22]牛运光.我国大坝安全监测的现状和建议[J].东北水利水电,1991,(4):16-19.
    [23]顾冲时,吴中如.大坝安全监测专家系统的结构及知识工程[J].水利技术监督,1998,6(1):36-40.
    [24]沈振中,吴中如,温志萍,等.二滩拱坝安全监测在线监控系统[J].水利水电科技进展,2000,20(3):33-35,66.
    [25]杨杰,吴中如.大坝安全监控的国内外研究现状与发展[J].西安理工大学学报,2002,18(1):26-30.
    [26]孙鸿敏,李宏男.土木工程结构健康监测研究进展[J].防灾减灾工程学报,2003,23(3):92-98.
    [27]王建,顾冲时,吴中如.大坝安全监控专家系统中的关键问题评判方法[J].水利学报,2004,(7):1-5.
    [28]李婷婷,吴中如.大坝群在线安全监控管理决策系统[J].水电能源科学,2005,23(5):58-60.
    [29]李雪红,徐洪钟,顾冲时,等.基于小波和相空间重构的裂缝时变规律研究[J].水利学报,2007,38(2):250-255.
    [30]马福恒,向衍,吴中如.土石坝渗流警兆指标体系及拟定方法研究[J].人民黄河,2007,29(3):64-65.
    [31]Xi G Y, Yue J P, Zhou B X, et al. Application of an artificial immune algorithm on a statistical model of dam displacement[J]. Computers and Mathematics with Applications,2011,62: 3980-3986.
    [32]Xu C, Yue D J, Deng C F. Hybrid GA/SIMPLS as alternative regression model in dam deformation analysis[J]. Engineering Applications of Artificial Intelligence,2012,25:468-475.
    [33]朱济祥.李家峡高拱坝安全监控模型与监控指标研究[D]:(博士学位论文).天津:天津大学,2007.
    [34]杜建国,林皋,胡志强.非均质无限地基上高拱坝的动力响应分析[J].岩石力学与工程学报,2006,25(s2):4104-4110.
    [35]杜荣强,林皋,胡志强.混凝土重力坝动力弹塑性损伤安全评价[J].水利学报,2006,37(9):1056-1064.
    [36]刘德志,李俊杰,许青.基于Internet-Intranet的火电厂贮灰坝自动化安全监测系统[J].长沙电力学院学报(自然科学版),2005,20(3):27-32.
    [37]刘德志,李俊杰.大坝安全监测资料的非线性检验[J].应用基础与工程科学学报,2006,14(1):84-92.
    [38]刘德志,李俊杰.土石坝安全监测软件系统设计与实现[J].大连理工大学学报,2006,46(3):407-412.
    [39]欧进萍,关新春.土木工程智能结构体系研究与发展[J].地震工程与工程振动,1999,19(2):21-28.
    [40]李宏伟,欧进萍.无线传感器网络在土木工程应用中的试验研究[J].计算机工程与应用,2005,(15):207-210,214.
    [41]魏德荣,赵花城,秦一涛,等.分布式光纤监测技术在我国的发展[J].贵州水利发电,2005,19(1):7-9.
    [42]Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor network:A survey[J]. Computer Networks,2002,38(8):393-422.
    [43]李建中,李金宝,石胜飞.传感器网络及其数据管理的概念、问题与进展[J].软件学报,2003,14(10):1717-1727.
    [44]李国华,沈树群.自组织无线传感器网络的研究[J].数据通信,2004,(4):1-4.
    [45]孙雨耕,张静,孙永进,等.无线自组传感器网络[J].传感技术学报,2004,17(2):331-335.
    [46]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报,2003,14(7):1284-1286.
    [47]喻言.结构健康监测的无线传感器及其网络系统[D]:(博士学位论文).哈尔滨:哈尔滨工业大学,2006.
    [48]Miyamoto Y. Chiral conductivities of nanotubes[J]. Physical Review Letters,1996,76: 2121-2124.
    [49]Townsend C P. Scalable, Wireless, Web-based Sensor Networks[R]. Smart Structures and Materials, San Diego,2002:4696-4701.
    [50]欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用[J].中国科学基金,2005(1):8-12.
    [51]喻言,李宏伟,欧进萍.结构加速度无线监测传感网络的软件设计与实现[J].计算机应用研究,2005(2):197-199.
    [52]喻言,李宏伟,欧进萍.结构监测的无线加速度传感器设计与制作[J].传感技术学报,2004,(3):463-466,471.
    [53]喻言,欧进萍.结构应变的无线监测及融合技术[J].传感技术学报,2006,19(4):1272-1275.
    [54]David C, Deborah E, Mani S. Overview of sensor networks[J]. Computer,2004,37(8):41-49.
    [55]Akyildiz I F, Su W, Sankarasubramaniam Y, et al. A survey on sensor networks[J]. IEEE Communications Magazine,2002,40(8):102-114.
    [56]王殊,阎毓杰,胡富平,等.无线传感器网络的理论及应用[M].北京:北京航空航天大学出版社,2007.
    [57]俞黎阳,王能,张卫.无线传感器网络中基于神经网络的数据融合模型[J].计算机科学,2008,135:43-47.
    [58]Hoebeke J, Moerman I, Dhoedt B, et al. An overview of mobile ad hoc network:applications and challenges[J]. Journal of the Communications Network,2004,3(3):60-66.
    [59]冯秀芳.无线传感器网络数据融合技术的研究及在机械故障诊断中的应用[D]:(博士学位论文).太原:太原理工大学,2009.
    [60]胡洪坡,宋孝先,张军,等.无线传感器网络综述[J].电信快报,2011,(12):8-11.
    [61]Heinzelman W, Chandrakasan A, Balakrishnan H. Energy-efficient communication protocol for wireless micro sensor networks[C]. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Hawaii, USA,2000:4-7.
    [62]Rabaey J M, Ammer M J, Silva J L, et al. PicoRadio supports ad hoc ultra low power wireless networking[J]. IEEE Computer,2000,33(7):42-48.
    [63]Schwiebert L, Gupta S K, Weinmann J. Research challenges in wireless networks of biomedical sensors[C]. Proceedings of the 7th annual international conference on Mobile Computing and Networking, Rome, Italy,2001:151-165.
    [64]Delin K A, Jackson S P.The sensor Web:a new instrument concept[C]. Proceedings of the SPIE International of Optical Engineering, San Jose, CA,2001:1-9.
    [65]Mainwaring A, Polastre J, Szewczyk R, et al. Wireless sensor networks for habitat monitoring[C]. Proceedings of the 1st ACM International Workshop on Wireless Sensor Networks and Applications, Atlanta, USA,2002:88-97.
    [66]Meyer S, Rakotonirainy A. A survey of research on context-aware homes[C]. Proceedings of the Australasian information security workshop conference on ACSW frontiers, Brisbane, Australia, 2003:159-168.
    [67]Arici T, Altunbasak Y. Adaptive sensing for environment monitoring using wireless sensor networks[C]. Proceedings of the IEEE Wireless Communications and Networking Conference(WCNC), Atlanta, GA,2004:162-174.
    [68]缪新颖,褚金奎,杜晓文.基于大坝监测的无线传感器网络结构的设计[J].传感器与微系统,2009,28(9):100-103.
    [69]印崧,刘微,赵弘,等.基于ZigBee无线传感器网络的臭氧保鲜技术[J].安徽农业大学学报,2009,26(2):300-302.
    [70]侯小华,胡文东,项红雨,等.基于ZigBee无线传感器网络技术的患者体温检测系统设计[J].医疗卫生装备,2010,31(2):55-56.
    [71]江挺,胡培金,赵燕东.基于ZigBee无线传感器网络的灌溉控制系统设计[J].节水灌溉,2011,0(2):58-61.
    [72]Macias E, Suarez A, Chiti F, et al. A hierarchical communication architecture for oceanic surveillance applications[J]. Sensors,2011,11(12):11343-11356.
    [73]吴文忠,李万磊.基于ARM和ZigBee的智能家居系统[J].计算机工程与设计,2011,32(6):1987-1990.
    [74]See C H, Horoshenkov K V, Abd-Alhameed R A, et al. A low power wireless sensor network for gully pot monitoring in urban catchments[J]. Sensors Journal,2012,12(5):1545-1553.
    [75]Espinosa F, Francisco J, Rendon R, et al. A ZigBee wireless sensor network for monitoring an aquaculture recirculating system[J].Telemedicine and E-Health,2012,18(5):394-399.
    [76]周西峰,徐扬,郭前岗.基于ZigBee无线传感器网络的起重机监控系统[J].微型机与应用,2012,(4):43-45.
    [77]吴键,袁慎芳,殷悦,等.基于ZigBee技术的无线传感器网络及其应用研究[J].测控技术,2008,(1):13-15.
    [78]吴学文,彭光路,查理敏.基于ZigBee的无线传感器网络在大坝安全监测中的应用[J].水电自动化与大坝监测,2008,32(6):48-52.
    [79]杜小文,褚金奎,缪新颖,等.基于ZigBee技术的大坝安全监测WSNs节点设计[J].传感器与微系统,2009,28(12):67-69,73.
    [80]Jiang X D, Tang Y J, Lei Y. Wireless sensor networks in structural health monitoring based on ZigBee technology[C]. Proceedings of the 3rd International Conference on Anti-counterfeiting, Security, and Identification in Communication, Hong Kong, China,2009:449-452.
    [81]朱小锴.面向结构健康监测的无线传感器网络的研究与设计[D]:(硕士学位论文).杭州:浙江理工大学,2010.
    [82]丁永忠.基于无线传感器网络的大坝安全远程监测技术研究[D]:(博士学位论文).武汉:武汉理工大学,2011.
    [83]Jang W S, Lee D E, Choi J. Ad-hoc performance of wireless sensor network for large scale civil and construction engineering applications[J]. Automation in Construction,2012,26:32-35.
    [84]Chae M J, Yoo H S, Kim J Y, et al. Development of a wireless sensor network system for suspension bridge health monitoring[J]. Automation in Construction,2012,21:237-252.
    [85]张学媛.基于GPRS的大坝安全远程监测系统的设计与开发[D]:(硕士学位论文).武汉:华中科技大学,2010.
    [86]赵志军,阎高伟,谢克明.尾矿大坝安全监测系统研究[J].现代电子技术,2010,(5):197-199.
    [87]乔静,褚金奎,缪新颖,张凌寒.用于大坝安全监测的长距离WSNs节点设计[J].传感器与微系统,2012,31(5):104-106,114.
    [88]Huang C F, Tseng Y C. The coverage problem in a wireless sensor network[C]. Proceedings of the 2nd ACM International Conference on Wireless Sensor Networks and Applications, San Diego, CA,2003:115-121.
    [89]孙永进,孙雨耕,房朝晖.无线传感器网络的连通与覆盖[J].天津大学学报,2005,38(1):14-17.
    [90]Yang S, Dai F, Cardei M, et al. On connected multiple point coverage in wireless sensor networks[J]. Journal of Wireless Information Networks,2006,13(4):289-301.
    [91]伍勇安,殷建平,李敏.无线传感器网络连通k覆盖问题及其解决方案综述[J].计算机工程与科学,2008,30(11):155-158.
    [92]蒋敏兰,陆鑫潮.一种新型的无线传感器网络覆盖算法[J].传感技术学报,2012,25(8):1112-1115.
    [93]Kalpakis K, Dasgupta K, Namjoshi P. Efficient algorithms for maximum lifetime data gathering and aggregation in wireless sensor networks[J]. Computer Networks,2003,42(6):697-716.
    [94]Chen X J, Hu X D, Zhu J M. Minimum data aggregation time problem in wireless sensor networks[C]. Proceedings of the 1st International Conference on Mobile Ad-hoc and Sensor Networks, Wuhan, China,2005:133-142.
    [95]Al-Karaki J N, Ul-Mustafa R, Kamal A E. Data aggregation and routing in wireless sensor networks:optimal and heuristic algorithms[J]. Computer Networks,2009,53(7):945-960.
    [96]谷云静.水库大坝安全自动化监测问题研究[D]:(硕士学位论文).兰州:兰州理工大学,2011.
    [97]何金平,涂圆圆,玉群,吴云芳.大坝多测点异常性态Bayes融合诊断模型[J].长江科学院院报,2012,29(10):63-67.
    [98]夏万求,何金平.基于粗糙集理论的多效应量融合评价模型及应用[J].水电能源科学,2012,30(8):50-52,66.
    [99]Henry L B著,顾金星译.现代无线通信系统电波传播[M].北京:电子工业出版社,2001.
    [100]Miao X Y, Chu J K, Zhang L H, et al. Development of wireless sensor network for dam monitoring[J]. Journal of Information and Computational Science,2012,9(6):1609-1616.
    [101]IEEE 802.15.4 standard for information technology:Wireless Medium Access Control(MAC) and Physical Layer (PHY) specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)[S]. NewYork:IEEE Computer Society,2003.
    [102]Hill J L. System architecture for wireless sensor networks[D]:(硕士学位论文).Berkeley: University of California,2003:13-20.
    [103]Wang N, Zhang N Q, Wang M H. Wireless sensors in agriculture and food industry-recent development and future perspective[J]. Computers and Electronics inAgriculture,2006, (50): 1-14.
    [104]施炯.移动设备中ZigBee接口的实现[EB/OL].http://www.winbile.net/bbs/forums/threads/1037493.aspx,2009.
    [105]ZigBee协议栈中文说明.[EB/OL].http://wenku.baidu.com/view/f3b4460852ea551810a687b5.html
    [106]张宏亮ZigBee软件开发人员指南(基于Jennic JN5121)[R].北京:北京博讯科技有限公司,2007.
    [107]韩光辉.基于无线传感器网络的温室黄瓜病害监测系统研究[D]:(硕士学位论文).长春:吉林农业大学,2011.
    [108]Wu Z R, Li J, Gu C S, et al. Review on hidden trouble detection and health diagnosis of hydraulic concrete structures[J]. Science in China Series E:Technological Sciences,2007,50(S1): 34-50.
    [109]Kripakaran P, Smith I F. Configuring and enhancing measurement systems for damage identification[J]. Advanced Engineering Informatics,2009,23(4):424-432.
    [110]Meo M, Zumpano G. On the Optimal Sensor Placement Techniques for a Bridge Structure[J]. Engineering Structures,2005,27(10):1488-1497.
    [111]伊廷华,李宏男,顾明,等.基于MATLAB平台的传感器优化布置工具箱的开发及应用[J].土木工程学报,2010,43(12):87-93.
    [112]孙小猛,冯新,周晶.基于损伤可识别性的传感器优化布置方法[J].大连理工大学学报,2010,50(2):264-270.
    [113]胡江,苏怀智.健康监测仪器布置优化研究综述[J].水电能源科学,2011,29(7):100-104.
    [114]苏怀智,吴中如.大坝工程安全监测仪器优化设计[J].南昌工程学院学报,2005,24(3):5-9.
    [115]刘松.柴河水库大坝渗流监测系统研究与应用[D]:(硕士学位论文).大连:大连理工大学,2009.
    [116]余春海,宋廷臣,王国利,等.新疆北疆引水工程500平原水库大坝安全监测系统设计[J].小水电,2006,(5):21-23.
    [117]张坤,王春海.新立城水库大坝渗流安全监测系统设计[J].中国管理信息化,2011,14(10):65-66.
    [118]Shi C Z, Wu H G, Su K. Applications of FEM and elasticity centre method of structure mechanics in designing penstock laid on downstream surface of dam[J]. Journal of Hydraulic Engineering,2010,41(7):856-861,869.
    [119]Schauer M, Roman J E, Quintana-Orti E S, et al. Parallel computation of 3D soil-structure interaction in time domain with a coupled FEM/SBFEM approach[J]. Journal of Scientific Computing,2012,52(2):446-467.
    [120]汪红宇.基于有限元和多元有理样条理论的面板坝测点优化布置研究[D]:(硕士学位论文).大连:大连理工大学,2006.
    [121]赵俊.结构健康监测中的测点优化布置方法研究[D]:(博士学位论文).广州:暨南大学,2011.
    [122]时圣鹏.斜拉桥健康监测系统传感器优化布置研究[D]:(硕士学位论文).长沙:中南大学,2011.
    [123]吴兴征,栾茂田.面板堆石坝应力与变形弹塑性有限元计算与分析[J].大连理工大学学报,2000,40(5):602-608.
    [124]Gao F, Xia H, Cao Y M, et al. Analysis of elevated structure radiated noise with BEM-FEM method[J]. Journal of Civil, Architectural & Environmental Engineering,2012,34(1):42-46.
    [125]刘惹梅.黑河引水工程岩土介质的渗透特性及三维渗流有限元分析[D]:(硕士学位论文).西安:西安理工大学,2005.
    [126]侯文萃.心墙堆石坝坝料分区配置应力应变有限元分析[D]:(硕士学位论文).西安:西北农林科技大学,2011.
    [127]傅少君,陈胜宏.瀑布沟堆石坝防渗体自适应有限元分析[J].岩土力学,2006,27(3):499-504.
    [128]陈五一,韩永,刘品,等.基于邓肯—张模型的土石坝有限元分析[J].人民长江,2008,39(8):60-63.
    [129]王小敏.基于有限元方法的大坝变形分析与仿真研究[D]:(博士学位论文).武汉:武汉大学,2010.
    [130]严慧君.茅坪溪防护土石坝施工期外部变形监测资料分析[J].黄河水利职业技术学院学报,2003,15(2):4-5,11.
    [131]胥楚贵,邓晓衡,邹豪杰.无线传感器网络覆盖空洞修复策略[J].传感技术学报,2010,23(2):256-259.
    [132]Yao J X, Zhang G Y, Jinko K. Decentralized detection and patching of coverage holes in wireless sensor networks[C]. Proceedings of SPIE, Louisiana, USA,2009:1-10.
    [133]Randell D, Cui Z, Cohn A. A spatial logic based on regions and connection[C]. Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning, Boston, USA, 1992:165-176.
    [134]王珂.矿井无线传感器网络节点部署关键技术的研究[D]:(博士学位论文).徐州:中国矿业大学,2011.
    [135]Hall D L, Linas J. Handbook of multisensor data fusion[M]. Florida:CRC Press,2001.
    [136]Bhaskar K, Deborah E, Stephen W. The impact of data aggregation in wireless sensor networks[C]. Proceedings of the 22nd International Conference on Distributed Computing Syetems Workshops, Vienna, Austria,2002:575-578.
    [137]Intanagonwiwat C, Govindan R, Estrin D. Directed diffusion:a scalable and robust communication padadigm in sensor networks[C]. Proceedings of the Sixth Annual ACM/IEEE International Conference on Mo-bile Computing and Networking (Mobicom'2000), Boston, USA,2000:56-67.
    [138]蒋鼎国.无线传感器网络农业信息监控系统设计与数据融合研究[D]:(博士学位论文).无锡:江南大学,2010.
    [139]缪新颖,邓长辉,高艳萍.数据融合在水产养殖监控系统中的应用[J].大连水产学院学报,2009,24(5):436-438
    [140]夏卓君.分布图法在疏失误差处理中的应用[J].实用测试技术,2002,(2):33-34.
    [141]张捍东,孙成慧,岑豫皖.分布式多传感器结构中的数据融合方法[J].华中科技大学学报(自然科学版),2008,36(6):37-39.
    [142]Jae Y C, Plataniotis K N, Yong M R. Face feature weighted fusion based on fuzzy membership degree for video face recognition[J]. IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics),2012,42(4):1270-1282.
    [143]翟翌立,戴逸松.多传感器数据加权融合估计算法研究[J].计量学报,1998,19(1):69-74.
    [144]Popescu T D. A new approach for dam monitoring and surveillance using blind source separation[J]. International Journal of Innovative Computing, Information and Control,2011, 7(7):3811-3824.
    [145]刘建军,高玮,薛强,等.库水位变化对边坡地下水渗流的影响[J].武汉工业学院学报,2006,25(3):68-71.
    [146]李端有,熊健,於三大,等.土石坝渗流热监测技术研究[J].长江科学院院报,2005,(6):29-33
    [147]蔡金宝,刘培斌,李五勤.通过观测资料分析土石坝的渗流安全状况[J].北京水利,2001,(3):39-41
    [148]闫滨,周晶.基于遗传神经网络的渗流实时预报方法研究[J].岩土力学,2006,27(增):147-150
    [149]闫滨,李东艳.小波神经网络在柴河水库坝基渗流量预测中的应用[J].水利水电技术,2009,40(3):71-73.
    [150]Miao X Y, Chu J K, Qiao J, et al. Predicting seepage of earth dams using neural network and genetic algorithm[J]. Advanced Materials Research,2012,403-408:3081-3085.
    [151]缪新颖,褚金奎,杜晓文LM-BP神经网络在大坝变形预测中的应用[J].计算机工程与应用,2011,47(1):220-222.
    [152]徐晖,李钢.基于Matlab的BP神经网络在大坝观测数据处理中的应用[J].武汉大学学报(工学版),2005,38(3):50-53.
    [153]李守巨,刘迎曦,刘玉静.基于进化神经网络混凝土大坝变形预测[J].岩土力学,2003,24(4):634-638.
    [154]Majdi A, Beiki M. Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47:246-253.
    [155]Miao X Y, Chu J K, Zhang L H, et al. An evolutionary neural network approach to simple prediction of dam deformation[J]. Journal of Information and Computational Science,2013,10(7):已录用.
    [156]Bharathi R, Sukanesh R. A PCA based framework for detection of application layer DDoS attacks[J]. WSEAS Transactions on Information Science and Applications,2012,9(12):389-398.
    [157]Licciardi G, Marpu P R, Chanussot J. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles[J]. IEEE Geoscience and Remote Sensing Letters,2012,9(3):447-451.
    [158]Gao H, Xu M H, Li D W, et al. On-line tool life measurement technique based on PCA and dynamic monitoring model[J]. Chinese Journal of Scientific Instrument,2010,31(11): 2416-2421.
    [159]Yu L, Zhu J H. Effect of computational patterns of PCA on moving force identification[J]. Advanced Materials Research,2011,163-167:2678-2682.
    [160]Pearson K. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine,1901,2:559-572.
    [161]杨杰,吴中如,顾冲时.大坝变形监测的BP网络模型与预报究[J].西安理工大学学报,2001,17(1):25-29.
    [162]赵斌,吴中如,张爱玲.BP模型在大坝安全监测预报中的应用[J].大坝观测与土工测试,1999,23(6):1-4.
    [163]Cheng L C, Li T C, Chun C Y. Federal funds rate prediction:a comparison between the robust RBF neural network and economic models[J]. Journal of Information Science and Engineering, 2009,25:763-778.
    [164]Watts M J, Li Y, Russell B D, et al. A novel method for mapping reefs and subtidal rocky habitats using artificial neural networks[J]. Ecological Modelling,2011,222:2606-2614.
    [165]Lek M, Boso D P, Schreer B A. Artificial neural networks in numerical modelling of composites[J]. Computer Methods in Applied Mechanics and Engineering,2009,198: 1785-1804.
    [166]Adamowski J, Chan H F. A wavelet neural network conjunction model for groundwater level forecasting[J]. journal of hydrology,2011,407(1-4):28-40.
    [167]Kabiri-Samani A R, Aghaee-Tarazjani J, et al. Application of neural networks and fuzzy logic models to long-shore sediment transport[J]. Applied Soft Computing,2011,11 (2):2880-2887.
    [168]Mata J. Interpretation of concrete dam behaviour with artificial neural network and multiple linear regression models[J]. Engineering Structures,2011,33(3):903-910.
    [169]Gholizadeh S, Seyedpoor S M. Shape optimization of arch dams by metaheuristics and neural networks for frequency constraints[J]. Scientia Iranica Transaction A-Civil Engineering,2011, 18(5):1020-1027.
    [170]Karimi I, Khaji N, Ahmadi M T, et al. System identification of concrete gravity dams using artificial neural networks based on a hybrid finite element-boundary element approach[J]. Engineering Structures,2010,32(11):3583-3591.
    [171]Hamidian D, Seyedpoor S M. Shape optimal design of arch dams using an adaptive neuro-fuzzy inference system and improved particle swarm optimization[J]. Applied Mathematical Modelling, 2010,34(6):1574-1585.
    [172]Kim Y S, Kim B T. Prediction of relative crest settlement of concrete-faced rock dams analyzed using an artificial neural network model[J]. Computers and Geotechnics,2008,35:313-322.
    [173]Wang Z L, Li Y C, Shen R F. Correction of soil parameters in calculation of embankment settlement using a BP network back-analysis model[J]. Engineering Geology,2007,91:168-177.
    [174]Majdi A, Beiki M. Evolving neural network using a genetic algorithm for predicting the deformation modulus of rock masses[J]. International Journal of Rock Mechanics and Mining Sciences,2010,47:246-253.
    [175]Tian Z S, Zhang X N, Zhu Q L, et al. Study of BP neural network model to dam deformation monitoring[C]. Proceedings of the 6th International Conference on Natural Computation, Yantai, China,2010:1856-1859.
    [176]Wu C B, Qiao Y, Liang B M, et al. Study on applications of neural network to deformation control of dam[C]. Proceedings of the International Conference on Computer Application and System Modeling, Taiyuan, China,2010:370-372.
    [177]Ma L X, Wang F Y, Chen J P. Analysis & prediction of dam deformation based on ANN-An example of deformation at monitoring point 27 of Xijin dam[J]. Journal of Jilin University (Earth Science Edition),2009,39:487-491.
    [178]Elhatip H, Komur M A. Evaluation of water quality parameters for the Mamasin dam in Aksaray city in the central Anatolian part of Turkey by means of artificial neural networks[J]. Environmental Geology,2008,53(6):1157-1164.
    [179]Lera G, Pinzolas M. Neighborhood based Levenberg-Marquardt algorithm for neural network training[J]. IEEE Transactions on Neural Networks,2002,13(5):1200-1203.
    [180]缪新颖,葛廷友,高辉,等.基于神经网络和遗传算法的池塘溶解氧预测模型[J].大连海洋大学学报,2011,26(3):264-267.
    [181]李炯城,黄汉雄.神经网络中LMBP算法收敛速度改进的研究[J].计算机工程与应用,2006,42(16):46-49.
    [182]张立明.人工神经网络的模型及其应用[M].上海:复旦大学出版社,1993.
    [183]王红英,樊增绪,薛松堂.一种新的池塘溶解氧预测模型[J].农业工程学报,1997,(4):145-147.
    [184]Jeff C G. A simple way to deal with multicollinearity[J]. Journal of Applied Statistics,2012, 39(9):1893-1909.
    [185]Beckstead J W. Isolating and examining sources of suppression and multicollinearity in multiple linear regression[J]. Multivariate Behavioral Research,2012,47(2):224-246.
    [186]Enaami M, Ghani S A, Mohamed Z. Multicollinearity problem in cobb-douglas production function[J]. Journal of Applied Sciences,2011,11(16):3012-3021.
    [187]于文革,王体健,杨诚,等.PCA-BP神经网络在SO2浓度预报中的应用[J].气象,2008,34(6):97-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700