用户名: 密码: 验证码:
结构—热耦合问题及结构疲劳的可靠性分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在实际工程结构的分析与设计中,尤其在航天、航空等领域,结构的热问题逐步成为研究的热点,比较突出的问题如结构在热载荷作用下的热变形及热应力,在交变热载荷作用下的热疲劳。随着工程精度要求得日益提高和研究问题的不断深入,结构的热耦合响应问题也渐渐被广泛关注,如热弹耦合问题和热-结构耦合问题,它们分别对应不同的工程实际。同时考虑实际工程结构中存在着大量的误差和不确定性,使得结构的物理参数、几何参数以及载荷等均具有不确定性,从而导致结构的响应也具有不确定性,使得结构在热载荷下的可靠性分析也成为热点问题,所以有必要考虑这些因素,分析结构在热载荷下考虑热耦合情况时的可靠性,这对于热问题突出的工程结构的分析与设计是十分必要的,具有重要的理论意义及工程价值。本学位论文主要针对结构在热载荷下考虑热耦合因素时的随机响应及可靠性等问题进行了系统研究,并对疲劳可靠性分析方法做了一定的研究,主要研究工作如下:
     1.随机弹性杆在随机瞬态温度场下的热响应分析
     研究弹性杆在其物理参数、温度场同时具有随机性时的热响应。利用隐式差分法求解随机瞬态温度场,结合Monte-Carlo模拟法得到各时间节点处结构温度场分布的数字特征。利用随机因子的有限元法推导出在各时间节点处结构位移和单元应力响应的均值和方差计算表达式,其中加入了随机机械载荷的影响。通过悬臂杆的算例,得到结构各节点位移响应及单元应力响应在瞬态变温阶段内均值和均方差的变化规律;并考察了在随机力载荷和随机热载荷共同作用下,各随机参数的分散性对响应分散性的影响。
     2.随机参数梁在考虑热弹耦合下的动力响应分析
     以随机参数梁为研究对象,分析其在温度载荷和力载荷共同作用并考虑热弹耦合关系时的动力响应。建立了热弹耦合动力学有限元模型,给出了在时间域内差分离散、相互交替迭代的耦合计算方法。利用随机因子法推导了结构温度场和动力响应的数字特征表达式,其中温度场的求解利用θ时间积分法,动力响应则利用Newmark-β积分法。在求出结构各时间步温度场和动力响应数字特征的基础上,应用耦合算法获得了整个时间域内的结构响应数字特征。通过悬臂梁算例分析了热弹耦合项对动力响应的影响,并考察了诸随机参数分散性对结构动力响应分散性的影响。
     3.热弹耦合下微谐振器的概率可靠性分析
     建立了微谐振器的热弹耦合有限元方程,导出了热弹耦合的广义特征方程,基于左、右特征向量和分块Lanczos算法分析了热弹耦合频率随机性,通过对温度场简化并从特征值问题出发,进一步分析了温度场和热应力的随机性,分别建立了以断裂力学为基础的强度可靠性和激振频率影响下的频率可靠性,并综合考虑谐振器在这两种失效模式下的可靠性问题。通过算例,与一维Zener解和Lifshitz解对比,验证模型计算的正确性,并计算了频率偏移、可靠度随温度的影响变化情况。
     4.空间结构在考虑热-结构耦合关系下的动力响应随机性分析
     以空间薄壁圆管为研究对象,分析其在持续热流作用下并同时考虑热-结构耦合关系及参数具有随机性时的动力响应问题。为了便于分析由截面温差引起的热振动,将温度场分解为平均温度和扰动温度两部分,在此基础上建立了热-结构耦合动力学有限元模型,并采用时间域内温度场和动力响应交替迭代进行的近似计算方法,其中温度场的求解利用时间差分法和牛顿迭代法,动力响应则利用Newmark积分法。从各响应的求解迭代格式出发,分别使用矩法和随机因子法推导了温度场及动力响应的数字特征表达式,并通过各时间步内对温度场和动力响应的交替迭计算可求得整个时间域内的温度和动力响应均值与方差。最后以哈勃太空望远镜为算例考察了热-结构耦合对其悬臂薄壁圆管梁的热颤振影响以及参数的随机性对响应分散性的影响,并利用Monte-Carlo法验证了文中方法的可行性。
     5.薄壁圆管空间结构的热疲劳可靠性分析
     针对薄壁圆管的空间结构,分析其在交变热载荷下的疲劳可靠性问题。为同时考虑由截面平均温度和截面温差造成的疲劳损伤,提出了综合利用剩余强度和疲劳累积损伤模型的分析方法。首先根据疲劳累积损伤相等原理,将截面温差造成的多级扰动应力载荷作用频次等效为平均温度下的常幅应力载荷作用次数,从而将两者产生的热应力载荷统一为一常幅载荷,再利用剩余强度模型基于动态应力-强度干涉理论对疲劳可靠度进行分析,得到了结构在综合考虑两种热疲劳状态下的动态可靠度。本方法可避免直接利用疲劳累积损伤理论临界损伤值难以确定的问题,且能体现金属疲劳损伤的真实情况。最后以哈勃望远镜太阳能帆板的主梁为例,分析了其随疲劳热载荷循环作用下的动态可靠度,得出了一些有意义的结论。
     6.结构疲劳可靠性分析的支持向量回归方法
     从结构疲劳断裂力学角度出发建立了疲劳寿命的可靠性功能函数,考虑到该功能函数具有隐式、非线性,且较难直接利用经典的可靠性分析方法的特点,基于支持向量回归方法(SVR)出色的小样本学习能力和良好的泛化性,将其应用于结构疲劳可靠性功能函数的重构。为增强SVR的推广能力,采用遗传算法对SVR的参数进行优化,并利用优化的参数训练出最佳的回归函数,再根据所得的回归函数利用一次二阶矩法完成了疲劳可靠性的预测。最后通过算例验证了本文方法的可行性和有效性。
In the process of analysis and design of practical structures, especially in the fieldsuch as aerospace and aviation, the thermal problem is becoming serious. Theprominent problems including thermal deformation and thermal stress generated bythermal loads, thermal fatigue under alternating thermal loads. With the increasingdemand of engineering precision and research issue, the thermal coupling has graduallybeen widespread concern, such as thermoelastic coupling and thermal-structuralcoupling, which correspond to different actual engineering, respectively. Taking intoaccount that there are a large number of errors and uncertainties in the practicalstructures, which will cause the physical parameters, geometrical parameters and loadstaking on uncertainties, the analysis of reliability of the structures under thermal load ismust be considered. So it is necessary to consider these factors, analyzing the reliabilityconsidering thermal coupling under thermal load. This is very important for the analysisand design of engineering structures, and it has important engineering significance andtheoretical significance. This article mainly study the random responses and thermalreliability considering thermal coupling, and do some research for fatigue reliabilityanalysis methods, the main research works can be described as follows.
     1. Thermal response analysis of stochastic pole structures under random transienttemperature field
     The thermal response of stochastic elastic pole structure under random temperaturefield is researched in this paper. The transient temperature field is solved by using themethod of implicit difference and the numerical characteristics of node temperaturefield in every time step is obtained with Monte-Carlo simulation. The computationexpressions of mean and variance of displacement and stress in every time step arederived from finite element method based on random factor with consideration ofmechanical loads. An example of cantilever pole analysis shows the change to the meanvalue and mean-square deviation of displacement and stress of the random variables intransient duration, and the influence of the response dispersion due to the dispersion ofthe random parameters under both random static load and random thermal load.
     2. Dynamic response analysis of stochastic beam structures under thermoelasticcoupling
     To research the beam with random parameters, its dynamic response has been analyzed under both thermal load and force load when considering the effect ofthermoelastic coupling. The dynamic model considering thermoelastic coupling is setup using the finite element method, then a coupling calculate method is proposed whichmake use of the finite difference method in the time domain and alternative iteration ineach time step. The computational expressions for the numerical characteristics of thetemperature field and dynamic response are derived by using the random factor method.Temperature field is worked out by applying the time integral method, while dynamicresponse can be found through Newmark-β integral method. Base on the numericalcharacteristics expressions of temperature field and dynamic response in each time step,the expressions in whole time domain are obtained by using coupling algorithm. Finally,a cantilever beam is taken as an example and the influence of dynamic response due tothermoelastic coupling and randomness of the parameters is showed.
     3. Probabilistic reliability of micro-resonators with thermoelastic coupling in shockenvironments
     Analyzing the probabilistic reliability of micro-resonators is essential for thedesign of Microelectromechanical Systems (MEMS). In order to investigate morecomplex structures and take into account the random variation of the design parameters,the numerical method is used, an efficient thermoelastic finite element formulation isderived from Hamilton’s variational principle, by the formulation, and a generalizedeigenvalue equation can be obtained. The effect of thermoelastic coupling and therandomness of parameters on the natural frequency are studied by using anon-symmetric block Lanczos algorithm combine with the right and left eigenproblem.Considering the influence of thermoelastic coupling on temperature is little, thethermoelastic coupling term in heat conduction equation can be negligible, then the heatconduction equation is simplified as the linearization. Depend on the eigenproblem fortemperature field and thermal stress in micro-resonators, further analyzing therandomness of temperature and stress in micro-resonators. For reliability analysis, amethod which both considering strength and frequency is proposed, the strength failurecriteria is set based on fracture mechanics in shock environments, and frequencyreliability is taken into account the probabilistic of resonators when the naturalfrequency is close to the excitation frequency. Take a simply supported model ofmicro-resonators as an example, the numerical solutions of quality factor have shownlittle difference with the analytical solutions proposed by Zener and Lifshitz, verifingthe correctness of the model calculations, finally, the natural frequency shift and theprobabilistic reliability with temperature are calculated.
     4. Randomness analysis of space structures considering thermo-structural coupling
     The dynamic response for space structures consisting of thin walled pipe which aresubjected to solar heat flux has been analyzed, and then this problem has beendeveloped taking into account the thermo-structural coupling and the randomness ofparameters. For analyzing thermal vibration due to temperature difference in the crosssection conveniently, temperature field is divided into two parts including averagetemperature and disturbance temperature, then the dynamic model consideringthermo-structural coupling is set up using the finite element method. The model can besolved by the approximate calculation method through alternating iterative betweentemperature field and dynamic response in the time domain. Temperature field is solvedby using the method of time integral and Newton-iteration, while dynamic response canbe found through Newmark integral method. Starting from the solving iterative formatof each response, the computational expressions for the numerical characteristics oftemperature field and dynamic response are derived, respectively, by the method ofmoments and random factor. Through the alternate iterative algorithm in each time step,the mean value and variance of response in whole time domain are obtained. Finally,Hubble Space Telescope is taken as an example. Thermal flutter for thin-walledcantilever beam due to thermo-structural coupling is showed, and the influence ofdynamic response due to the randomness of parameters also be found, throughcomparing with the Monte Carlo method, validating the feasibility of the method in thispaper.
     5. Thermal fatigue reliability analysis for space structures composed of thin-walledtube
     The fatigue reliability of space structures composed of thin-walled tube elementhas been analyzed under alternating thermal load. In order to take into account thefatigue damage due to both average temperature and temperature difference in crosssection, an analytical method which uses the models of residual strength and fatiguecumulative damage is proposed. First of all, according to the principle of fatiguecumulative damage equal, the frequency of multi-level disturbance stress load caused bytemperature difference in cross section is equivalent to the times of constant amplitudestress load action under average temperature, thus all thermal stress loads will be unifiedfor a constant amplitude load, then the fatigue reliability can be analyzed by using theresidual strength model, finally, the dynamic reliability of structures in thecomprehensive consideration of two kinds of thermal fatigue state is obtained. Thismethod avoids the problem that critical damage value is difficult to determine when directly using the theory of cumulated fatigue damage, even it can reflect the realsituation for fatigue damage of metal. In the end, take Hubble Space Telescope as anexample, the dynamic reliability of the main beam with the role of cycle fatigue thermalload is analyzed, some meaningful conclusions are drawed.
     6. Support vector regression for structure fatigue reliability analysis
     Reliability performance function based on fatigue life is established from fatiguefracture mechanics, considering the performance function has the characteristics ofimplicit and non-linear, so it is difficult to use classic reliability calculation method. Inview of SVR has excellent learning capacity and generalization capability with a smallamount of samples, it can be used to reconstruct the fatigue reliability performancefunction. In order to enhance generalization ability, the genetic algorithm is introducedto optimize the SVR parameters, then the best regression function is trained by using theoptimal parameters, according to the regression function, using FOSM method, fatiguereliability analysis could be completed. Finally, take an example to verify the feasibilityand effectiveness of the proposed method.
引文
[1]侯欣宾,邵兴国,徐丽,等.嫦娥一号卫星热设计及计算分析[J].航天器工程.2006,15(4):21-26.
    [2] Isabel Perez-Grande, Angel Sanz-Andres, Carmen Guerra, et al. Analytical study of thethermal behavior and stability of a small satellite[J]. Applied Thermal Engineering.2009,29(11):2567-2573.
    [3]方宝东,张建刚,申智春,等.航天器蜂窝夹层结构复合材料热变形分析[J].航天返回与遥感.2007,28(3):44-48.
    [4]周超,杨洪波,王成彬.热传导及其在航天器系统中的计算方法[J].计算机仿真.2010,27(1):60-62.
    [5]朱敏波.星载大型可展开天线热分析技术研究[D].西安电子科技大学博士学位论文.2007.
    [6]张利珍,王晓明.高超声速飞行器热载荷计算及影响因素分析[J].北京航空航天大学学报.2009,35(3):308-312.
    [7]范绪箕.气动加热与热防护系统[M].北京:科学出版社.2004.
    [8]吕永超,杨双根.电子设备热分析、热设计及热测试技术综述及最新进展[J].电子机械工程.2007,23(1):5-10.
    [9]李海元,栗保明.高热可靠性电子器件热变形模拟[J].弹道学报.2000,12(4):58-62.
    [10]杜丽华,蔡云枝. PCB的热设计[J].现代电子技术.2002,8(139):85-87.
    [11] Malekzadeh P, Heydarpour Y. Free vibration analysis of rotating functionally gradedcylindrical shells in thermal environment[J]. Composite Structures.2012,94(9):2971-2981.
    [12] Manolis G D, Beskos D E. Thermally induced vibrations of beam structures[J]. ComputerMethods in Applied Mechanics and Engineering.1980,21(3):337-355.
    [13]邓可顺.复杂结构热屈曲有限元分析[J].计算结构力学及其应用.1994,11(2):130-139.
    [14] Shiau L C, Kuo S Y, Chen C Y. Thermal buckling behavior of composite laminated plates[J].Composite Structures.2010,92(2):508-514.
    [15] Guo F L, Rogerson G A. Thermoelastic coupling effect on a micro-machined beamresonator[J]. Mechanics Research Communications.2003,30(6):513-518.
    [16]刘安成,吴大方,高镇同,等.卫星太阳能帆板振动抑制研究[J].实验力学.2002,17(4):477-482.
    [17]王光远.论不确定性结构力学的发展[J].力学进展.2002,32(2):205-211.
    [18]苏静波.工程结构不确定性区间分析方法及其应用研究[D].河海大学博士学位论文.2006.
    [19]李金平.不确定性温度场和结构的分析方法研究[D].西安电子科技大学博士学位论文.2009.
    [20]杨世铭,陶文铨.传热学[M].北京:高等教育出版社.2002.
    [21]孔祥谦.有限单元法在传热学中的应用[M].北京:科学出版社.1998.
    [22] Cavallier B, Ballandras S, Cretin B, et al. Thermal and thermoelastic dynamic analysis withfinite element analysis, application to photothermal and thermoelastic microscopies[J].Sensors and Actuators A: Physical.2005,123:444-452.
    [23]张洪武,顾元宪,钟万勰.传热与接触两类问题耦合作用的有限元分析[J].固体力学学报.2000,21(3):217-224.
    [24]闫相桥,武海鹏.正交各向异性三维热传导问题的有限元列式[J].哈尔滨工业大学学报.2003,35(4):405-409.
    [25]姚振汉,王海涛.边界元法[M].北京:高等教育出版社.2010.
    [26] Rottiers L, De Mey G. Eigenfunction expansion versus the boundary element method forthermal problems in microelectronics[J]. Journal of Computational and AppliedMathematics.1987,20:367-372.
    [27] Keppas L K, Anifantis N K. Fatigue life prediction under cyclic thermal loads using theboundary elements method for two-dimensional problems[J]. Computers&Structures.2011,89(7):590-598.
    [28] Ochiai Y, Kitayama Y. Three-dimensional unsteady heat conduction analysis bytriple-reciprocity boundary element method[J]. Engineering Analysis with BoundaryElements.2009,33(6):789-795.
    [29]陈兰,胡汉东.数值求解瞬态温度场的有限体积法[J].工程热物理学报.2001,22:53-55.
    [30]付桂翠,王香芬,姜同敏.高可靠性航空电子设备热分析中的有限体积法[J].北京航空航天大学学报.2006,32(6):716-720.
    [31]李人宪.有限体积法基础(第2版)[M].北京:国防工业出版社.2008.
    [32] Serteller F, Atalay M A. Thermal analysis of ferromagnet actuator by finite elementmethod[J]. Physica B: Condensed Matter,2006,372(1):366-368.
    [33] Majumdar P, Jayaramachandran R, Ganesan S. Finite element analysis of temperature rise inmetal cutting processes[J]. Applied Thermal Engineering.2005,25(14):2152-2168.
    [34] Robaldo A. Finite element analysis of the influence of temperature profile onthermoelasticity of multilayered plates[J]. Computers&Structures.2006,84(19):1236-1246.
    [35] Fic A, Nowak A J, Bialecki R. Heat transfer analysis of the continuous casting process by thefront tracking BEM[J]. Engineering Analysis with Boundary Elements.2000,24(3):215-223.
    [36] Chatterjee J, Henry D P, Ma F, et al. An efficient BEM formulation for three-dimensionalsteady-state heat conduction analysis of composites[J]. International Journal of Heat andMass Transfer.2008,51(5):1439-1452.
    [37]王海涛,姚振汉.快速多极边界元法在大规模传热分析中的应用[J].工程力学.2008,25(9):23-27.
    [38]高效伟,杨恺.功能梯度材料结构的热应力边界元分析[J].力学学报.2011,43(1):136-143.
    [39] Ramirez Camacho R G, Barbosa J R. The boundary element method applied to forcedconvection heat problems[J]. International Communications in Heat and Mass Transfer.2008,35(1):1-11.
    [40] Chang C L, Chang M. Non-iteration estimation of thermal conductivity using finite volumemethod[J]. International Communications in Heat and Mass Transfer.2006,33(8):1013-1020.
    [41] Luo C, Moghtaderi B, Sugo H, et al. A new stable finite volume method for predictingthermal performance of a whole building[J]. Building and Environment.2008,43(1):37-43.
    [42] Mackerle J. Heat transfer analyses by finite element and boundary element methods. Abibliography[J]. Finite Elements in Analysis and Design.2000,34(3):309-320.
    [43] Fernandes J L M, Rodrigues J M C, Martins P A F. Combined finite element–boundaryelement thermo-mechanical analysis of metal forming processes[J]. Journal of MaterialsProcessing Technology.1999,87(1):247-257.
    [44] Durany J, Pereira J, Varas F. Numerical solution to steady and transient problems inthermohydrodynamic lubrication using a combination of finite element, finite volume andboundary element methods[J]. Finite Elements in Analysis and Design.2008,44(11):686-695.
    [45]王洪刚.热弹性力学概论[M].北京:清华大学出版社.1989.
    [46] Nowinski J L. Theory of thermoelasticity with application[M]. Sijtjoff NoordhoffInternational Publishers B V.1978.
    [47]竹内洋一郎.郭廷玮,李安定译.热应力[M].北京:科学出版社.1977.
    [48]吴永礼.计算固体力学方法[M].北京:科学出版社.2005.
    [49]刘锦阳,崔麟.热载荷作用下大变形柔性梁刚柔耦合动力学分析[J].振动工程学报.2009,22(1):48-53.
    [50] Ribeiro P, Manoach E. The effect of temperature on the large amplitude vibrations of curvedbeams[J]. Journal of Sound and Vibration.2005,285(4):1093-1107.
    [51] Manoach E, Ribeiro P. Coupled, thermoelastic, large amplitude vibrations of Timoshenkobeams[J]. International Journal of Mechanical Sciences.2004,46(11):1589-1606.
    [52] Marakala N, KK A K, KADOLI R. Thermally induced vibration of a simply supported beamusing finite element method[J]. International Journal of Engineering Science&Technology.2010,2(12):7874-7879.
    [53]吴晓,马建勋.正交异性矩形板非线性的固有热振动[J].工程力学.1999,16(2):127-133.
    [54]周凤玺,李世荣,张靖华.薄板在周期热流作用下的热响应(II)-变形响应[J].工程力学.2007,24(8):60-65.
    [55]叶献辉,杨翊仁.三维壁板热颤振分析[J].振动与冲击.2008,27(6):55-60.
    [56]杨智春,夏巍.超音速气流中二维壁板的非线性热颤振响应分析[J].振动工程学报.2009,22(3):221-226.
    [57]沈惠申,朱湘赓.中厚板热后屈曲分析[J].应用数学和力学.1995,16(5):443-450.
    [58]沈惠申,张建武.非线性弹性基础上矩形板热后屈曲分析[J].应用力学学报.1997,14(1):29-35.
    [59]尚福林,王子昆,李中华.压电层合板热屈曲问题的精确分析[J].固体力学学报.1997,18(1):1-10.
    [60]李世荣,范亮亮.功能梯度梁在热冲击下的动态响应[J].振动工程学报.2009,22(4):371-377.
    [61]张能辉.热载荷作用下功能梯度材料梁的热粘弹性弯曲[J].力学季刊.2007,28(2):240-245.
    [62] Fu Y, Wang J, Mao Y. Nonlinear analysis of buckling, free vibration and dynamic stabilityfor the piezoelectric functionally graded beams in thermal environment[J]. AppliedMathematical Modelling.2012,36(9):4324-4340.
    [63] Wattanasakulpong N, Gangadhara Prusty B, Kelly D W. Thermal buckling and elasticvibration of third-order shear deformable functionally graded beams[J]. International Journalof Mechanical Sciences.2011,53(9):734-743.
    [64]黄小林,沈惠申.热环境下功能梯度材料板的自由振动和动力响应[J].工程力学.2005,22(3):224-227.
    [65]许杨健,赵志岗.梯度功能材料薄板瞬态热弹性弯曲有限元分析[J].工程力学.2001,18(1):71-81.
    [66]夏贤坤,沈惠申.功能梯度材料剪切板热屈曲后的非线性振动[J].振动工程学报.2008,21(2):120-125.
    [67] Fakhari V, Ohadi A, Yousefian P. Nonlinear free and forced vibration behavior offunctionally graded plate with piezoelectric layers in thermal environment[J]. CompositeStructures.2011,93(9):2310-2321.
    [68] Tay T E. Finite element analysis of thermoelastic coupling in composites[J]. Computers&Structures.1992,43(1):107-112.
    [69]李绍彬.高速重载齿轮传动热弹变形及非线性耦合动力学研究[D].重庆大学博士学位论文.2004.
    [70] Guo X, Wang Z, Wang Y. Dynamic stability of thermoelastic coupling moving platesubjected to follower force[J]. Applied Acoustics.2011,72(2):100-107.
    [71] Atarashi T, Minagawa S. Transient coupled-thermoelastic problem of heat conduction in amultilayered composite plate[J]. International Journal of Engineering Science.1992,30(10):1543-IN10.
    [72]陆波.基于热弹耦合大功率船用齿轮箱动态特性研究[D].重庆大学博士学位论文.2009.
    [73]黄健萌,高诚辉,唐旭晟,等.盘式制动器热-结构耦合的数值建模与分析[J].机械工程学报.2008,44(2):145-151.
    [74]苏华,陈国定.指尖密封的温度场及热结构耦合分析[J].航空动力学报.2009,24(1):196-203.
    [75]张开林,赵利华,张红军.热-结构耦合的高炉炉壳静强度及疲劳强度分析[J].重庆大学学报.2008,31(6):627-631.
    [76]张惠峰,关富玲.可展桁架天线热-结构耦合分析[J].浙江大学学报(工学版).2010,44(12):2320-2325.
    [77]陈超群,徐旭.加热器喷管热-流耦合传热分析[J].北京航空航天大学学报.2010,36(5):592-600.
    [78]张立超,何建元,马晓虹.矩阵式高温涡轮叶片热流耦合计算及验证[J].舰船科学技术.2010,32(8):111-116.
    [79]成庆林,刘扬,王志国,等.油藏多孔介质湿饱和流动的热流耦合分析[J].工程热物理学报.2009,30(9):1451-1454.
    [80]周驰,冯国泰,王松涛,等.涡轮叶栅气热耦合数值模拟[J].工程热物理学报.2003,24(2):224-227.
    [81]夏刚,刘新建,程文科,等.钝体高超声速气动加热与结构热传递耦合的数值计算[J].国防科技大学学报.2003,25(1):35-39.
    [82]董平.航空发动机气冷涡轮叶片的气热耦合数值模拟研究[D].哈尔滨工业大学博士学位论文.2009.
    [83] Imlay S T, Soetrisno M, Roberts D W. Coupled flow and heat transfer analysis using hybridstructured-unstructured grids[C]//AIAA, Aerospace Sciences Meeting and Exhibit.34th,Reno, NV.1996.
    [84]任德鹏,贾阳,刘强.温差电源的整体热电耦合计算[J].清华大学学报(自然科学版).2008,48(8):1372-1376.
    [85]冷鹏,董刚,柴常春,等.考虑热电耦合效应的全芯片温度特性优化方法[J].西安电子科技大学学报(自然科学版).2009,36(6):1053-1058.
    [86]王从思,保宏,仇原鹰,等.星载智能天线结构的机电热耦合优化分析[J].电波科学学报.2008,23(5):991-996.
    [87] Boley B A, Weiner J H. Theory of thermal stresses[M]. Courier Dover Publications.2012.
    [88] Boley B.A. Thermal induced vibrations of beams[J]. Journal of the Aeronautical Sciences.1956,23(2):179-181.
    [89] Boley B.A. Approximate analysis of thermally induced vibrations of beams and plates[J].Journal of Applied Mechanics.1972,94:212-216.
    [90] Thornton E A, Paul D B. Thermal-structural analysis of large space structure-An assessmentof recent advances[J]. Journal of Spacecraft and Rockets.1985,22(4):385-393.
    [91] Thornton E A. Thermal structures for aerospace applications[M]. AIAA.1996.
    [92]邱志平.非概率集合理论凸方法及其应用[M].北京:国防工业出版社.2005.
    [93] Schweppe F. Recursive state estimation: unknown but bounded errors and system inputs[J].,IEEE Transactions on Automatic Control.1968,13(1):22-28.
    [94]刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展.1995,25(1):114-126.
    [95] Ghanem R G, Spanos P D. Stochastic finite elements: a spectral approach[M]. Courier DoverPublications,2003.
    [96] Hien T D, Kleiber M. Stochastic finite element modelling in linear transient heat transfer[J].Computer Methods in Applied Mechanics and Engineering.1997,144(1):111-124.
    [97] Kamiński M, Kleiber M. Perturbation based stochastic finite element method forhomogenization of two-phase elastic composites[J]. Computers&Structures.2000,78(6):811-826.
    [98] Kamiński M. Perturbation-based stochastic finite element method using polynomialresponse function for the elastic beams[J]. Mechanics Research Communications.2009,36(3):381-390.
    [99]李金平,陈建军,刘海锋,等.基于Neumann展开Monte-Carlo有限元法的随机温度场分析[J].西安电子科技大学学报.2007,34(3):453-457.
    [100] Rubinstein R Y. Simulation and the Monte Carlo method[M]. Wiley-interscience,2009.
    [101] Niederreiter H. Quasi‐Monte Carlo Methods[M]. John Wiley&Sons, Ltd,1992.
    [102] Melchers R E. Importance sampling in structural systems[J]. Structural Safety.1989,6(1):3–10.
    [103] Bjerager P. Probability integration by directional simulation[J]. Journal of EngineeringMechanics.1988,114(8):1285–1302.
    [104]杨杰,陈虬. Legendre积分法在随机有限元法中的应用[J].计算力学学报.2005,22(2):214-216.
    [105]杨杰,陈虬,高芝晖.基于Hermite积分的非线性随机有限元法[J].重庆大学学报.2003,26(12):15-17.
    [106]陈建军,车建文.基于概率的工程结构动力特性优化设计[J].应用力学学报.2000,17(1):29-35.
    [107]车建文.基于可靠性的结构动力优化设计研究[D].西安电子科技大学硕士学位论文.1998.
    [108]陈建军,王小兵.随机参数智能板结构的动态特性分析[J].西安电子科技大学学报.2004,31(5):661-665.
    [109]李金平,陈建军,杨建梅.随机瞬态温度场分析[J].机械强度.2008,30(5):758-762.
    [110] Pascual B, Adhikari S. Hybrid perturbation-polynomial chaos approaches to the randomalgebraic eigenvalue problem[J]. Computer Methods in Applied Mechanics and Engineering.2012,217:153-167.
    [111] Sachdeva S K, Nair P B, Keane A J. Hybridization of stochastic reduced basis methods withpolynomial chaos expansions[J]. Probabilistic Engineering Mechanics.2006,21(2):182-192.
    [112] Wan X, Karniadakis G E. An adaptive multi-element generalized polynomial chaos methodfor stochastic differential equations[J]. Journal of Computational Physics.2005,209(2):617-642.
    [113]李杰,陈建兵.随机结构动力响应分析的概率密度演化方法[J].力学学报.2003,35(4):437-441.
    [114]李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报.2003,35(6):716-722.
    [115] Chen J B, Li J. A note on the principle of preservation of probability and probability densityevolution equation[J]. Probabilistic Engineering Mechanics.2009,24(1):51-59.
    [116]雒卫廷,陈建军,姜培刚,等.基于完全概率的随机桁架结构动力响应分析[J].振动工程学报.2006,19(3):302-306.
    [117]高伟,陈建军,程怡,等.随机刚架结构在平稳随机激励下的动力响应分析[J].振动与冲击.2004,23(2):89-92.
    [118] Gao W, Chen J J, Ma J, et al. Dynamic response analysis of stochastic frame structures undernonstationary random excitation[J]. AIAA.2004,42(9):1818-1822.
    [119] Gao W, Chen J J, Cui M, et al. Dynamic response analysis of linear stochastic trussstructures under stationary random excitation[J]. Journal of Sound and Vibration.2005,281(1):311-321.
    [120] Su-Huan C, Zhong-Sheng L, Zong-Fen Z. Random vibration analysis for large-scalestructures with random parameters[J]. Computers&Structures.1992,43(4):681-685.
    [121]王小兵,陈建军,李金平,等.基于随机因子法的随机结构动力特性分析研究[J].振动与冲击.2008,27(2):4-7.
    [122] Gao W, Kessissoglou N J. Dynamic response analysis of stochastic truss structures undernon-stationary random excitation using the random factor method[J]. Computer Methods inApplied Mechanics and Engineering.2007,196(25):2765-2773.
    [123]陈建军,马洪波,马娟,等.基于随机因子的结构分析方法[J].工程力学.2012,29(4):15-23.
    [124]张义民,闻邦椿.随机结构系统的特征值和特征向量分析[J].振动与冲击.2002,21(1):77-105.
    [125]张义民,刘巧玲,闻帮椿.随机结构系统的一般实矩阵特征值问题的概率分析[J].力学季刊.2003,24(4):522-527.
    [126]孙简,丁耀根,陈仲林.电子线路板热可靠性分析方法的研究[J].电子与信息学报.2009,31(4):1013-1016.
    [127]生建友.印制电路板的热可靠性设计[J].可靠性设计与工艺控制.2002,(1):34-38.
    [128]陈建军.机械与结构系统的可靠性[M].西安:西安电子科技大学.1994.
    [129]姚卫星,顾怡.结构可靠性设计[M].北京:航空工业出版社.1997.
    [130] Naess A, Leira B J, Batsevych O. System reliability analysis by enhanced Monte Carlosimulation[J]. Structural Safety.2009,31(5):349-355.
    [131] Marseguerra M, Zio E, Devooght J, et al. A concept paper on dynamic reliability via MonteCarlo simulation[J]. Mathematics and Computers in Simulation.1998,47(2):371-382.
    [132] Kang S C, Koh H M, Choo J F. An efficient response surface method using moving leastsquares approximation for structural reliability analysis[J]. Probabilistic EngineeringMechanics.2010,25(4):365-371.
    [133] Gavin H P, Yau S C. High-order limit state functions in the response surface method forstructural reliability analysis[J]. Structural Safety.2008,30(2):162-179.
    [134]储佳章,王建一.学科交叉融合,寿命定量设计[J].中国机械工程.1998,9(11):1-2.
    [135]高镇同等.疲劳可靠性[M].北京:北京航空航天大学出版社.2001.
    [136]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社.2003.
    [137] Guédé Z, Sudret B, Lemaire M. Life-time reliability based assessment of structuressubmitted to thermal fatigue[J]. International Journal of Fatigue.2007,29(7):1359-1373.
    [138]钱惠华,李海,程滔,等.涡轮导向叶片热疲劳分析[J].航空动力学报.2003,18(2):186-190.
    [139] Zhou X, Tang Z, Qu G. Thermal stress and thermal fatigue analysis of the continuouscasting tundish cover[J]. Materials Science and Engineering: A,2010,527(9):2327-2334.
    [140]王世杰,闫明,佟玲,等.循环载荷下热疲劳裂纹的应力强度因子[J].机械工程学报.2010,46(10):64-68.
    [141]陈建军,王灵刚,李金平.随机参数杆结构在稳态随机温度场下的热分析[J].工程力学.2009,26(6):12-15.
    [142]钱伟长.变分法及有限元(上册)[M].北京:科学出版社.1980.
    [143]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社.1997.
    [144]顾元宪,赵红兵,陈飚松,等.热-应力耦合结构灵敏度分析方法[J].力学学报.2001,33(5):685-691.
    [145]李智勇,刘锦阳,洪嘉振.作平面运动的二维平面板的热耦合动力学问题[J].动力学与控制学报.2006,4(2):114-121.
    [146]何天虎,关明智.有限元法求解广义热弹耦合一维热冲击问题[J].工程力学.2010,27(6):35-39.
    [147]魏永祥,陈建军,王敏娟.随机参数齿轮-转子系统的扭转振动分析[J].航空动力学报.2010,25(11):2637-2642.
    [148] Sharma J N, Grover D. Thermoelastic vibrations in micro-/nano-scale beam resonators withvoids[J]. Journal of Sound and Vibration.2011,330(12):2964-2977.
    [149] Kar A, Kanoria M. Thermo-elastic interaction with energy dissipation in an unbounded bodywith a spherical hole[J]. International Journal of Solids and Structures.2007,44(9):2961-2971.
    [150] Prabhakar S, Vengallatore S. Theory of thermoelastic damping in micromechanicalresonators with two-dimensional heat conduction[J]. Journal of MicroelectromechanicalSystems.2008,17(2):494-502.
    [151] Lifshitz R, Roukes M L. Thermoelastic damping in Micro-nanomechanical systems[J]. Phys.Rev.2000,61:5600-5609.
    [152] Sun Y, Fang D, Soh A K. Thermoelastic damping in micro-beam resonators[J]. InternationalJournal of Solids and Structures.2006,43(10):3213-3229.
    [153] Choi J, Cho M, Rhim J. Efficient prediction of the quality factors of micromechanicalresonators[J]. Journal of Sound and Vibration.2010,329(1):84-95.
    [154] Kumar S, Haque M A. Reduction of thermo-elastic damping with a secondary elastic field[J].Journal of Sound and Vibration.2008,318(3):423-427.
    [155] Prabhakar S, Pa doussis M P, Vengallatore S. Analysis of frequency shifts due tothermoelastic coupling in flexural-mode micromechanical and nanomechanical resonators[J].Journal of Sound and Vibration.2009,323(1):385-396.
    [156] Sharma J N. Thermoelastic damping and frequency shift in micro-nanoscale anisotropicbeams[J]. Journal of Thermal Stresses.2011,34(7):650-666.
    [157] Lepage S, Golinval J C. Finite element modeling of the thermoelastic damping inmicro-electromechanical systems[J]. Third International Conference on AdvancedComputational Methods in Engineering, Ghent, Belgium,30May-2June2005.
    [158] Lepage S, Weickum G, Maute K. Stochastic finite element modeling of thermoelastic qualityfactor of micro-beams[C]//Thermal, Mechanical and Multi-Physics Simulation andExperiments in Microelectronics and Micro-Systems,2008. EuroSimE2008. InternationalConference on. IEEE,2008:1-8.
    [159] Yi Y B, Matin M A. Eigenvalue solution of thermoelastic damping in beam resonators usinga finite element analysis[J]. Journal of Vibration and Acoustics.2007,129(4):478-483.
    [160] Grimes, R. G., Lewis, J. G., Simon, H. D. A Shifted Block Lanczos Algorithm for SolvingSparse Symmetric Generalized Eigenproblems[J]. SIAM Journal Matrix AnalysisApplications.1994,15(1):228-272
    [161] Voss H. A Jacobi–Davidson method for nonlinear and nonsymmetric eigenproblems[J].Computers&Structures.2007,85(17):1284-1292.
    [162] Saberi Najafi H, Moosaei H. A new restarting method in the harmonic projection algorithmfor computing the eigenvalues of a nonsymmetric matrix[J]. Applied Mathematics andComputation.2008,198(1):143-149.
    [163] Chen K S, Ou K S. Equivalent strengths for reliability assessment of MEMS structures[J].Sensors and Actuators A: Physical.2004,112(1):163-174.
    [164] Srikar V T, Senturia S D. The reliability of microelectromechanical systems(MEMS) inshock environments[J]. Journal of Microelectromechanical Systems.2002,11(3):206-214.
    [165] Allen M, Raulli M, Maute K, et al. Reliability-based analysis and design optimization ofelectrostatically actuated MEMS[J]. Computers&Structures.2004,82(13):1007-1020.
    [166] Zhang R, Shi H, Dai Y, et al. Thermo-mechanical reliability optimization of MEMS-basedquartz resonator using validated finite element model[J]. Microelectronics Reliability.2012,52:2331-2335.
    [167] Kamiński M. Generalized stochastic perturbation technique in engineering computations[J].Mathematical and Computer Modelling.2010,51(3):272-285.
    [168] Kamiński M. Perturbation-based stochastic finite element method using polynomialresponse function for the elastic beams[J]. Mechanics Research Communications.2009,36(3):381-390.
    [169] Adhikari S, Friswell M I. Random matrix eigenvalue problems in structural dynamics[J].International Journal for Numerical Methods in Engineering.2007,69(3):562-591.
    [170] Jianqiang H, Changchun Z, Junhua L, et al. Dependence of the resonance frequency ofthermally excited microcantilever resonators on temperature[J]. Sensors and Actuators A:Physical.2002,101(1):37-41.
    [171] Takahashi R, Suzuki M. Interaction enhancement effect in a simple system of two coupleddiscrete stochastic resonators[J]. Physica A: Statistical Mechanics and its Applications.2005,353:85-100.
    [172] Xu Z H, Zhong H X, Zhu X W, et al. An efficient algebraic method for computingeigensolution sensitivity of asymmetric damped systems[J]. Journal of Sound and Vibration.2009,327(3):584-592.
    [173] Rajakumar C, Rogers C R. The Lanczos algorithm applied to unsymmetric generalizedeigenvalue problem[J]. International Journal for Numerical Methods in Engineering.1991,32(5):1009-1026.
    [174] Guedria N, Chouchane M, Smaoui H. Second-order eigensensitivity analysis of asymmetricdamped systems using Nelson's method[J]. Journal of Sound and Vibration.2007,300(3):974-992.
    [175] Belaid M A, Ketata K, Mourgues K, et al. Reliability study of power RF LDMOS deviceunder thermal stress[J]. Microelectronics Journal.2007,38(2):164-170.
    [176] Fitzgerald A M, Pierce D M, Huigens B M, et al. A general methodology to predict thereliability of single-crystal silicon MEMS devices[J]. Journal of MicroelectromechanicalSystems.2009.18(4):962-970.
    [177] Yi T, Kim C J. Measurement of mechanical properties for MEMS materials[J]. MeasurementScience and Technology.1999,10(8):706-716.
    [178] Ericson F, Schweitz J A. Micromechanical fracture strength of silicon[J]. Journal of AppliedPhysics.1990,68(11):5840-5844.
    [179] Ding Y, Xue M, Kim J K. Thermo-structural analysis of space structures using Fourier tubeelements[J]. Computational Mechanics.2005,36(4):289-297.
    [180] Xue M D, Duan J, Xiang Z H. Thermally-induced bending-torsion coupling vibration oflarge scale space structures[J]. Computational Mechanics.2007,40(4):707-723.
    [181]程乐锦,薛明德.大型空间结构热-动力学耦合有限元分析[J].清华大学学报(自然科学版).2004,44(5):681-684.
    [182] Ribeiro P, Manoach E. The effect of temperature on the large amplitude vibrations of curvedbeams[J]. Journal of Sound and Vibration.2005,285(4):1093-1107.
    [183] Hassan M A, Kanno I, Kotera H. Compound two-dimensional thermo-elastic andthermodynamic analysis for c-axis-oriented epitaxial lead titanate thin films[J]. Vacuum.2006,81(4):461-467.
    [184]王小兵,陈建军,梁震涛,等.热机电耦合随机参数智能板结构的数值求解[J].西安电子科技大学学报.2008,35(4):592-599.
    [185] Abd-El-Salam M R, Abd-Alla A M, Hosham H A. A numerical solution ofmagneto-thermoelastic problem in non-homogeneous isotropic cylinder by thefinite-difference method[J]. Applied Mathematical Modelling.2007,31(8):1662-1670.
    [186] Thornton E. A, Kim Y A. Thermally induced bending vibrations of a flexible rolled-up solararray[J]. Journal of Spacecraft and Rockets.1993,30(4):438-448.
    [187]薛明德,向志海.大型空间结构的热-动力学耦合问题及其有限元分析[J].固体力学学报.2011,32(S1):318-328.
    [188]孙权,赵建印,周经伦.复合应力作用下强度退化的应力-强度干涉模型可靠性统计分析[J].计算力学学报.2007,24(3):358-361.
    [189]王正,谢里阳,李兵.随机载荷作用下的零件动态可靠性模型[J].机械工程学报.2007,43(12):20-25.
    [190] Librescu L, Song O. Thin-walled composite beams: theory and application[M]. Springer,2006.
    [191] Schaff J R, Davidson B D. Life prediction methodology for composite structures. PartI—Constant amplitude and two-stress level fatigue[J]. Journal of Composite Materials.1997,31(2):128-157.
    [192] Flom Y, Viens M, Wang L. Evaluation of Engineering Properties of Al-Li AlloyX2096-T8A3Extrusion Products[M]. National Aeronautics and Space Administration.Goddard Space Flight Center,1999.
    [193] Gunn S R. Support vector machines for classification and regression[J]. ISIS technical report.1998,14.
    [194]李刚,刘志强.基于支持向量机替代模型的可靠性分析[J].计算力学学报.2011,28(5):676-681.
    [195]李洪双,吕震宙.支持向量回归机在结构可靠性分析中的应用[J].航空学报.2007,28(1):94-99.
    [196] Guo Z, Bai G. Application of least squares support vector machine for regression toreliability analysis[J]. Chinese Journal of Aeronautics.2009,22(2):160-166.
    [197] Hurtado J E. An examination of methods for approximating implicit limit-state functionsfrom the viewpoint of statistical learning theory[J]. Structural Safety.2004,26(3):271-293.
    [198] Allaix D L, Carbone V I. An improvement of the response surface method[J]. StructuralSafety.2011,33(2):165-172.
    [199]孟广伟,沙丽荣,李锋,等.基于神经网络的结构疲劳可靠性优化设计[J].兵工学报.2010,31(6):765-769.
    [200] Zhao Y X, Yang B, Zhai Z Y. The framework for a strain-based fatigue reliabilityanalysis[J]. International Journal of Fatigue.2008,30(3):493-501.
    [201]赵永翔,彭佳纯,杨冰,等.考虑疲劳本构随机性的结构应力疲劳可靠性分析方法[J].机械工程学报.2006,42(12):36-41.
    [202] Pai P F. System reliability forecasting by support vector machines with genetic algorithms[J].Mathematical and Computer Modelling.2006,43(3):262-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700