用户名: 密码: 验证码:
甲烷水合物生成的静态强化技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水合物技术可以应用在天然气储运、二氧化碳捕获与封存、海水淡化、混合气分离以及蓄冷等领域。然而,水合物生成时缓慢的传质与传热过程已经成为水合物技术应用的一大障碍。传统的机械扰动、添加简单结构导热填料的方法能够较好的在传质或传热上促进气体水合物生成,但机械扰动要引入更多的能耗和设备,简单导热填料的换热效率低。鉴于此,本文从强化传质与传热两方面探索利于水合物高效生成的静态体系,以甲烷为存储对象,研究甲烷水合物在静态体系中的生成特性。
     向纯水中引入疏水性纳米二氧化硅,并高速搅拌分散成具有高比表面积的“硅包水”型水微滴——干水。分散性能优异的干水能够增强水合体系的气-液接触,降低水合诱导时间,促进甲烷水合物快速生成,并提高储气量。但干水经低温水合-升温分解后,其自身“硅包水”的微滴结构被破坏,水从二氧化硅的包囊中溢出、聚集,并形成连续的液态水,使干水的分散性变得很差,基本丧失再次储气的功能,不具有可逆储气的前景。
     向纯水中加入结冷胶形成胶冻,再与疏水性纳米二氧化硅在搅拌器中混合分散,制备成一种有支撑结构的改性干水微滴——凝胶干水。凝胶干水继承了干水良好的分散性,能够强化水合体系的气-液接触,加速水合反应,并保持较高的储气量,而且被凝胶支撑的水微滴经水合-分解后的粘连程度比干水低,储气结束后能够保持一定的分散性,可以比较稳定的储气4~6次,但其储气量和储气速率存在一定的衰减。与干水储气性能相比,凝胶干水的一次储气量和最大储气速率都低,主要是由于被结冷胶支撑固定的部分水不易参与水合反应所致。
     向浓度0.03wt%的十二烷基硫酸钠(SDS)溶液中引入不同质量比例的疏水性纳米二氧化硅,在搅拌器中分散成另一种改性干水微滴——SDS干溶液。SDS干溶液不仅具有干水的高度分散性,而且每个微滴又具有SDS溶液的表面活性,该体系能够从宏观和微观两方面促进水合体系的气-液接触,提高甲烷水合速率和储气量。不同硅含量的SDS干溶液分散效果不同,但各自的储气速率与同浓度的SDS溶液的水合储气速率相当,比同浓度的SDS溶液储气量高。硅含量7.5wt%的SDS干溶液分散效果好、含水量高,对甲烷的储存量最高,与相同硅含量的干水储气量相当,但比干水储气速率高约1倍。因此,SDS干溶液在促进水合物储气过程中,结合了干水与表面活性剂溶液各自的储气优势,但其储气后也会出现类似干水结构被破坏的现象。
     将多孔泡沫铝浸入到浓度0.03wt%的SDS溶液中,其丰富的金属表面可以将水合过程中的热量快速疏导出去,使含泡沫铝的SDS溶液储气速率比单纯的SDS溶液储气速率更大。泡沫铝对SDS溶液水合储气速率的提高率随操作压力的增加而降低,而且对于水合压力推动力过小而不易水合储气的SDS溶液,泡沫铝的加入还有促进水合物成核的作用,主要归功于其粗糙的金属表面能够提供水合结晶点。用填充相为球形的两相复合模型计算甲烷水合物-泡沫铝“复合材料”的导热系数后发现,其有效导热系数是纯甲烷水合物导热系数的132倍。
     将干水和凝胶干水分别填充到高孔隙率的泡沫铜中,导热性优异的泡沫铜金属骨架可以将两个水合体系中的水合热及时疏导出去,使含泡沫铜的干水或凝胶干水体系比各自不含泡沫铜的体系储气速率高。泡沫铜对两个分散体系最大水合速率的提高率随着压力的增加而变大。虽然泡沫铜有稳定的金属网络骨架,但对干水或凝胶干水体系均没有支撑作用,两个体系的水微滴也分别会出现类似于干水和凝胶干水储气后粘结、聚集的现象,而且这种现象比单独的干水或凝胶干水体系更严重,使两个体系的再次储气性更差。
     以上几个静态水合体系通过强化气-液接触(传质)或强化水合热快速导出(传热)或二者同时强化,促进了甲烷水合物生成,提高了水合储甲烷量,对水合物的大规模生产具有重要的指导意义。
Gas hydrates technology can be contributed to many fields, such as natural gas storage andtransportation, carbon dioxide capture and sequestration, seawater desalination, mixture gasseparation and cold storage in the form of hydrate. However, hydrate formation has beencritically challenged by its poor rate of mass and heat transfer. Mechanical methods andsimple-structure metal fills are often employed in experimental operations to enchancehydrate formation. However, the substantial cost of mechanical devices and energyrequirements may be an unwise payment in real gas storage application. The efficiency ofenhancing heat transfer by simple-strcuture metal fills is also very poor. Hence, in this paer,properties of methane storage in the form of hydrate in static systems were conducted tostudy.
     Dry water (DW) with high specific surface was prepared by mixing water, hydrophobicSiO2nanoparticles and air at high speeds. Hydrophobic SiO2particles can encapsulateisolated macroscopic water droplets. Dispersed DW can dramatically reduce the inductiontime and enhance the formation rate of methane hydrare by increasing gas-liquid contactsunder static conditions. However, the capsule-structure water droplets were destabilized byhydration-dissociation process. Most of destroyed DW droplets were connected together andformed continuous liquid phase. The rest DW droplets and continuous water has poorperproties of gas storage and little prospect of reversible storage.
     Gel-supporting dry water (GDW) with high specific surface was fomed by mixing water,SiO2nanoparticles, Gellan gun powder and air at high speeds. The modified dry water aremicro-hygrophanous gel particles encapsulated by hydrophobic SiO2particles and also owngood dispersion. GDW can accelerate methane hydrate formation by enhancing contacts ofmethane and hygrophanous gel particles. After hydrate dissociation, some GDW particlesalso connected together and became agglomerative gel particles; the others still kept gooddispersion and can store methane for4~6times due to the supporting action of gel. ThoughGDW primarily realized reversible methane storage, the storage capacity/rate was inferior tothat of DW and decay of storage capacity/rate existed in GDW system.
     Another modified dry water, dry solution (DS), was prepared by mixing0.03wt%sodium dodecyl sulfate (SDS) solution, hydrophobic SiO2nanoparticles and air in a high speedblender. SDS-DS combined the good dipersity of DW and the surface activity of SDSsolution. Each SDS-DS droplet can be considered as a micro system of surfactant solution.SDS-DS can enhance gas-liquid contacts and promote methane hyrate formation formmacroscopic and microscopic aspects. The dispersion effect of SDS-DS samples with variouscontents of SiO2was different, but no obvious kinetic differences of hydrate formation wereobserved among them. Rates of methane hydrate formation in these SDS-DS systems were allnearly equivalent to that of single SDS solution and all storage capacities were higher thanthat of SDS solution. The sample with7.5wt%SiO2exhibited about the same CH4storagecapacity as dry water (7.5wt%SiO2), but about twice faster rate than dry water. ThoughSDS-DS combined the advantages of dispersed liquid and surfactant solution, thecapsule-structure of droplets was still destabilized after hydrate dissociation.
     Aluminum foam (AF) can provide numerous natural micro vessels with excellent thermalconductivity wall. The addition of AF into SDS solution can promoted hydration heatremoval and accelerate methane hydrate formatioin. The acceleration effect of SDS-AF onhydrate formation is superior to that of SDS itself. Increment fractions of maximum hydrationrates in the presence of AF became smaller with the increasing pressure. Under low pressure,the addition of AF also can promote hydrate nucleation due to its rough metal surface. Areliable heat conduction model based on two-phase materials with spherical inclusions hasbeen applied to determine the effective thermal conductivity (ETC) of hydrate-AF―composites‖. The predicted ETC of composites was132times higher than the thermalconductivity of methane hydrate.
     The systems of copper foam (CF) filled with DW or GDW exhibited better storage ratecompared to single DW systems or GDW systems, respectively, because the addition of CFaccelerated hydration heat transfer. For each system, the increment fraction of maximumhydration rates in the presence of CF became greater with the increasing pressure. The metalframework of CF can not play a supporting action in DW or GDW systems and thecapsule-strcuture of droplets in the two systems was also destroyed after hydrate dissociation.The destruction degree was more serious than the systems without CF.
     Fast methane storage was achieved in above static systems by enhancing gas-liquid contacts and removing the hydration heat timely, which can provide significance informationon large-scale production of hydrate.
引文
[1]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].北京:化学工业出版社,2008
    [2] Sloan E. D., Koh C. A. Clathrate Hydrates of Natural Gases[M].3rdEdition. Boca Raton:CRC Press,2008
    [3] Mao W. L., Mao H., Goncharov A. F., et al. Hydrogen clusters in clathrate hydrate[J].Science,2002,297(5590):2247-2249
    [4] Sloan E. D. Natural gas hydrates[J]. Journal of Petroleum Technology,1991,43(12):1414-1417
    [5] Palin D. E., Powell H. M. The structure of molecular compounds. Part V. The clathratecompound of quinol and methanol[J]. Journal of the Chemical Society (Resumed),1948:571-574
    [6] Englezos P. Clathrate hydrates[J]. Industrial&Engineering Chemistry Research,1993,32(7):1251-1274
    [7] Ripmeester J. A., Ratcliffe C. I. Xenon-129NMR studies of clathrate hydrates: new guestsfor structure II and structure H[J]. Journal of Physical Chemistry,1990,94(25):8773-8776
    [8] Von Stackelberg M. Solid gas hydrates[J]. Naturwissenschaften,1949,36:327-359
    [9]樊栓狮.天然气水合物储存与运输技术[M].北京:化学工业出版社,2005
    [10]樊栓狮,徐文东,解东来.天然气利用新技术[M].北京:化学工业出版社,2012
    [11] Fitzgerald A., Taylor M. Offshore gas-to-solids technology[J]. Offshore EuropeConference, SPE paper71805,2001
    [12] Johnson A. H. The development path for hydrate natural gas[A]. Proceedings of the6thInternational Conference on Gas Hydrates[C]. Vancouver, British Columbia, Canada,2008
    [13] Nogami T., Oya N., Ishida H., et al. Development of natural gas ocean transportation chainby means of natural gas hydrate (NGH)[J]. Proceedings of the6thInternational Conferenceon Gas Hydrates[C], Vancouver, British Columbia, Canada,2008.
    [14]孙志高,樊栓狮,郭开华.天然气水合物储存技术研究[J].天然气与石油,2001,19(1):4-6
    [15]孙志高,樊栓狮,郭开华,等.气体水合物──储运天然气技术与发展[J].化工进展,2001,(1):9-12
    [16]孔昭瑞.天然气非常规储运技术及其发展前景[J].油气储运,2003,22(7):1-4
    [17] Hutchinson A. J. J. System for forming and storing hydrocarbon hydrates [P]. US Patent.No.2356407,1946
    [18] Miller B., Strong E. R. Hydrate storage of natural gas[J]. American Gas AssociationMonthly,1946,28(2):63-67
    [19] Gudmundsson J. S. Method and equipment for production of gas hydrates[P]. NorwegianPatent, No.172080,1990
    [20] Gudmundsson J. S. Method for production of gas hydrate for transportation and storage [P].US Patent, No.5536893,1996
    [21] Gudmundsson J. S., Mork M., Graff O. F. Hydrate non-pipeline technology[A].Proceedings of4thInternational Conference on Gas Hydrates [C]. Yokohama, Japan,2002:19-23
    [22] Gudmundsson J. S., Andersson V., Levik O. I., et al. Natural gas hydrates: A newgas-transportation form[J]. Journal of Petroleum Technology,1999,51(4):66-67
    [23] Takaoki T., Hirai K., Kamei M., et al. Study of natural gas hydrate (NGH) carriers[A].Proceedings of the5thInternational Conference on Gas Hydrates[C], Trondheim, Norway,2005:1258-1265
    [24] Iwasaki T. Continuous natural gas hydrate pellet production (NGHP) by processdevelopment unit (PDU)[A]. Proceeding of5thInternational Conference on Gas Hydrate
    [C], Trondheim, Norway,2005:1107-1115
    [25] Kanda H., Uchida K., Nakamura K., et al. Economics and energy requirements on naturalgas ocean transportation in form of natural gas hydrate (NGH) pellets[A]. Proceedings of5thInternational Conference on Gas Hydrate[C], Trondheim, Norway,2005:1275-1282
    [26]陈光进,程宏远,樊栓狮.新型水合物分离技术研究进展[J].现代化工,1999,19(7):12-14
    [27]聂江华.基于水合物法分离天然气中二氧化碳研究.华南理工大学硕士论文[D].2012
    [28] van Denderen M., Ineke E., Golombok M. CO2removal from contaminated natural gasmixtures by hydrate formation[J]. Industrial&Engineering Chemistry Research,2009,48(12):5802-5807
    [29] Dabrowski N., Windmeier C., Oellrich L. R. Purification o f natural gases with high CO2content using gas hydrates[J]. Energy&Fuels,2009,23(11):5603-5610
    [30] Azmi N., Hilmi M., Sabil K. M. Removal of high CO2content in natural gas by formationof gas hydrates as a potential solution for CO2gas emission[J]. Journal of AppliedSciences,2011,11(21):3547-3554
    [31] Kang S., Lee H. Recovery of CO2from flue gas using gas hydrate: thermodynamicverification through phase equilibrium measurements[J]. Environmental Science&Technology,2000,34(20):4397-4400
    [32] Duc N. H., Chauvy F., Herri J. CO2capture by hydrate crystallization–A potential solutionfor gas emission of steelmaking industry[J]. Energy Conversion and Management,2007,48(4):1313-1322
    [33] Li S., Fan S., Wang J., et al. CO2capture from binary mixture via forming hydrate with thehelp of tetra-n-butyl ammonium bromide[J]. Journal of Natural Gas Chemistry,2009,18(1):15-20
    [34] Li S., Fan S., Wang J., et al. Clathrate hydrate capture of CO2from simulated flue gas withcyclopentane/water emulsion[J]. Chinese Journal of Chemical Engineering,2010,18(2):202-206
    [35] Fan S., Li S., Wang J., et al. Efficient capture of CO2from simulated flue gas by formationof TBAB or TBAF semiclathrate hydrates[J]. Energy&Fuels,2009,23(8):4202-4208
    [36] Surovtseva D., Amin R., Barifcani A. Design and operation of pilot plant for CO2capturefrom IGCC flue gases by combined cryogenic and hydrate method[J]. ChemicalEngineering Research and Design,2011,89(9):1752-1757
    [37] Lee H. J., Lee J. D., Linga P., et al. Gas hydrate formation process for pre-combustioncapture of carbon dioxide[J]. Energy,2010,35(6):2729-2733
    [38] Zhang B., Wu Q. Thermodynamic promotion of tetrahydrofuran on methane separationfrom low-concentration coal mine methane based on hydrate[J]. Energy&Fuels,2010,24(4):2530-2535
    [39] Sun Q., Guo X., Liu A., et al. Experimental study on the separation of CH4and N2viahydrate formation in TBAB solution[J]. Industrial&Engineering Chemistry Research,2010,50(4):2284-2288
    [40] Li X., Cai J., Chen Z., et al. Hydrate-Based Methane Separation from the DrainageCoal-Bed Methane with Tetrahydrofuran Solution in the Presence of Sodium DodecylSulfate[J]. Energy&Fuels,2012,26(2):1144-1151
    [41] Zhong D., Englezos P. Methane separation from coal mine methane gas by tetra-n-butylammonium bromide semiclathrate hydrate formation[J]. Energy&Fuels,2012,26(4):2098-2106
    [42] Ma C., Chen G., Wang F., et al. Hydrate formation of (CH4+C2H4and (CH4+C3H6) gasmixtures[J]. Fluid Phase Equilibria,2001,191(1):41-47
    [43] Zhang L., Chen G., Guo X., et al. The partition coefficients of ethane between vapor andhydrate phase for methane+ethane+water and methane+ethane+THF+water systems[J].Fluid Phase Equilibria,2004,225:141-144
    [44] Zhang L., Huang Q., Sun C., et al. Hydrate formation conditions of methane+ethylene+tetrahydrofuran+water systems[J]. Journal of Chemical&Engineering Data,2006,51(2):419-422
    [45] Zhang L., Chen G., Sun C., et al. The partition coefficients of ethyle ne between vapor andhydrate phase for methane+ethylene+THF+water systems[J]. Fluid Phase Equilibria,2006,245(2):134-139
    [46] Zhang L., Chen G., Sun C., et al. The partition coefficients of ethylene between hydrateand vapor for methane+ethylene+water and methane+ethylene+SDS+water systems[J].Chemical Engineering Science,2005,60(19):5356-5362
    [47] Peng B., Sun C., Chen G., et al. Dissociation behavior of (CH4+C2H4) hydrate in thepresence of sodium dodecyl sulfate[J]. Petroleum Science,2010,7(1):112-117
    [48] Linga P., Daraboina N., Ripmeester J. A., et al. Enhanced rate of gas hydrate formation ina fixed bed column filled with sand compared to a stirred vessel[J]. Chemical EngineeringScience,2012,68(1):617-623
    [49] Saji A., Yoshida H., Sakai M., et al. Fixation of carbon dioxide by clathrate-hydrate[J].Energy Conversion and Management,1992,33(5):643-649
    [50] Nishikawa N., Morishita M., Uchiyama M., et al. CO2clathrate formation and itsproperties in the simulated deep ocean[J]. Energy Conversion and Management,1992,33(5):651-657
    [51] Takano S., Yamasaki A., Ogasawara K., et al. Development of a formation process of CO2hydrate particles for ocean disposal of CO2[A].6thInternational Conference of GreenhouseGas Control Technologies[C].2003
    [52] Yamasaki A., Wakatsuki M., Teng H., et al. A new ocean disposal scenario foranthropogenic CO2: CO2hydrate formation in a submerged crystallizer and its disposal[J].Energy,2000,25(1):85-96
    [53] Zhou X., Fan S., Liang D., et al. Replacement of methane from quartz sand-bearinghydrate with carbon dioxide-in-water emulsion[J]. Energy&Fuels,2008,22(3):1759-1764
    [54] Parker A. Potable water from sea-water[J]. Nature,1942,149:184-186
    [55] Knox W. G., Hess M., Jones G. E., et al. The hydrate process[J]. Chemical EngineeringProgress,1961,57(2):66-71
    [56] Barduhn A. J., Towlson H. E., Hu Y. C. The properties of some new gas hydrates and theiruse in demineralizing sea water[J]. AIChE Journal,1962,8(2):176-183
    [57] Barduhn A. J. The state of the crystallization processes for desalting saline waters[J].Desalination,1968,5(2):173-184
    [58] Max M. D., Pellenbarg R. E. Desalination through methane hydrate[P]. US Patents,No.5873262,1999
    [59]耿昌全,裘俊红,朱菊香.水合物技术[J].化工进展,2001,11(3):14-17
    [60]杨亮,樊栓狮,郎雪梅.气体水合物在空调蓄冷中的应用研究进展[J].现代化工,2008,28(9):33-37
    [61] Carbajo J. J. A direct-contact-charged direct-contact-discharged cool storage system usinggas hydrate[J]. Ashrae Transaction,1985,91:258-266
    [62] Akiya T., Owa M., Nakaiwa M., et al. Cool storage using gas hydrate[A]. In Proceedingsof the17thInternational Congress of Refrigeration [C],1987:166-170
    [63] Mori T., Mori Y. H. Characterization of gas hydrate formation in direct-contact coolstorage process[J]. International journal of refrigeration,1989,12(5):259-265
    [64]吕昶,郭廷玮,朱庭英,等.气体水合物蓄冷实验研究[J].制冷学报,2000,21(2):14-18
    [65]毕月虹,郭廷玮,朱庭英,等.促晶器流量对气体水合物蓄冷过程影响的实验研究[J].制冷学报,2003,24(1):1-8
    [66]赵永利,郭开华,樊栓狮,等.气体水合物结晶引导时间和结晶区域的实验研究[J].制冷,2001,20(2):1-5
    [67]徐新亚,刘道平,黄文件,等.气-液界面处水合物膜形成过程的传热分析[J].上海理工大学学报,2005,27:503-506
    [68]陈光进,马庆兰,郭天民.气体水合物生成机理和热力学模型的建立[J].化工学报,2000,51(5):626-631
    [69]刘勇,郭开华,梁德青,等.混合致冷剂水合物晶体生成和分解过程研究[J].哈尔滨工业大学学报,2004,36(2):242-245
    [70]李金平,王立璞,梁德青,等.表面活性剂对气体水合物生成过程的影响[J].2006,36(4):364-369
    [71] Cox J. L. Natural gas hydrates: Properties, occurrence and recovery[M]. United States,1983
    [72] Englezos P., Kalogerakis N., Dholabhai P. D., et al. Kinetics of formation of methane andethane gas hydrates[J]. Chemical Engineering Science,1987,42(11):2647-2658
    [73] Englezos P., Bishnoi P. R. Gibbs free energy analysis for the supersaturation limits ofmethane in liquid water and the hydrate-gas-liquid water phase behavior[J]. Fluid PhaseEquilibria,1988,42:129-140
    [74] Kashchiev D., Firoozabadi A. Induction time in crystallization of gas hydrates[J]. Journalof Crystal Growth,2003,250(3):499-515
    [75] Sloan E. D., Fleyfel F. A molecular mechanism for gas hydrate nucleation from ice[J].AIChE Journal,1991,37(9):1281-1292
    [76] Christiansen R. L., Sloan E. D. Mechanisms and kinetics of hydrate formation[J]. Annalsof the New York Academy of Sciences,1994,715(1):283-305
    [77] Long J. Gas hydrate formation mechanism and kinetic inhibition[D]. Colerado School ofMines,1994
    [78] Lekvam K., Ruoff P. A reaction kinetic mechanism for methane hydrate formation inliquid water[J]. Journal of the American Chemical Society,1993,115(19):8565-8569
    [79] Chen G., Guo T. Thermodynamic modeling of hydrate formation based on new concepts[J].Fluid Phase Equilibria,1996,122(1):43-65
    [80] Chen G., Guo T. A new approach to gas hydrate modelling[J]. Chemical EngineeringJournal,1998,71(2):145-151
    [81] Makogon I. U. R. F., Makogon J. F., Ingénieur R., et al. Hydrates of natural gas[M].PennWell Books,1981
    [82] Vysniauskas A., Bishnoi P. R. A kinetic study of methane hydrate formation[J]. ChemicalEngineering Science,1983,38(7):1061-1072
    [83] Vysniauskas A., Bishnoi P. R. Kinetics of ethane hydrate formation[J]. ChemicalEngineering Science,1985,40(2):299-303
    [84] Englezos P., Kalogerakis N., Dholabhai P. D., et al. Kinetics of gas hydrate formation frommixtures of methane and ethane[J]. Chemical Engineering Science,1987,42(11):2659-2666
    [85] Skovborg P., Rasmussen P. A mass transport limited model for the growth of methane andethane gas hydrates[J]. Chemical Engineering Science,1994,49(8):1131-1143
    [86] Kvamme B. Initiation and growth of hydrate[A]. Proceeding of the4thInternationalConference on Gas Hydrtes[C]. Yokohama, Japan,2002:461-464
    [87] Stern L. A., Hogenboom D. L., Durham W. B., et al. Optical-cell evidence for superheatedice under gas-hydrate-forming conditions[J]. The Journal of Physical Chemistry B,1998,102(15):2627-2632
    [88] FitzGerald S. A., Neumann D. A., Rush J. J., et al. In situ quasi-elastic neutron scatteringstudy of the hydration of tricalcium silicate[J]. Chemistry of Materials,1998,10(1):397-402
    [89] Saito M. Characteristics of microcracking in concrete under static and repeated tensileloading[J]. Cement and Concrete Research,1987,17(2):211-218
    [90] Henning R. W., Schultz A. J., Thieu V., et al. Neutron diffraction studies of CO2clathratehydrate: Formation from deuterated ice[J]. The Journal of Physical Chemistry A,2000,104(21):5066-5071
    [91] Stern L. A., Kirby S. H., Durham W. B. Polycrystalline methane hydrate: Synthesis fromsuperheated ice, and low-temperature mechanical properties[J]. Energy&Fuels,1998,12(2):201-211
    [92] Kawamura T., Komai T., Yamamoto Y., et al. Growth kinetics of CO2hydrate just belowmelting point of ice[J]. Journal of Crystal Growth,2002,234(1):220-226
    [93] Ratcliffe C. I., Ripmeester J. A. Proton and carbon-13NMR studies on carbon dioxidehydrate[J]. The Journal of Physical Chemistry,1986,90(7):1259-1263
    [94] Hwang M. J., Wright D. A., Kapur A., et al. An experimental study of crystallization andcrystal growth of methane hydrates from melting ice[J]. Journal of Inclusion Phenomenaand Molecular Recognition in Chemistry,1990,8(1-2):103-116
    [95] Rekoske J. E., Barteau M. A. In situ studies of carbonyl coupling: comparisons ofliquid-solid and gas-solid reactions with reduced titanium reagents[J]. Industrial&Engineering Chemistry Research,1995,34(9):2931-2939
    [96] Levenspiel O. Chemical Reaction Engineering[M]. John Wiley&Sons,1999
    [97] Froment G. F., Bischoff K. B., De Wilde J. Chemical Reactor Analysis And Design[M].Wiley New York,1990
    [98] Kini R. A., Dec S. F., Sloan E. D. Methane+propane structure II hydrate formationkinetics[J]. The Journal of Physical Chemistry A,2004,108(44):9550-9556
    [99] Saito Y., Kawasaki T., Kondo T., et al. Methane storage in hydrate phase with watersoluble guests[A]. Proceeding of the2ndInternational Conference on Gas Hydrate[C],Toulouse, France,1996:459-465
    [100] De Deugd R. M., Jager M. D., de Swaan Arons J. Mixed hydrates of methane andwater‐soluble hydrocarbons modeling of empirical results[J]. AIChE Journal,2001,47(3):693-704
    [101] Tohidi B., Danesh A., Tabatabaei A. R., et al. Vapor-hydrate equilibrium ratio charts forheavy hydrocarbon compounds.1. Structure-II hydrates: Benzene, cyclopentane,cyclohexane, and neopentane[J]. Industrial&Engineering Chemistry Research,1997,36(7):2871-2874
    [102] Tohidi B., Danesh A., Todd A. C., et al. Equilibrium data and thermodynamic modellingof cyclopentane and neopentane hydrates[J]. Fluid Phase Equilibria,1997,138(1):241-250
    [103] Jager M. D., De Deugd R. M., Peters C. J., et al. Experimental determination and modelingof structure II hydrates in mixtures of methane+water+1,4-dioxane[J]. Fluid PhaseEquilibria,1999,165(2):209-223
    [104] Fan S. S., Liang D. Q., Guo K. H. Hydrate eq uilibrium conditions of cyclopentane and aquaternary cyclopentane-rich mixture[J]. Journal of Chemical&Engineering Data,2001,46(4):930-932
    [105] Mooijer-van Den Heuvel M. M., Peters C. J., de Swaan Arons J. Influence ofwater-insoluble organic components on the gas hydrate equilibrium conditions ofmethane[J]. Fluid Phase Equilibria,2000,172(1):73-91
    [106] Li D., Du J., Fan S., et al. Clathrate dissociation conditions of methane+tetra-n-butylammonium bromide (TBAB)+water[J]. Journal of Chemical&Engineering Data,2007,52(5):1916-1918
    [107] Gudmundsson J. S., Parlaktuna M., Khokhar A. A. Storage of natural gas as frozenhydrate[J]. Oil Production&Facilities,1994,9(1):69-73
    [108] Hao W., Wang J., Fan S., et al. Study on methane hydration process in a semi-continuousstirred tank reactor[J]. Energy Conversion and Management,2007,48(3):954-960
    [109]郝文峰,樊栓狮,王金渠.搅拌对甲烷水合物生成的影响[J].天然气化工,2005,30(3):5-11
    [110] Linga P., Kumar R., Lee J. D., et al. A new apparatus to enhance the rate of gas hydrateformation: Application to capture of carbon dioxide[J]. International Journal ofGreenhouse Gas Control,2010,4(4):630-637
    [111] Golombok M., Ineke E., Luzardo J. R., et al. Resolving CO2and methane hydrateformation kinetics[J]. Environmental Chemistry Letters,2009,7(4):325-330
    [112] Mork M. Formation rate of natural gas hydrate[D]. Norway: Norwegian University ofScience and Technology,2002
    [113]周春艳,郝文峰,冯自平.孔板气泡法缩短天然气水合物形成诱导期[J].天然气工业,2005,25(7):27-29
    [114] Luo Y., Zhu J., Fan S., et al. Study on the kinetics of hydrate formation in a bubblecolumn[J]. Chemical Engineering Science,2007,62(4):1000-1009
    [115]罗艳托,朱建华,陈光进.甲烷-四氢呋喃-水体系水合物生成动力学的实验和模型化研究[J].化工学报,2006,57(5):1153-1158
    [116] Takahashi M., Kawamura T., Yamamoto Y., et al. Effect of shrinking microbubble on gashydrate formation[J]. The Journal of Physical Chemistry B,2003,107(10):2171-2173
    [117]郝文峰.天然气水合物生成过程及其反应器特性研究[D].大连理工大学博士论文,2006
    [118] Rogers R., Yevi G., Swalm M. Hydrate for storage of natural gas[A]. Proceeding of the2ndInternational Conference on Gas Hydrate[C], Toulouse, France,1996:423-429
    [119] Fukumoto K., Tobe J. I., Ohmura R., et al. Hydrate formation using water spraying in ahydrophobic gas: a preliminary study[J]. AIChE Journal,2001,47(8):1899-1904
    [120] Fujita S., Watanabe K., Mori Y. H. Clathrate-hydrate formation by water spraying onto aporous metal plate exuding a hydrophobic liquid coolant[J]. AIChE Journal,2009,55(4):1056-1064
    [121] Ohmura R., Kashiwazaki S., Shiota S., et al. Structure-I and structure-H hydrate formationusing water spraying[J]. Energy&fuels,2002,16(5):1141-1147
    [122] Murakami T., Kuritsuka H., Fujii H., et al. Forming a structure-H hydrate using water andmethylcyclohexane jets impinging on each other in a methane atmosphere[J]. Energy&Fuels,2009,23(3):1619-1625
    [123]谢应明,刘道平,樊燕,等喷雾式天然气水合物储气系统的实验研究[J].上海理工大学学报,2007,29(4):368-372
    [124]李刚,谢应明,刘道平,等.进气方式影响CO2水合物喷雾合成的实验研究[J].低温与特气,2008,26(2):15-19
    [125]张亮,刘道平,樊燕,等.喷雾反应器对生成甲烷水合物影响研究[J].齐鲁石油化工,2008,36(3):165-168
    [126]樊栓狮,杨亮,郎雪梅,等.一种喷射制备气体水合物的可视化装置[P].专利号:ZL200910038985.6
    [127]樊栓狮,杨亮,郎雪梅,等.一种制备气体水合物的喷射式反应器[P].专利号: ZL200910038986.0
    [128]刘有智,邢银全,崔磊军.超重力旋转填料床中天然气水合物含气量研究[J].化工进展,2007,26(6):853-856
    [129]白净,梁德青,李栋梁,等. CO2水合物在静态超重力反应器中的生成过程[J].工程热物理学报,2010,8:1285-1288
    [130] Stern L. A., Kirby S. H., Durham W. B. Peculiarities of methane clathrate hydrateformation and solid-state deformation, including possible superheating of water ice[J].Science,1996,273(5283):1843-1848
    [131] Kalogerakis N., Jamaluddin A., Dholabhai P. D., et al. Effect of surfactants on hydrateformation kinetics[A]. SPE International Symposium on Oilfield Chemistry[C].1993
    [132] Karaaslan U., Parlaktuna M. Surfactants as hydrate promoters?[J]. Energy&Fuels,2000,14(5):1103-1107
    [133] Zhong Y., Rogers R. E. Surfactant effects on gas hydrate formation[J]. ChemicalEngineering Science,2000,55(19):4175-4187
    [134] Han X., Wang S., Chen X., et al. Surfactant accelerates gas hydrate formation[A].Proceeding of the4thInternational Conference on Gas Hydrates[C], Yokohama, Japan,2002:1036-1039
    [135] Sun Z., Ma R., Wang R., et al. Experimental studying of additives effects on gas storage inhydrates[J]. Energy&fuels,2003,17(5):1180-1185
    [136] Sun Z., Wang R., Ma R., et al. Natural gas storage in hydrates with the presence ofpromoters[J]. Energy Conversion and Management,2003,44(17):2733-2742
    [137] Zhang C. S., Fan S. S., Liang D. Q., et al. Effect of additives on formation of natural gashydrate[J]. Fuel,2004,83(16):2115-2121
    [138] Lin W., Chen G., Sun C., et al. Effect of surfactant on the formation and dissociationkinetic behavior of methane hydrate[J]. Chemical Engineering Science,2004,59(21):4449-4455
    [139] Ganji H., Manteghian M., Omidkhah M. R., et al. Effect of different surfactants onmethane hydrate formation rate, stability and storage capacity[J]. Fuel,2007,86(3):434-441
    [140] Ganji H., Manteghian M., Rahimi Mofrad H. Effect of mixed compounds on methanehydrate formation and dissociation rates and storage capacity[J]. Fuel ProcessingTechnology,2007,88(9):891-895
    [141] Daimaru T., Yamasaki A., Yanagisawa Y. Effect of surfactant carbon chain length onhydrate formation kinetics[J]. Journal of Petroleum Science and Engineering,2007,56(1):89-96
    [142] Link D. D., Ladner E. P., Elsen H. A., et al. Formation and dissociation studies foroptimizing the uptake of methane by methane hydrates[J]. Fluid Phase Equilibria,2003,211(1):1-10
    [143] Okutani K., Kuwabara Y., Mori Y. H. Surfactant effects on hydrate formation in anunstirred gas/liquid system: An experimental study using methane and sodium alkylsulfates[J]. Chemical Engineering Science,2008,63(1):183-194
    [144] Yoslim J., Linga P., Englezos P. Enhanced growth of methane–propane clathrate hydratecrystals with sodium dodecyl sulfate, sodium tetradecyl sulfate, and sodium hexadecylsulfate surfactants[J]. Journal of Crystal Growth,2010,313(1):68-80
    [145] Perrin A., Celzard A., Mareche J. F., et al. Methane storage within dry and wet activecarbons: A comparative study[J]. Energy&fuels,2003,17(5):1283-1291
    [146] Perrin A., Celzard A., Mareche J. F., et al. Improved methane storage capacities bysorption on wet active carbons[J]. Carbon,2004,42(7):1249-1256
    [147] Zanota M., Périer-Camby L., Chauvy F., et al. Improvement of methane storage inactivated carbon using methane hydrate[A]. Proceedings of the5thInternationalConference on Gas Hydrates[C], Trondheim, Norway,2005
    [148] Zhou L., Li M., Sun Y., et al. Effect of moisture in microporous activated carbon on theadsorption of methane[J]. Carbon,2001,39(5):773-776
    [149] Zhou L., Sun Y., Zhou Y. Enhancement of the methane storage on activated carbon bypreadsorbed water[J]. AIChE Journal,2002,48(10):2412-2416
    [150] Yan L., Chen G., Pang W., et al. Experimental and modeling study on hydrate formation inwet activated carbon[J]. The Journal of Physical Chemistry B,2005,109(12):6025-6030
    [151] Park S., Lee S., Kim N. Effect of multi-walled carbon nanotubes on methane hydrateformation[J]. Journal of Industrial and Engineering Chemistry,2010,16(4):551-555
    [152]臧小亚,梁德青,吴能友.碳纳米管-水合物法储甲烷性能研究[J].工程热物理学报,2010,(005):725-728
    [153] Zang X., Du J., Liang D., et al. Influence of A-type zeolite on methane hydrateformation[J]. Chinese Journal of Chemical Engineering,2009,17(5):854-859
    [154] Linga P., Daraboina N., Ripmeester J. A., et al. Enhanced rate of gas hydrate formation ina fixed bed column filled with sand compared to a stirred vessel[J]. Chemical EngineeringScience,2012,68(1):617-623
    [155] Kang S., Lee J. Kinetic behaviors of CO2hydrates in porous media and effect of kineticpromoter on the formation kinetics[J]. Chemical Engineering Science,2010,65(5):1840-1845
    [156] Gupta A., Lachance J., Sloan E. D., et al. Measurements of methane hydrate heat ofdissociation using high pressure differential scanning calorimetry[J]. ChemicalEngineering Science,2008,63(24):5848-5853
    [157] Xie Y., Guo K., Liang D., et al. Steady gas hydrate growth along vertical heat transfer tubewithout stirring[J]. Chemical engineering science,2005,60(3):777-786
    [158] Xie Y., Guo K., Liang D., et al. Gas hydrate growth morphology outside of horizontal heattransfer tube[J]. Journal of crystal growth,2005,276(1):253-264
    [159] Lee J., Shin C., Lee Y. Experimental investigation to improve the storage potentials of gashydrate under the unstirring condition[J]. Energy&Fuels,2009,24(2):1129-1134
    [160] Pang W., Chen G., Dandekar A., et al. Experimental study on the scale-up effect of gasstorage in the form of hydrate in a quiescent reactor[J]. Chemical Engineering Science,2007,62(8):2198-2208
    [161]刘永红.超声波对HCFC-141b水合物形成过程的影响研究[D].中科院广州能源研究所硕士论文,2003
    [162]孙始财,樊栓狮.超声波作用于天然气水合物形成分解研究进展[J].化工进展,2004,23(5):472-475
    [163] Liang D., He S., Li D. Effect of microwave on formation/decomposition of natural gashydrate[J]. Chinese Science Bulletin,2009,54(6):965-971
    [164]刘勇,郭开华,梁德青,等在磁场作用下HCFC-141b制冷剂气体水合物的生成过程水[J].2003,33(1):89-96
    [165] Schutte D., Schmitz F.T., Brunner H. Predominantly aqueous compositions in a fluffypowdery form approximating powdered solids behavior and process for forming same[P].US Patents, No.3393155,1968
    [166] Allan B. D. Dry water[M]. US Patents, No.4008170,1977
    [167] Forny L., Saleh K., Pezron I., et al. Influence of mixing characteristics for waterencapsulation by self-assembling hydrophobic silica nanoparticles[J]. Powder Technology,2009,189(2):263-269
    [168] Maxson O. G., Myers G. M., Lescarboura J. A. Dry drilling fluid composition[P]. USPatents, No.3951824,1976
    [169]宋占兵,张孝君,喻健良,等.灭火剂发展现状与未来[J].化学工业与工程技术,2001,22(3):7-11
    [170]贺拥军,邢隽,郭晓滨.一种灭火剂[P]. CN102058951A,2011
    [171]张颓慧,许建辰,肖莉,等.微型包囊技术在中药制剂中的应用及研究进展[J].中草药,2005,36(3):455-458
    [172]王文,蔡锦方.药物缓释微囊化技术在周围神经修复中应用的研究进展[J].实用医药杂志,2006,23(8):999-1000
    [173] Wang W., Bray C. L., Adams D. J., et al. Methane storage in dry water gas hydrates[J].Journal of the American Chemical Society,2008,130(35):11608-11609
    [174] Carter B. O., Wang W., Adams D. J., et al. Gas storage in―dry water‖and―dry gel‖clathrates[J]. Langmuir,2009,26(5):3186-3193
    [175]郑丹星,化学工业.化工热力学教程[M].北京:中国石化出版社,2000
    [176]皮奇霍尔格,皮罗斯约拾夫,里德曼托马斯,等.干液体、制备干液体的方法和设备[P]. CN101070160A,2007
    [177]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995
    [178] Dullien F. A. Porous Media: Fluid Transport and Pore Structure[M]. Academic press,1991
    [179] M K. Principles of Heat Transfer in Porous Media[M]. New York: Springer,1991
    [180] Ingham D. B., Pop I. Transport Phenomena in Porous Media III[M]. Elsevier Science,2005
    [181] Nield D. A. Bejan. Convection in Porous Media[M]. Springer-Verlag, New York,1999
    [182] Vafai K. Handbook of porous media[M]. Crc Press,2009
    [183] Calmidi V. V. Transport phenomena in high porosity fibrous metal foams[D]. Universityof Colorado,1998
    [184] Jeng T., Tzeng S., Hung Y. An analytical study of local thermal equilibrium in porous heatsinks using fin theory[J]. International Journal of Heat and Mass Transfer,2006,49(11):1907-1914
    [185]何德坪,马立群,余兴泉.新型通孔泡沫铝的传热特性[J].材料研究学报,2009,11(4):431-434
    [186] Boomsma K., Poulikakos D., Zwick F. Metal foams as compact high performance heatexchangers[J]. Mechanics of Materials,2003,35(12):1161-1176
    [187] Azzi W., Roberts W. L., Rabiei A. A study on pressure drop and heat transfer in open cellmetal foams for jet engine applications[J]. Materials&design,2007,28(2):569-574
    [188] Lu W., Zhao C. Y., Tassou S. A. Thermal analysis on metal-foam filled heat exchangers.Part I: Metal-foam filled pipes[J]. International Journal of Heat and Mass Transfer,2006,49(15):2751-2761
    [189] Zhao C. Y., Lu W., Tassou S. A. Thermal analysis on metal-foam filled heat exchangers.Part II: Tube heat exchangers[J]. International Journal of Heat and Mass Transfer,2006,49(15):2762-2770
    [190] Noh J., Lee K. B., Lee C. G. Pressure loss and forced convective heat transfer in anannulus filled with aluminum foam[J]. International Communications in Heat and MassTransfer,2006,33(4):434-444
    [191] Bhattacharya A., Calmidi V. V., Mahajan R. L. Thermophysical properties of high porositymetal foams[J]. International Journal of Heat and Mass Transfer,2002,45(5):1017-1031
    [192] Huang D., Fan S. Thermal conductivity of methane hydrate formed from sodium dodecylsulfate solution[J]. Journal of Chemical&Engineering Data,2004,49(5):1479-1482
    [193] Gupta A., Kneafsey T. J., Moridis G. J., et al. Composite thermal conductivity in a largeheterogeneous porous methane hydrate sample[J]. The Journal of Physical Chemistry B,2006,110(33):16384-16392
    [194] Tohidi B., Anderson R., Clennell M. B., et al. Visual observation of gas-hydrate formationand dissociation in synthetic porous media by means of glass micromodels[J]. Geology,2001,29(9):867-870
    [195] Verma L. S., Shrotriya A. K., Singh R., et al. Thermal conduction in two-phase materialswith spherical and non-spherical inclusions[J]. Journal of Physics D: Applied Physics,1991,24(10):1729-1737
    [196]姚忡鹏,王端军.传热学[M].北京:北京理工大学出版社,2003
    [197]黄犊子,樊栓狮,石磊.天然气水合物的导热系数[J].化学通报,2004,10:737-742

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700