用户名: 密码: 验证码:
钢纤维混凝土静力损伤及疲劳损伤研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢纤维混凝土(SteelFiberReinforcedConcrete,简写为SFRC)是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型复合材料。它不仅具有普通混凝土的优良特性,同时由于钢纤维的存在限制了裂缝的开展,从而使原来本质上是脆性的混凝土材料呈现出很高的抗裂性能并能推迟裂缝的出现、使混凝土具有较大的延性和韧性以及优良的抗拉、抗折、抗冲击、耐磨损、抗疲劳等特性。近年来,钢纤维混凝土得到广泛的应用和深入的研究。根据国内外已有的研究成果,本文对钢纤维混凝土静力损伤和疲劳损伤进行了研究,主要研究内容及结论如下:
     1、给出了将试验得到的4点弯曲梁的荷载-挠度曲线转化为相应的应力-应变曲线的方法;根据能量等效原理和weibull统计分布理论推导了钢纤维混凝土在单向荷载作用下的本构模型及其损伤模型,只要能准确的测定出试件的弹性模量、峰值应力以及相应的峰值应变,就能得到其单向荷载作用下的本构方程和损伤演变方程。
     2、静载破坏可看成是特殊的疲劳破坏,即极限强度加载下,承受一个循环的疲劳破坏。在此过程中,损伤也是一个逐步累积的过程。借鉴疲劳损伤的分析方法,基于损伤力学推导了单轴加载作用下描述损伤变量与应变关系的损伤演变方程。根据应变等效原理,得到对应的本构方程。
     3、对钢纤维再生混凝土和钢纤维卵石混凝土弯曲疲劳性能进行了试验研究,得到不同应力水平(S=0.7,0.75,0.8,0.85)下的疲劳寿命。分析结果表明:应力水平S与对数疲劳寿命lgN成直线关系,相关系数在0.99以上,因钢纤维和粗骨料之间的界面连接强度不同,在任何应力水平下钢纤维再生混凝土的疲劳寿命都比钢纤维卵石混凝土大。综合已有文献回归得到的弯曲疲劳载荷作用下的疲劳寿命方程,可作为弯曲疲劳荷载作用下疲劳寿命的估算。钢纤维再生混凝土和钢纤维卵石混凝土弯曲疲劳应变演化曲线呈现三阶段发展规律,随着循环比的增加,钢纤维再生混凝土的疲劳应变比钢纤维卵石混凝土的疲劳应变发展慢。由此可见,利用再生骨料作为粗骨料的钢纤维再生混凝土不仅能“变废为宝”,减少环境污染,实现资源的重复利用,而且其疲劳寿命和疲劳应变发展都优于钢纤维卵石混凝土。
     4、利用威布尔分布和对数正态分布对钢纤维再生混凝土和钢纤维卵石混凝土的疲劳寿命试验结果进行检验,结果表明本次试验的弯曲疲劳寿命较好地服从对数正态分布和两参数威布尔分布。不同存活率P和应力水平S下,单对数疲劳方程和双对数疲劳方程的线性关系是成立的,其相关系数R均在0.99以上;存活率P对钢纤维卵石混凝土的回归系数B和b影响很小,可取其平均值作为通用结果,而存活率P对钢纤维卵石混凝土各回归系数影响很小,可取其平均值作为通用结果。
     5.通过对二级配钢纤维混凝土疲劳试验数据进行回归,提出了二级配钢纤维混凝土弯曲疲劳方程,其回归系数可以达到0.971以上,比采用其他拟合公式更接近试验结果。
     6.提出了描述钢纤维混凝土的疲劳应变演化曲线的疲劳应变方程,结果显示,拟合曲线与试验曲线能很好吻合。根据疲劳模量与疲劳应变幅值成反比的关系,由疲劳应变演化方程得到疲劳模量演化方程。利用疲劳模量演化方程对已有疲劳模量试验结果进行拟合,结果显示,该式表达的疲劳模量演化曲线与相应的试验曲线吻合很好,其相关系数均在0.99以上,说明该式适合描述钢纤维混凝土的疲劳模量演化曲线。
     7、分别用疲劳应变和疲劳模量定义钢纤维混凝土疲劳损伤,得到的典型的损伤变量演化曲线显示,由最大疲劳应变和疲劳残余应变定义的损伤变量演化曲线基本一致,且相差很小;而由疲劳模量定义的损伤变量演化曲线明显大于由疲劳应变定义的损伤变量演化曲线,当循环比为0.9时,由疲劳应变定义的损伤变量约0.35左右,而疲劳模量定义的损伤变量约为0.77,当初始循环时,疲劳模量定义的损伤变量就达到0.34左右,而疲劳应变定义的损伤变量接近0。也就是说,由疲劳模量定义的损伤变量自始至终都比疲劳应变定义的损伤变量大。
     8、基于损伤力学推导了钢纤维卵石混凝土和钢纤维再生混凝土弯曲疲劳损伤方程,结果显示,由疲劳损伤方程得到的回归曲线与疲劳损伤演化曲线吻合很好。
     9、根据材料的宏观量的变化与疲劳损伤演变有本质联系,故由损伤变量推导得到钢纤维混凝土剩余疲劳寿命和剩余弯曲强度的表达式。通过该式,可求得给定疲劳应力水平、不同损伤状态下的剩余疲劳寿命和剩余弯曲强度,为有损结构的安全评估及决策提供参考。由剩余疲劳寿命随损伤变量以及循环比的变化曲线可知,随着损伤变量的增大,剩余疲劳寿命曲线下降,损伤变量为0.3以内时,剩余疲劳寿命降幅较大,且应力水平越低,降幅越明显,应力水平为0.7时,曲线急剧下降;随着循环比的增加,剩余疲劳寿命近似直线下降,且应力水平越低,降幅越明显。由剩余弯曲强度随循环比以及损伤变量的变化曲线可以看出,随循环比的不断增加,剩余弯曲强度逐渐降低,近似呈直线变化,当接近破坏时,剩余弯曲强度急剧下降,另外,循环比相同时,应力水平的变化对剩余弯曲强度的影响较小;而剩余弯曲疲劳强度随损伤变量近似呈直线变化,损伤变量相同时,应力水平越高,剩余弯曲强度越大。
Steel Fiber Reinforced Concrete (SFRC) is a new type of composite material made of adding randomly distributed short steel fibers to ordinary concrete. It has excellent properties of ordinary concrete, and steel fibers limit crack propagation, so brittle concrete in nature shows a high crack resistance and can delay the appearance of cracks, and SFRC has larger ductility and toughness and excellent tensile, flexural, impact, abrasion, anti-fatigue properties. In recent years, SFRC has been widely used and deeply studied. According to present research results at home and abroad, static and fatigue damage of SFRC has been studied in this paper, and the main researches and conclusions are as follows:
     1. The method of how to convert the load-deflection curves of4-point bending beam obtained from tests into the corresponding stress-strain curves has been given. According to the energy equivalent prinple and the weibull statistical distribution theory, the constitutive model and the damage model of SFRC under single direction loading have been derived. As long as accurate determinations of the elastic modulus, the peak stress and peak strain of specimens were given, the constitutive equation and the damage evolution equation of SFRC under single direction loading could be derived.
     2. The static failure can be seen as a special fatigue failure, which means the static failure is the fatigue failure only bearing one-cycle loading. Damage is also a process of gradual accumulation during loading. By learning from the analysis of fatigue damage, the damage evolution equation describing the relationship between the damage variable and strain under uniaxial loading could be derived based on the damage theory. According to the strain equivalence principle the corresponding constitutive equation could also be obtained.
     3. Bending fatigue tests of steel fiber reinforced recycled concrete (SFRRC) and steel fiber reinforced pebble concrete (SFRPC) have been carried out. Fatigue lives at different stress levels (S=0.7,0.75,0.8,0.85) were obtained. Analysis results showed that the relationship between the stress level S and the logarithm of fatigue life N was linear, and the correlation coefficient was above0.99; fatigue life of SFRRC was greater than that of SFRPC at any stress level because of different interfacial bonding strength. The fatigue life equation obtained by summarizing present literature could be used to estimate fatigue life under flexural fatigue loading. Fatigue strain displayed the three-stage development law, and fatigue strain of SFRRC developed more slowly than that of SFRPC when increasing the cycle ratio. So it was obvious that SFRRC with the recycled aggregate as the coarse aggregate could not only change construction waste into resource treasure, reduce environmental pollution and realize resource recycling, but also show that its fatigue life and fatigue strain development were superior to those of SFRPC.
     4. The Lognormal distribution and Weibull distribution were used to test fatigue lives of SFRRC and SFRPC. Results showed that the experimental fatigue lives could preferably obey Lognormal and two parameter Weibull distributions. Linear relationships of the single logarithm fatigue equation and the double logarithm fatigue equation under different survival ratios P and stress levels S were established, and the correlation coefficients were above0.99. Survival ratios P had little effect on the regression coeffients B and b of SFRPC, so average values of these two regression coeffients could be used as universal results. Survival ratios P had little effect on all regression coeffients of SFRRC, so average values could be used as universal results.
     5. Through fitting the experimental fatigue data of SFRC with two gradings of aggregates, the fatigue equation was recommended, and the regression coefficient was above0.971. It was closer to the experimental fatigue data compared with other fitting equations.
     6. The fatigue strain evolution equation was proposed to describe the fatigue strain evolution curves of SFRC, and the fitting curves had a good agreement with the experimental curves. It was observed that under constant amplitude fatigue loading, the fatigue modulus was inversely related to the fatigue strain, so by use of symmetry the fatigue modulus evolution equation was obtained according to the fatigue strain evolution equation. Present experimental data of fatigue modulus was used to test the suggested fatigue modulus evolution equation. It was found that the fitting curves expressed by the fatigue modulus evolution equation coincided with the experimental curves very well, and the correlation coefficients were all above0.99. So it showed that the suggested fatigue modulus evolution equation was appropriate for describing fatigue modulus evolution curves of SFRC.
     7. The damage variable evolution curves obtained by use of the fatigue strain and fatigue modulus defining the damage variable showed that the damage variable evolution curves defined by the maximum fatigue strain and fatigue residual strain were basically consistent and the deviations were quite small, but the damage variable evolution curve defined by the fatigue modulus was significantly larger than that defined by the fatigue strain. When the cycle ratio was0.9, the damage variable value defined by the fatigue strain was about0.35, and the value defined by fatigue modulus was about0.77. When the initial cycle started, the damage variable value defined by the fatigue modulus was about0.34, but the value defined by the fatigue strain was close to0. That was to say, the damage variable value defined by the fatigue modulus was always larger than that defined by the fatigue strain.
     8、Based on the damage mechanics, the flexural fatigue damage equation of SFRC was derived. Results showed that the fitting curves obtained by the suggested fatigue damage equation had a good agreement with the experimental fatigue evolution curves.
     9、The residual fatigue life equation and residual flexural strength equation of SFRC were derived by the damage variable according to the essential relation between macroscopic quantity variation of materials and fatigue damage evolution. So the residual fatigue life and residual flexural strength could be got at given fatigue stress level and different damage conditions by these equations This could supply reference for safe estimate and decision on damage structure. It could be known from the relationships between the residual fatigue life and the damage variable and the cycle ratio, the residual fatigue life decreased in curve with increasing the damage variable; when the damage variable was within0.3, the decreasing range of the residual fatigue life was larger; and lower the stress level was, clearer was the decreasing range; when the stress level was0.7, the curve dropped sharply. The residual fatigue life decreased approximately in straight line with increasing the cycle ratio, smaller the stress level was, clearer was the decreasing range. It could be known from the relationships between the residual flexural strength and the damage variable and the cycle ratio, the residual flexural strength decreased approximately in straight line with increasing the cycle ratio; and the residual flexural strength descended sharply close to failure. In addition, variation of the stress level had little influence on the residual flexural strength at the same cycle ratio; the residual flexural strength varied approximately in straight line with the damage variable, and higher the stress level was, larger was the residual flexural strength.
引文
[1]程庆国,高路彬,徐蕴贤等.钢纤维混凝土理论及应用[M].北京:中国铁道出版社,1999:70-135,325-342.
    [2]汉南特著,陆建业译.纤维水泥与纤维混凝土[M].北京:中国建筑工业出版社,1986:118-132.
    [3]高丹盈,刘建秀.钢纤维混凝土基本理论[M].北京:科学技术出版社,1994:9-26.
    [4]小林一辅著,邹崇富译.纤维补强混凝土[M].北京:中国铁道出版社,1985:25-42.
    [5]赵国藩,彭少民,黄承逵等.钢纤维混凝土结构[M].北京:中国建筑工业出版社,1999:47-99.
    [6]Swamy R.N. Developments in Fiber Reinforced Cement and Concrete[A], RILEM Symposium FRC86[C].The University of Sheffied, England,July,1886
    [7]Romualdi J.P., Balson G.B.. Mechanics of Crack Arrest in Concrete[J],Proc. ASCE,1963,89:147-168
    [8]Romualdi J.P., Mandel J.A..Tensile Strength of Concrete Affected by Uniformly Distributed and Closely Spaced Short Length of Wire Reinforcement[J]. ACI Journal,Proc,1964,6(2):567-670
    [9]Romualdi J.P.. The Structure of Concrete[A], Proc.Int.Conf[C], London,1968:190-250
    [10]张忠刚,唐昆仑.钢纤维混凝土在建筑工程中的应用[A].全国第四届纤维水泥与纤维混凝土学术会议论文集[C].南京,1992.
    [11]钟铁峰,孙叔红,蒙云.西南地区SFRC公路及桥梁工程实例及发展前景[A].全国第七届纤维水泥与纤维混凝土学术会议论文集[C].北京:中国铁道出版社,1998
    [12]徐鼎新.近年来钢纤维混凝土在上海的应用[A].全国第五届纤维水泥与纤维混凝土学术会议论文集[C].广州:广东科技出版社,1994.
    [13]陈风扬,王伯泉.钢纤维混凝土管的研制与应用[J].武汉工业大学学报,1991,1:12-16
    [14]郑盛娥,风凌云.钢纤维混凝土在南昆铁隧道工程中的应用[A].全国第七届纤维水泥与纤维混凝土学术会议论文集[C].北京:中国铁道出版社,1998
    [15]关丽秋,赵国藩.钢纤维混凝土在单向拉伸时的增强机理与破坏形态[J].水利学报,1986,3:47-52
    [16]黄兴隶,朱华俊,SFRC受弯构件裂缝宽度实验研究[J].武汉工业大学学报,1991
    [17]杨人和,刘保员,吴中伟.水泥石与石灰石集料界面过渡区空结构及其CH晶体亚微观结构的研究[J].硅酸盐学报,1989,4:302-306
    [18]孙伟Mandel J.A..纤维间距对界面层的影响[J].硅酸盐学报,1989,3:289-293
    [19]孙伟.钢纤维高强混凝土宏观力学性能与微观机理研究[J].上海建材学院学报,1993,2:131-137
    [20]孙伟.纤维增强水泥基的复合效应和细观机理[A].全国第四届纤维水泥与纤维混凝土学术会议论文集[C].南京:1992.
    [21]秦鸿根,孙伟.钢纤维混凝土耐磨特性及机理分析[J].混凝土与水泥制品,1993,5:1-6
    [22]Leung C.K., Li V.C. New Strength Based Model for the Debonding of Discontinuous Fibers in an Elastic Matrix[J]. J.Mater.Sci,1991,26:5996-6010
    [23]Stankowski T., Runesson K., Sture S.. Fracture and Slip of Interfaces in Cementitious Composites[J].J.Engrg.Mech,1993,119:292-313
    [24]Leung,C.K.Y., Ybanez N.. Pullout of Inclined Flexible Fiber in Cementitious Composite[J]. J.Engrg.Mech,1996,123:239-245
    [25]Desmorat R.. Size Effect in Fiber or Bar Pullout with Interfaces Softening Slip[J]. J.Engrg.Mech,1994,120:1945-1962
    [26]Li V. C., Leung C.K.Y.. Steady-state and Multiple Cracking of Short Random Fiber Composites[J]. J.Engrg.Mech,1992,118:2246-2264
    [27]Sameer A.H., Salami M.R.. Interfacial Strain Energy Release Rate of Fiber Reinforced Concrete Based on Bond Stress-slip Relationship [J]. ACI Structural Journal,1991
    [28]杨润年,魏德敏.钢纤维混凝土的弯拉强度模型[J].混凝土,2007(6):60-62.
    [29]王焕德.钢纤维混凝土[M].北京:水利电力出版社,1985:79-80.
    [30]宋玉普,赵国藩,彭放等.钢纤维混凝土内时损伤本构模型[J].水利学报,1995,6:1-7.
    [31]郑光俊.考虑损伤因素的钢纤维混凝土构件分析[D].南京:河海大学,2005.
    [32]罗章,李夕兵,凌同华.钢纤维混凝土的增强机理与断裂力学模型研究[J].矿业研究与开发,2003,23(4):18-23
    [33]李秋义,李家和,袁杰SFRC兼有阻裂作用的复合理论[J],哈尔滨建筑大学学报,2002,35(4):81-107.
    [34]Swamy R N, Mangat P S and CV. S.K.Rao.The Mechanics of Fiber Reinforcement of Cement Matrices[J].Detroit:ACI, SP44,1974:1-28
    [35]马智英.钢纤维混凝土早期力学性能发展规律的试验研究[D].北京:北京工业大学,2003.
    [36]Shah S.P., Rangan B.B..Fiber Reinforced Concrete Properties[J],ACI Journal, Proc,1971,68(2):126-135.
    [37]Johnson C.D., Coleman A.R..Strength and Deformation of Steel Fiber Reinforced Mortar in Uniaxial Tension,Fiber Reinforced Concrete, American Concrete Institute,1974:177-207.
    [39]蒋永生.钢纤维混凝土在结构中应用研究综述[A].全国第四届纤维水泥与纤维混凝土学术会议论文集[C],南京:1992.
    [40]JGJ/T23—2001,回弹法检测混凝土抗压强度技术规程[S].北京:中国建筑工业出版社,2001.
    [41]王莉莉.建筑废料再生混凝土的试验研究[D].西安:西北工业大学,2004.
    [42]阿部道彦.建筑副产品的有效利用[J].土木施工(日),1995,36(13):20-23.
    [43]高桥泰一,阿部道彦.废混凝土骨料适用现状与未来[J].混凝土工程(日),1995,33(2).
    [44]中华人民共和国国民经济和社会发展“九五”计划和2010年远景目标纲要[N].人民日报,1996.
    [45]建设部1997年科技成果重点推广项目及技术依托单位[J].施工技术,1997,26(10).
    [46]侯星宇.再生混凝土研究综述[J],混凝土,2011(7):97-103.
    [47]Kachanov L.M.. Time of the Rupture Process under Creep Conditions [J].TVZ Akad Nauk.S.S.R.O td.Tech.Nuak.l958,(8):23-31
    [48]Rabotnov Y.N.. Creep Rupture of Structure[C]. proc12, Inter. Congress, Appl. Mech. Stanford, Springer Berlin,1969
    [49]Leckie F.A., Hayburst D.R.. Creep rupture of structure [C].Proc.R.Soc.A340.1974.
    [50]Lemaitre J. Application of Damage Concepts to Predict Creep-fatigue Failure[C]. J.Mat.Tech,ASME,1979:202-209
    [51]Kajcinovic D.. Continuum Damage Theory of Brittle Materials[J].J. App1.tech.1981(48);809-824
    [52]Sidoroff F.. Description of Anisotropic Damage Application to Elasticity. IL'TA.M Colloquium Physical Nonlinearities in structure analysis.1981:237-244
    [53]Lemaitre,余天庆译.预估结构中的塑性破坏或蠕变疲劳破坏的损伤模型[J].固体力学学报,1981,4:26-35.
    [54]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993:3-5
    [55]高路彬.混凝土变形与损伤的分析[J].力学进展,1993,23(4):510-519
    [56]Shah S.P., Chandra S.. Critical Stress Volume Change and Micro-cracking of Concrete[J].ACI J,1968(65):770-781.
    [57]Chen W. F.. Plasticity in Reinforced Concrete[M]. McGraw-Hill, New York,1982
    [58]周苏波.混凝土损伤的定量分析[D].南京:河海大学,1999.
    [59]李兆霞.损伤力学及其应用[M].北京:科学出版社,2002:3-6,23-27,152-154
    [60]Rabotnov Y.N.. On the Equations of State for Creep [J].Progress in Applied Mechanics,1963,8:307-315.
    [61]Jean Lemaitre损伤力学教程[M].倪金刚,陶春虎译.北京:科学出版社,1996:13-23
    [62]Janson J.,Hult J..Fracture Mechanics and Damage Mechanics, a Combined Approach[J]. J. de Mech.Appl.,1977,1(1):59-64.
    [63]Mazars J..Application De la Mecanique de l'endommagement au Comportment non Lineaire eta la rupture du beton de Structure[D].These de Doctorat d'Etat. Univ. Paris VI.1984
    [64]Loland K.E.. Continuum Damage Model for Load Response Estimation of Concrete[J]. Cement and Concrete Research,1980,10:395-402.
    [65]余天庆.混凝土的分段线性损伤模型[A].岩石、混凝土断裂与强度[C],湖南,1982:14-16
    [66]钱济成,周建方.混凝土的两种损伤模型及应用[J].河海大学学报,1989,3:40-47
    [67]Lemaitre J.,Chaboche J.L.. Mechanics of Solid Materials[M].Cambridge:Cambridge University Press,1990
    [68]Cordebois J.P.,Sidoroff F.Anisotropic Damage in Elasticity and Plasticity[J].Journal Demeeanique Theofique Et Appliquee,1980,2:45-59.
    [69]Chaboche J.L..Anisotropic Creep Damage in the Framework of Continum Damage Mechanics[J].Nucl.Eng.Design,1984,79:309-319
    [70]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [71]Janson T.D.. Crack in a Material with Continous Damage Formation[J]. Eng.Fract.Mech.,1977,9:891-899.
    [72]Krajcinovic D..Constitute Equations for Damageing Materials[J].Appl.Mech.,1983,50:355-360
    [73]蒋国平,焦楚平.基于SHPB实验的钢纤维混凝土损伤研究[J].混凝土,2009(3):24-43.
    [74]黄焱龙.钢纤维混凝土动静态力学性能与损伤研究[D].合肥:中国科学技术大学,2011.
    [75]张安哥,朱成九,陈梦成.疲劳、断裂与损伤[M].成都:西南交通大学出版社,2006:110-139
    [76]王军.损伤力学的理论与应用[M].北京:科学出版社,1997:25-60.
    [77]徐浚祥.混凝土结构的损伤力学分析[D].南京:河海大学,2004.
    [78]徐灏.疲劳强度设计[M].北京:机械工业出版社,1981
    [79]曾攀.材料的概率疲劳损伤特性及现代结构分析原理[M].北京:科学技术文献出版社,1993
    [80]ACI Committee215.Considerations for Design of Concrete Structures Subjected to Fatigue Loading[J].ACI J.,1974,71(3):97-121
    [81]Mehmel A.. Investigations on the Effect of Frequently Repeated Stress on the Elasticity under Compression and the Compressive Strength of Concrete[J].Mltteilungen des Institute fur Beton und Eisenbeton an der Teehnisehen Hoehsehule Karlsruhe, Verlag Juluis Springer,Berlin,1926,74(1):1-17
    [82]Graf O., Brenner E.. Experiments for Investigating the Resistance of Concrete under often Repeated Compression Loads[J].Deutscher Ausschuss fur Eisenbeton, Bulletins,1934,1(76):17-25
    [83]Hatt W. K.. Fatigue of Concrete[J].Proceedings, Highway Research Board,1924,52(4):47-60
    [84]Crepps R. B.. Fatigue of Motar[J]. Proceedings, ASTM,1922,1(23):139-153
    [85]Williams H.A.. Fatigue Tests of Lightweight Aggregate Concrete Beams[J].ACI Journal. Proceedings,1943,39(5):108-112.
    [86]McCall J.T.. Probability of Fatigue of Plain Concrete[J].ACI Journal, Proceedings,1958,55(2):233-444.
    [87]Spars P.R., Menzies J.B..The Effect of Loading upon the Static and Fatigue Strength of Plain Concrete in Compression[J].Magazine of Concrete Researeh,1973,25(83):73-80
    [88]Cornelissen H.A.W.. Fatigue Failure of Concrete Intension[J].Heron,1984,29(4):61-68.
    [89]Satio M., Imai S..Direct Tensile Fatigue of Concrete by the Use of Friction Grips[J]. ACI J.,1983,80(5):431-438
    [90]Eric C.M.S, Hsu T.T.C.. Biaxial Compression Fatigue and Discontinuity of Concrete[J]. ACI Mater.J.,1988,85(3):178-188
    [91]俞茂宏,赵均海,郑树俊等.复杂应力下混凝士疲劳强度的试验研究[J].西安交通大学学报,1998,32(3):1-8
    [92]Taliercio A.L.F., Gobbi E.. Fatigue Life and Change in Mechanical Properties of Plain Concrete under Triaxial Deviatoric Cyclic Stress[J].Magazine of Concrete Research,1998,50(3):247-255
    [93]Hsu T.T.C.Fatigue of Plain Concrete [J].ACI Journal,1981,78(4):292-305
    [94]Zhang B., Phillips D.V., Green D.R.. Sustained Loading Effect on the Fatigue Life of Plain Concrete [J].Magazine of Concrete Research,1998,50(3):263-278
    [95]Tan T.H.. Effect of Passive Confinement on Fatigue Properties of Concrete[J].Magazine of Concrete Research,2000,52(1):7-15
    [96]British Standards Institution. Steel,Concrete and Composite Bridges. BS5400:Pt.5-10,78-83
    [97]CEB-FIP model code1990(design code).Committee Euro-International du Betou. Bulletin D, information[M]. Lausanne,1993:213-214.
    [98]TB10002.1-2005,铁路桥涵设计基本规范.北京:中国铁道出版社,2005.
    [99]GB50010-2010,.混凝土结构设计规范.北京:中国建筑工业出版社,2010.
    [100]William G.B., Mark J.M., Jamshid M. et al. Fatigue Reliability Reassessment Applications:Stata-of-the-art paper [J] Journal of Struetural Engineering,1997,23(3)
    [101]Surya K.R., Fred M., Charles G. S.. Reliability Calibration of Fatigue Evaluation and Design Procedures [J]. Journal of Structural Engineering,1990,116(5):1356-1369.
    [102]GB50216-94,铁路土程结构可靠度设计统一标准.北京:中国计划出版社,1994.
    [103]蔡四维,蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,1999:35-47.
    [104]吴智敏,赵国藩.混凝土的疲劳断裂特性研究[J].土木工程学报,1995(4):38-47
    [105]王惠.混凝土、纤维混凝土裂纹扩展分析[J].工业建筑,1997(1):29-33
    [106]杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995
    [107]Batson G.. Flexural Fatigue Strength of Steel Fiber Reinforced Concrete Beams[J]. ACI, Journal,1972,69,(11):673-677.
    [108]Ramarkishnan V., Oberling G.,Tatnall P.. Flexural Fatigue Strength of Steel Fiber Reinforced Concrete. Fiber Reinforced Concrete Properties and Applications. SP-105, ACI, Detroit, Michigan,1987:225-245
    [109]Otter D.E., Naman A.E.. Properties of Steel Fiber Reinforced Concrete under Cyclic Loading[J]. ACI Materials Journal,1988,85(4):254-261.
    [110]Grzybowski M., Meyer C. Damage Accumulation in Concrete with and without Fiber Reinforcement[J]. ACI Materials Journal,1993,90(6):594-604.
    [111]Naaman A. E.,Hammoud H.. Fatigue Characteristics of High Performance Fiber-reinforced Concrete[J]. Cement&Concrete Composites,1998,20:353-363.
    [112]Zhang J., Henrik S.. Fatigue Performance in Flexure of Fiber Reinforced Concrete[J]. ACI Materials Journal,1998,95(1):58-67
    [113]张小辉,何天淳,宋万明.钢纤维混凝土的弯曲疲劳损伤研究[J].昆明理工大学学报,2000,25(5):52-55.
    [114]谢建斌,何天淳,程赫明等.循环荷载下路面用钢纤维混凝土的弯曲疲劳研究[J].兰州理工大学学报,2004,30(2):104-109.
    [115]刘逸平,黄小清,汤立群等.钢纤维增强聚合物改性混凝土的疲劳特性[J].暨南大学学报(自然科学版),2005,26(1):117-119.
    [116]罗立峰.钢纤维增强聚合物改性混凝土疲劳性能[J].公路交通科技,2005,22(6):94-97.
    [117]黄承逵,赵国藩,彭骏.二级配钢纤维混凝土疲劳性能的研究[J].中国公路学报,1994,7(3):29-35.
    [118]邓宗才,孙成栋.钢纤维混凝土在低周反复荷载下力学性能的研究[J].工程力学,2001,18(3):105-110.
    [119]邓宗才.碳纤维、钢纤维混凝土低周抗压疲劳特性的试验研究[J].水利学报,2001(2):39-43.
    [120]邓宗才.钢纤维混凝土疲劳断裂和损伤行为的试验研究[J].土木工程学报,2003,36(2):20-25.
    [121]鞠扬,樊承谋,潘景龙.钢纤维混凝土疲劳损伤行为研究[J].工业建筑,1997,27(4):38-42.
    [122]孙伟,高建明.钢纤维混凝土疲劳性能的研究.钢纤维混凝土结构设计与施工规程专题研究报告.钢纤维混凝土结构设计与施工规程编制组,大连,1990:49-60.
    [123]易成,沈世钊,谢和平.局部高密度钢纤维混凝土弯曲疲劳损伤演变规律[J].工程力学,2002,19(5):1-6.
    [124]易成,沈世钊,谢和平.局部高密度钢纤维混凝土弯曲疲劳性能研究[J].土木工程学报,2001,24(6):29-37.
    [125]黄达.层布式钢纤维混凝土路面试验研究.[D].武汉:武汉理工大学,2002
    [126]陈应波,黄达,卢哲安.层布式钢纤维混凝土疲劳强度计算机模拟[J]武汉理工大学学报,2002,24(9):34-36
    [127]陈应波,卢哲安,黄达.层布式钢纤维混凝土疲劳寿命的概率分布拟合[J].武汉理工大学学报,2002,24(12):33-36
    [128]陈应波,卢哲安,张全林.层布式钢纤维混凝土路面板弯曲疲劳性能研究[J].武汉大学学报(工学版),2004,37(4):40-44
    [129]陈瑜,杨志刚,卢哲安.上下层布式钢纤维混凝土的抗折疲劳方程[J].武汉理工大学学报,2004,26(3):57-62
    [130]杨星云.层布式钢纤维路面混凝土弯曲疲劳性能研究[J].广东土木与建筑,2004(5):45-48.
    [131]欧阳辉,伍颖,杨军.钢纤维对混凝土疲劳性能增强的研究[J].安全与环境工程,2004,11(1):71-73.
    [132]张全林.层布式钢纤维路面混凝土弯曲疲劳性能试验研究[D].武汉:武汉理工大学,2002
    [133]鞠扬,樊承谋.高-低两级变幅载荷下钢纤维混凝土轴向压缩疲劳效应[J].哈尔滨建筑大学学报,1995,28(3):77-82
    [134]鞠扬,樊承谋,潘景龙等.变幅疲劳载荷下钢纤维混凝土的损伤演化行为研究[J].实验力学,1997,12(1):110-118.
    [135]鞠扬,樊承谋.钢纤维混凝土的疲劳“锻炼效应”[J].土木工程学报,1995,28,(3):66-71.
    [136]焦楚杰,孙伟,高培正等.钢纤维混凝土力学性能试验研究[J].广州大学学报(自然科学版),2005,4(4):357-372.
    [137]Supartono F., Sidoroff F.. Anisotropic Damage Modeling for Brittle Elastic Materials[A]. Symposium of Franc-Poland[C],1984.
    [138]吴政.基于损伤的混凝土拉压全过程本构模型研究[J].水利水电技术,1995(11):58-63.
    [139]张晓燕,王智勇,李长永,赵顺波.钢纤维混凝土轴心受拉性能试验研究.华北水利水电学院学报,2007,28(3):8-11.
    [140]过镇海.混凝土的强度和变形—试验基础和本构关系[M].北京:清华大学出版社,1997:22-37
    [141]高丹盈.钢纤维混凝土轴压应力—应变全曲线的研究[J].水利学报,1991(10):43-48
    [142]严少华,钱七虎,孙伟等.钢纤维高强混凝土单轴压缩下应力—应变关系[J].东南大学学报(自然科学版),2001,31(2):77-80
    [143]林燕清.混凝土疲劳累积损伤与力学性能劣化研究[D].哈尔滨:哈尔滨工业大学,1998
    [144]邱玲,徐道远,朱为玄,等.混凝土压缩时初始损伤及损伤演变的试验研究[J].合肥工业大学学报(自然科学版),2001,24(6):1061-1065
    [145]杨润年,尹久仁,肖华明,刘青峰.钢纤维再生混凝土力学性能的试验研究[J].混凝土,2006(1):27-30.
    [146]CECS38:92,钢纤维混凝土结构设计与施工规程[S].北京:中国计划出版社,1992.
    [147]陆善后,施钟毅,林贤熊.铣削钢纤维混凝土疲劳特性.建筑材料学报,1998,1(4):363-365.
    [148]仰建岗,刘伟,王秉纲.钢纤维混凝土弯曲疲劳性能研究.公路交通科技,2002,19(2)3:35-42.
    [149]易成.钢纤维混凝土疲劳断裂性能与工程应用[M].北京:科学出版社,2003:56-58
    [150]张小辉.钢纤维混凝土弯曲疲劳及其损伤特性和细观强度研究[D].云南:昆明理工大学,2001.
    [151]Byung Hwan Oh. Cumalative Damage Theory of Concrete under Variable-amplitude Fatigue Loading[J]. ACI Materials Journal,1991,88(1):41-48.
    [152]刘逸平,汤立群,黄小清等.钢纤维增强聚合物改性混凝土的疲劳损伤行为[J].华南理工大学学报(自然科学版),2007,35(2):18-22.
    [153]Chen Yingbo, Lu Zhe'an, Huang Da. Fatigue Defect of Layer Steel Fiber Reinforced Concrete[J]. Journal of Wuhan University of Technology (Natural Science Edition),2003,18(1):65-68.
    [154]Paulo B. C., Joaquim A. F., Paulo A. A. P.. Fatigue Behavior of Fiber-reinforced Concrete in Compression[J]. Cement&Concrete Composites,2002,24:211-217.
    [155]张伟.混凝土疲劳特性研究[D].天津:河北工业大学,2006
    [156]蒋仁言.威布尔模型簇-特性、参数估计及应用[M].北京:科学出版社,1998.
    [157]高镇同.疲劳应用统计学[M].北京:国防工业出版社,1986
    [158]石小平,姚祖康,李华等,水泥混凝土的弯曲疲劳特性[J].土木工程学报,
    1990,23(3):11-22
    [159]JTG D-2011,公路水泥混凝土路面设计规范[S],北京:人民交通出版社,2011.Earthquake Spectra,1985,1(4):805-817.
    [160]Reitherman R.. Review of Earthquake Damage estimation Methods [J].EERI Earthquake Spectra,1985,1(4):805-817.
    [161]Chung Y., Meyer C., Shinozuka M.. Modeling of Concrete Damage[J]. ACI Struct J1989,86(3):59-71.
    [162]Miner M. A.. Cumulative Damage in Fatigue [J].J.Appl.Mech,1945,12(3):159-164
    [163]Alliche A., Frangois D.. Damage of Concrete in Fatigue[J]. Journal of Engineering Mechanics.1992(118)11:2176-2190
    [164]Hilsdorf H.K., Kesler C.E.. Fatigue Strength of Concrete under Varying Flexural Stresses[J]. ACI J,1966,63(10),1059-1076.
    [165]Darwin D., Nmai C.. Energy Dissipation in RC Beams under Cyclic Load[J]. J Struct, Eng ASCE1986,12(8):29-46.
    [166]欧进萍,林燕清.混凝土疲劳损伤的强度和刚度衰减试验研究[J].哈尔滨建筑大学学报,1998,31(4):l-7.
    [167]封伯昊,张立翔,李桂青.混凝土损伤研究综述[J].昆明理工大学学报,2001,26(3):21-30.
    [168]倪侃.随机疲劳累积损伤理论研究进展[J].力学进展,1999,29(1):43-65
    [169]周志祥,钟明全.混凝土在变幅疲劳荷载下累积损伤理论的探讨[A].国家自然科学基金青年专家研讨会论文[C],哈尔滨,结构工程科学,1992:88-95.
    [170]Manson S. S., Halford G.R.. Re-examination of Cumulative Analysis-An Engineering Prospective [J].Engng.Frac. Mech,1986:25-26
    [171]Holmen J.O..Fatigue of Concrete by Constant and Variable Amplitude Loading[J].Fatigue Strength of Concrete Structures, SP-75ACI,1982:71-110
    [172]Marco S.M., Starkey W.J.. A concept of Fatigue Damage[A].Trans ASME[C],1954,76:627-632
    [173]Henry D.L.. A theory of Fatigue Damage Accumulation in Steel [A]. Trans ASME[C],1955,77:913-918.
    [174]Cortan H.T.,Dolan T.L.. Cumulative Fatigue Damage. Proceed of the Inter[A]. Confer. on Fatigue of Metals[C]. IME and ASME,1956
    [175]Subramanyan S..A Cumulative Damage Rule Based on the Knee Point of the S-N Curve[J],J,of Eng, Mats.and Mech,1976
    [176]Leve H.L.. Cumulative Damage Theories[M].Metal Fatigue,Theory and Design. A.F.Madayay, Ed.,1960.
    [177]Gatts R.R.. Application of a Cumulative Damage Concept to Fatigue[J]. ASME,1964(4):83.
    [178]张滨生,朱照宏.水泥混凝土路面的疲劳损伤分析[J].土木工程学报,1986,19(4):53-60.
    [179]王瑞敏,赵国藩,宋玉普.混凝土的受压疲劳性能研究[J].土木工程学报,1991(4):38-47
    [180]姚明初.混凝土在等幅和变幅重复应力下疲劳性能的研究[R].铁道部科学研究院研究报告,1990.
    [181]邹嵘,倪侃,张圣坤.用模糊Bayes方法确定疲劳寿命分布[J].中国海洋平台,2001,16(1):4-9
    [182]Pook L.P.. On Fatigue Crack Paths[J].International Journal of Fatigue,1995,17(1):5-13
    [183]谢和平,黄约军,Stein E.分形裂纹扩展对材料疲劳行为的影响[J].机械强度,1996,18(1):1-5
    [184]熊峻江,高镇同,刘先斌等.疲劳损伤系统裂尖粒子运动随机分叉理论研究[J].物理学报,2001,49(1):49-53
    [185]易成,谢和平.高密度钢纤维混凝土疲劳裂纹扩展的分形描述[J].力学与实践,2001,23:26-28
    [186]Kang J.Y. Song J.H.. Neural Network Applications in Determining the Fatigue Crack Opening Load[J].International Journal of Fatigue,1998,20(l):57-69
    [187]Rafeeq A.S.,Ashok G.,Krishnamoorthy S.. Influence of Steel Fibers in Fatigue Resistance of Concrete in Direction Compression[J].Journal of Materials in Civil Engineering,2000,12(2):172-179
    [188]吕培印,宋玉普.基于人工神经网络的混凝土疲劳寿命估算[J].海洋工程,2001,19(3):72-76
    [189]李天匀,熊伟,王平等.结构不破坏实验的灰色预测方法[J].华中理工大学学报,1995,23(5):75-78
    [190]彭伟,王春华.钢筋混凝土梁剩余抗弯强度的灰色预测[J].低温建筑技术,1998,74(4):16-17
    [191]张仪萍,张土乔,龚晓南.沉降的灰色预测[J].工业建筑,1999,29(4):45-49.
    [192]Ju Y., Fan C.M.. A Description of Damage Degree and its Evolution in SFRC under Fatigue Loads[J]. Civil. Eng. Syst..1997,14:233-247.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700