用户名: 密码: 验证码:
钢纤维高强混凝土增强、增韧机理及基于韧性的设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维混凝土作为一种高性能混凝土建筑材料,在我国工程建设领域得到非常广泛的应用。为了适应纤维混凝土向高强度、高性能方向的发展和应用趋势,根据中国工程建设标准化协会的要求,中国土木工程学会纤维混凝土委员会委托大连理工大学为主编单位,经对原协会标准《钢纤维混凝土结构设计与施工规程》CECS 38:92进行全面修订,制定了新的标准《纤维混凝土结构技术规程》CECS 38:2004。在规程修订的前提下,本课题对钢纤维与高强砂浆的粘结性能,钢纤维高强混凝土的基本力学性能进行了系统的试验研究;深入分析了钢纤维与基体间的界面粘结机理,以及钢纤维对高强混凝土的增强、增韧作用;考虑钢纤维混凝土的韧性,提出了新的钢纤维混凝土工业建筑地面设计方法。
     (1).通过进行钢纤维与高强度水泥砂浆粘结拉拔试验,联系现有文献的试验资料,系统地研究了5种钢纤维(其中有4种为异型钢纤维)与4种强度等级高强砂浆基体的粘结性能。分析了基体强度、钢纤维类型和自身强度对界面极限粘结强度、纤维破坏形态的影响,讨论了不同类型钢纤维适用的基体强度范围。同时发现,随着基体砂浆强度的升高,在钢纤维与基体间界面粘结剪力的各个组分中,沿钢纤维体长分布的粘着力和广义摩擦力的提高最为显著。比较了钢纤维形状和砂浆基体强度对粘结滑移曲线特征和粘结拔出功的影响,当纤维出现拔断现象时,其增韧效果会大大降低。通过试验数据回归得出了不同类型钢纤维与高强水泥砂浆基体间极限粘结强度计算公式。
     (2).针对原有规程《钢纤维混凝土结构设计与施工规程》CECS 38:92适用强度等级偏低的问题,本文对钢纤维高强混凝土的抗压、抗拉、弯曲、抗剪等基本力学性能进行了详细的试验研究,分析了钢纤维形状和自身强度、基体强度、钢纤维掺量等因素对钢纤维高强混凝土基本力学性能的影响。对基于复合材料理论的SFRC基本强度计算公式进行了回归,研究了钢纤维高强混凝土轴拉、弯曲荷载-变形全曲线的特性,提出了统一的钢纤维混凝土韧性评价模式。给出了钢纤维高强混凝土劈拉强度、轴拉强度和弯拉强度的关系式。通过试验建立了钢纤维高强混凝土单轴拉伸曲线计算模型。给出了钢纤维高强混凝土弯拉初裂强度和弯拉极限强度的关系公式。并且提出了新的钢纤维混凝土抗剪强度的计算公式,公式的计算结果与实验结果符合较好。
     研究发现,在使用钢纤维来改善混凝土受压性能时,宜选取大长径比、自身强度高、小直径的线状钢纤维;提高钢纤维掺量对高强混凝土抗拉强度的改善作用比对普通强度混凝土明显,而对于轴拉初裂强度的提高与对于普通混凝土的提高基本相同;
As a kind of high-performance construction concrete material, fiber reinforced concrete (FRC) has been widely used in the domain of engineering construction. High strength and high performance become the developing and application trend of FRC today. According to the instruction of China Association for Engineering Construction Standardization, the compilation group organized by Dalian University of Technology make a wholly adaptation to the "Specification for Design and Construction of Steel Fiber Reinforced Concrete Structures (CECS 38:92)". Therefore, the "Technical Specification for Fiber Reinforced Concrete Structures (CECS 38:2004)" is compiled. As a part of the revisal project, a special study on the bond-slip characteristics between steel fiber and high-strength mortar, as well as on the mechanical properties of high-strength SFRC, is performed with experiment. This paper analyzes the bond mechanism on the interface between steel fiber and matrix. The strengthening and toughening function of steel fiber on high-strength concrete is also studied. Furthermore, a new designing method of SFRC industrial ground floors is suggested, taking the toughness of steel fiber reinforced concrete into account.(1) A serials of pullout tests of steel fiber from high-strength mortar of 4 strength grades are accomplished. 5 kinds of fiber are used in these tests, thereinto 4 kinds were profiled. Based on the test data, the bond-slip characteristics between steel fiber and mortar matrix are analyzed. The effects of several parameters, such as the matrix strength, the fiber type and the fiber strength, on the bond-strength and failure form are studied. The applicability of a kind of steel fiber to certain matrix strength is suggested. During the analysis, it is found that the effects of the rising of matrix strength on adherence and generalized friction are higher than on the other components of bond stress. The influences of fiber aspect and matrix strength on the pullout curves and pullout works are studied. When fiber breaks, the toughnees of the bond between matrix and steel fiber is rapdly reduced. Formulas of bond strengths between high-strength mortar and different kinds of steel fiber are statistically regressed with test data.(2) To enlarge the application scope of concrete strength grade of the former Specification (CECS 38:92), large quantities of experiments have been carried through to analyze the behaviors of steel fiber reinforced high-strength concrete under compression, tension, flexure or shear. The effects of fiber aspect, fiber strength, fiber content and matrix strength on the mechanical properties of high-strength SFRC are analyzed. On the base of the
    complex material theory, the ultimate strength formulas of SFRC under the stress conditions mentioned above are statistically regressed. The load-displacement curves of SFRC under uniaxial tension and flexure are analyzed, and a unitized model to evaluate the toughness of SFRC is given. Relational expressions between split strength, tensile strength and flexural strength are educed. With the statistically regressing of the test data, a constitutive equation of SFRC under uniaxial tension is educed. Furthermore, an expression is given to quantify the relationship between flexural crack strength and flexural ultimate strength. A new formula is educed to calculate the shear strength of SFRC, and the formula 1 value well fits the test date.Some conclusions have been draw during the analysis. When be used in construction members to bear compression, steel fiber with large aspect ratio, high strength and minor diameter may be more effective. It is more effective of increasing fiber content on improving the tensile strength of high-strength concrete than on that of common -strength concrete. But as matrix strength rising, the ratio of tensile crack strength of SFRC with certain content of fiber is almost unchanged. The flexural crack strength of SFRC is hardly influenced by fiber type, but the flexural ultimate strength is strongly influenced by fiber type. Through comparing several methods for evaluation criterion of the flexural toughness of SFRC. one of them is selected. The method is not only objective and accurate, but also be easy to calculate. So it is compiled into the "Technical Specification for Fiber Reinforced Concrete Structures (CECS 38:2004)". Another point to notice, the shape parameters of the cross section of steel fiber has much influence on the shear strength of SFRC.(3). Based on the pullout tests, the bond-slip mechanism on the interface between steel fiber and matrix is particularity analyzed. On the base of Cox shear lag theory, SFRC is analyzed as a three phase complexes (reinforcing phase, reinforced phase and interface phase). With refined mechanical deducing, a new bond-slip model between profiled steel fiber and high-strength mortar is educed. Combined with the mechanical property tests and bond-slip model deduced above, strengthening and toughening mechanism of profiled steel fiber on high-strength concrete is systematically analyzes on the base of complex material theory. Finally a new constitutive model of bond-slip between steel fiber and matrix is built.(4). Aim at the vacancy of the design theory on SFRC industrial ground floors in our country, a new design method is given which takes the toughening function of steel fiber into account. This method is based on Meyehoff yield line theory of slab on elastic ground base and "Code for Design of Building Ground Engineering (GB 50037)", refer to the "Concrete Society Technical Report 34: Concrete Industrial ground floors" of the concrete society of England. The formula for SFRC floor slab thickness under many kinds of load conditions are given in this method, in which the effect of the toughness of SFRC after crack is adequately
    considered. This content has been compiled into the 10th chapter of the "Technical Specification for Fiber Reinforced Concrete Structures (CECS 38:2004)".
引文
[1] 赵国藩,彭少民,黄承逵.钢纤维混凝土结构.北京:中国建筑工业出版社,1999.
    [2] 黄承逵.纤维混凝土结构.北京:机械工业出版社,2004.
    [3] 赵国藩.高等钢筋混凝土结构学.北京:中国电力出版社,1999.
    [4] 小林一辅著.蒋之峰译.钢纤维混凝土.北京:冶金部建筑研究总院技术情报室,1984.
    [5] 赵国藩,黄承逵.纤维混凝土的研究与应用.大连:大连理工大学出版社,1992.
    [6] 中华人民共和国国家标准.混凝土结构设计规范GB 50010-2002.北京:中国建筑工业出版社,2002.
    [7] 陈肇元,朱金铨,吴佩刚.高强混凝土及其应用.北京:清华大学出版社,1992.
    [8] 小林一辅.纤维补强混凝土.北京:中国铁道出版社,1995.
    [9] 中国工程建设标准化协会.钢纤维混凝土结构设计与施工规程CECS 38:92.北京:中国建筑工业出版社,1992.
    [10] 中国工程建设标准化协会.纤维混凝土结构技术规程CECS 38:2004.北京:中国计划出版社,2004.
    [11] 樊承谋,赵景海,程龙保.钢纤维混凝土应用技术.哈尔滨:黑龙江科学技术出版社,1986.
    [12] 王璋水,陆惠棠.高强钢纤维混凝土的性能及应用.北京:空军设计研究局,1986.
    [13] 赵国藩,黄承逵.钢纤维混凝土增强机理及其结构设计理论研究课题研究总结.大连:大连理工大学士木系结构研究室,1993.
    [14] 赵景海,程龙保.钢纤维混凝土设计与施工.哈尔滨:黑龙江科学技术出版社,1988.
    [15] 中国工程建设标准化协会.钢纤维混凝土试验方法CECS 13:89.北京:中国建筑工业出版社,1989.
    [16] 中国工程建设标准化协会.钢纤维混凝土JG/T3064-1999.北京:中国计划出版社,1999.
    [17] Yin G F. Application of SFRC in high-rise building load-bearing structure. Proceeding of the International Conference on Fiber Reinforced Concrete, Guangzhou, 1997.
    [18] 张忠刚,唐昆仑.钢纤维混凝土在建筑工程中的应用.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [19] 卢良浩.局部增强钢纤维混凝土预制长桩工程应用实例.见:赵国藩,黄承逵编.纤维混凝土的研究与应用.大连:大连理工大学出版社,1992:38-39.
    [20] 蒋永生.钢纤维混凝土在结构中应用研究综述.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [21] 陈圣奎.钢纤维混凝土刚性防水屋面应用技术研究.见:赵国藩,黄承逵编.纤维混凝土的研究与应用.大连:大连理工大学出版社,1992:53-56.
    [22] 张忠刚,安玉杰,刘永春等.钢纤维聚合物水泥砂浆在防水工程中的应用.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [23] 迟长生.高聚物复合SFRC-Ⅱ防水防潮材料的研究与应用.见:赵国藩,黄承逵编.纤维混凝土的研究与应用.大连:大连理工大学出版社,1992:42-44.
    [24] 孙绍平,赵筠.钢纤维混凝土管力学性能的试验研究.全国第3届纤维水泥与纤维混凝土学术会议,武汉,1990.
    [25] 胡幸生.钢纤维混凝土悬辊管试验研究.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [26] 卢亦焱.钢衬钢纤维混凝土管的性能及其应用研究.全国第5届纤维水泥与纤维混凝土学术会议,广州,1994.
    [27] 蒙云,蒙进礼,杨宗厚.珠溪SFRC试验桥静载测试试验研究.全国第3届纤维水泥与纤维混凝土学术会议,武汉,1990.
    [28] 罗保恒.钢纤维混凝土桥面设计应用与调查分析.见:赵国藩,黄承逵编.纤维混凝土的研究与应用.大连:大连理工大学出版社,1992:63-66.
    [29] 卢良浩.钢纤维混凝土在杭州钱江一桥公路桥面大修工程中的应用.全国第5届纤维水泥与纤维混凝土学术会议,广州,1994.
    [30] 徐鼎新.近年来钢纤维混凝土在上海的应用.全国第5届纤维水泥与纤维混凝土学术会议,广州,1994.
    [31] 覃淑媛.钢纤维在钢板桥面沥青铺装中的应用研究.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [32] 周春明,林介文,雷焕金.波纹钢纤维在道路中的应用.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [33] 张荣辉.碾压钢丝网钢纤维混凝土抗弯强度分析及其在路面工程中的应用.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [34] 张秀华,聂让,武敬民.钢纤维混凝土在多年冻土地区的应用.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [35] 王璋水,程铁生,章文钢.机场钢纤维混凝土道面的试验研究及工程应用.全国第5届纤维水泥与纤维混凝土学术会议,广州,1994.
    [36] 徐蕴贤.双块式钢纤维混凝土轨枕.全国第5届纤维水泥与纤维混凝土学术会议,广州,1994.
    [37] 吴淑华,李启隶,何亚雄.特快硬钢纤维混凝土在抢修铁路桥面防水层中的应用.全国第5届纤维水泥与纤维混凝土学术会议,广州,1994.
    [38] 卢良浩.钢纤维混凝土工程应用三例.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [39] 林宝玉,卢安琪.硅粉钢纤维混凝土在水工建筑上的应用.见:赵国藩,黄承逵编.纤维混凝土的研究与应用.大连:大连理工大学出版社,1992:12-16.
    [40] 李启隶,吴淑华,何亚雄等.喷射早强钢纤维混凝土加固丰台立交桥.见:赵国藩,黄承逵编.纤维混凝土的研究与应用.大连:大连理工大学出版社,1992:17-19.
    [41] 罗保恒,陈祖勋.喷射钢纤维混凝土加固拱桥的应用.全国第5届纤维水泥与纤维混凝土学术会议,广州,1994.
    [42] 郑盛娥,风凌云.钢纤维混凝土在南昆铁路隧道工程中的应用.全国第7届纤维水泥与纤维混凝土学术会议,北京,1998.
    [43] 蒙云,陈世民.大跨度PFC吊拉组合索桥研究.全国第6届纤维水泥与纤维混凝土学术会议,重庆,1996.
    [44] 钟铁峰,孙叔红,蒙云.西南地区SFRC公路及桥梁实例及桥梁工程实例及发展前景.第7届纤维水泥与纤维混凝土学术会议,北京,1998.
    [45] 郑远鹄.纤维混凝土在四川桥梁中的应用.第7届纤维水泥与纤维混凝土学术会议,北京,1998.
    [46] 朱骏祥,刘恩吉.浅谈钢纤维混凝土在三峡工程对外交通专用公路中的应用.第7届纤维水泥与纤维混凝土学术会议,北京,1998.
    [47] 高润德,张远曙,杨松玲.高性能钢纤维硅粉混凝土在三峡临时船闸项目中的施工试验及施工.第7届纤维水泥与纤维混凝土学术会议,北京,1998.
    [48] 颜忻新,林颖洁.S-Ⅱ型钢纤维混凝土轨枕在黔桂线试铺使用报告.第7届纤维水泥与纤维混凝土学术会议,北京,1998.
    [49] 陈渊召,李振霞,石凤鸣.桥面抢修用超快硬超短钢纤维混凝土研究.建筑技术开发,2001,28(11):22-23.
    [50] 马芹永,朱群敏.钢纤维混凝土在路面桥面工程中的应用.中国市政工程,2001,(2):21-23.
    [51] 周欣竹,郑建军,张弥.钢纤维混凝土在秦岭隧道衬砌中的应用研究.北方交通大学学报,1998,22(4):50-52.
    [52] 田兴柏,黄德志.普通钢纤维混凝土在乐善村二号隧道中的应用.铁道建筑技术,1999,(3):21-24.
    [53] 罗章,李启月,凌同华.钢纤维混凝土的工程应用研究.江西有色金属,2003,17(2):12-15.
    [54] 祁志,宋宏伟.钢纤维混凝土在地下工程中的应用与展望.混凝土,2003,14(11):48-50
    [55] 陈肇元.高强与高性能混凝土的发展及应用.土木工程学报,1997,30(5):3-11.
    [56] 冯乃谦.普通混凝土、高强混凝土与高性能混凝土.建筑技术,2004,35(1)20-23.
    [57] 赵国藩.高性能混凝土结构的发展与抗震设计.大连理工大学学报,1999,39(2):331-335.
    [58] 王绍东.C100高强混凝土在钢筋混凝土结构工程中的应用.重庆建筑大学学报,1999,21(1):91-94.
    [59] 路来军,朱效荣,高兴燕等.C100高性能混凝土的研究与应用.2003,165(7):43-48.
    [60] 蒲心诚,王志军,王冲等.超高强高性能混凝土的力学性能研究.建筑结构学报,2002,23(6):49-55.
    [61] 冷发光,韩跃伟.高强和高性能混凝土的发展与应用以及对高性能混凝土的讨论.工业建筑,2000,30(11):75-78.
    [62] 曲成平,吕京路.高强混凝土的应用研究.青岛建筑工程学院学报,1995,16(3):70-74.
    [63] 杨竹鹃,段晓农.高性能混凝土的工作特性及在我国的研究应用状况.海南大学学报自然科学版,2000,18(2):202-206.
    [64] 缪昌文.高性能混凝土在建筑工程中的应用.混凝土与水泥制品,2000,115(5):3-4.
    [65] 林小松,杨果林.钢纤维高强与超高强混凝土.北京:科学出版社,2002.
    [66] 张启明,赵广田,汤寄予等.钢纤维高强混凝土设计与施工技术.河南科学,2002,20(6):727-729.
    [67] 余寿文.固体力学与材料科学交缘的几个新课题.力学进展,1994,24(1):24-36.
    [68] 孙庆平,黄克智,余寿文.结构陶瓷增韧研究述评.力学进展,1990,20(3):289-302.
    [69] 冼杏娟.纤维增强复合材料界面的力学行为.力学进展,1992,22(4):464-478.
    [70] 董振英,李庆斌.纤维增强脆性复合材料细观力学若干进展.力学进展,2001,31(4):555-582.
    [71] Naaman A E, Najm H. Bond-slip mechanisms of steel fibers in concrete. ACI Materials Journal, 1991,2: 135-145.
    [72] Naaman A E, Namur G G, Alwan J M, etc. Fiber pullout and bond slip. Ⅱ: experimental validation. Journal of Structural Engineering, 1991, 117(9): 2791-2801.
    [73] Tattersall G H, Urbanowicz C R. Bond strength in steel-fiber-reinforced concrete. Magazine of Concrete Research, 1974, 26(6): 105-113.
    [74] Hughes B P, Fattuhi N I. Fiber bond strength in cement and concrete. Magazine of Concrete Research, 1975, 27(9): 161-166.
    [75] Mayfield B, Zelly B. Steel fiber treatment to improve bonds. Concrete, 1973, 3: 35-37.
    [76] Geng Y, Leung C K Y. A microstructural study of fiber/mortar interfaces during fiber debonding and pull-out. Journal of materials science, 1996, 31(6): 1285-1294.
    [77] Banthia N. A study of factors affecting the fiber-matrix bond in steel fiber reinforced concrete. Canada Journal of Civil Engineering, 1990, 17: 610-620.
    [78] 龙靖华.钢纤维与基体界面粘结强度的研究.合肥工业大学学报(自然科学版),1999,22(S1):31-34.
    [79] 黄承逵,田稳苓,赵国藩.钢纤维与水泥砂浆粘结强度试验研究.全国第7届纤维水泥与纤维混凝土学术会议,北京,1998.
    [80] Banthia N, Trottier J F. Concrete reinforced with deformed steel fibers, part 1:bond-silp mechanisms. ACI Material Journal, 1994, 5: 435-446.
    [81] Alwan J M, Naaman A E, Hansen W. Pull-out work of steel fibers from cementitious composites: analytical investigation. Cement & Concrete Composites, 1991, 13: 247-255.
    [82] Muki R, Sternberg E. On the diffusion of load from a transverse tension bar into a semi-infinite elastic sheet. ASME, 1968, 35: 737-746.
    [83] Muki R, Sternberg E. On the diffusion of an axial load from an infinite cylindrical bar embedded in an elastic medium. International Journal of Solids and Structure, 1969, 5: 587-605.
    [84] Muki R, Sternberg E. Elastostatic load-transfer to a half-space from a partially embedded axially loaded rod. International Journal of Solids and Structure, 1970, 5: 69-90.
    [85] Luk V K, Keer L M. Stress analysis for an elastic half space containing an axially-loaded rigid cylindrical rod. International Journal of Solids and Structure, 1979, 15: 805-827.
    [86] Phan-Thien N. A contribution to the rigid fiber pull-out problem. Fiber Sci. & Tech., 1980, 13: 179-186.
    [87] Watstein D, Distribution of bond stress in concrete pull-out specimens. Journal of American Concrete Institute, 1947, 43(9): 1041-1052.
    [88] Tattersall G H, Urbanowicz C R. Bond strength in steel-fiber-reinforced concrete. Magazine of Concrete Research, 1974, 26(87): 105-113.
    [89] Maystein B, Zelly B. Steel fiber treatment to improve bonds. Concrete, 1973, 7(3): 35-37.
    [90] Hughes B P, Fattuhi N I. Fiber bond strengths in cement and concrete. Magazine of Concrete Research, 1975, 27(92): 161-166.
    [91] Cox H L. The elasticity and strength of paper and other fibrous materials. British Journal of Applied Physics, 1952, 3: 72-79.
    [92] Namur G, Naaman A E. A bond stress model for fiber reinforced concrete based on bond stress slip relationship. ACI Material Journal, 1989, 86(1): 45-57.
    [93] Laws V. Micromechanical aspects of the fiber-cement bond. Composites, 1982, 13: 145-151.
    [94] Gopalartnaw V S, Shah S P. Tensile failure of steel fiber reinforced mortar. Journal of Engineering Mechanics, 1987, 133(5): 635-652.
    [95] Wang Y J, Li V C, Backer S. Modeling of fiber pull-out from a cement matrix. The International Journal of Cement Composite and Lightweight Concrete, 1988, 10(3): 143-149.
    [96] Gao Y C, Mai Y W. Fracture of fiber-reinforced materials. Journal of Applied Mathenatics and Physics, 1988, 29(7): 551-571.
    [97] Gurney C, Hunt J. Quasi-static crack propagation. London: Phil. Trans. Royal Society, 1967.
    [98] Lueng C K, Li V C. Strength-based and fracture-based approaches in the analysis of fiber debonding. Journal of Materials Science Letters, 1990, 9: 1140-1142.
    [99] Hsueh C H. Interfacial debonding and fiber pullout stresses of fiber-reinforced composites, Part X: with an elastic interfacial coating. Materials Science and Engineering, 1993, A(165): 189-195.
    [100] Kim J K, Lu S, Mai Y W. Interfacial debonding and fiber pull-out stresses, Part Ⅳ: Influence of interface layer on the stress transfer. Journal of Materials Science, 1994, 29: 554-561.
    [101] Povirk G L, Needleman A. Finite element simulations of fiber pull-out. Journal of Engineering Materials and Technology, 1993, 115: 286-291.
    [102] Marotzke C. The elastic stress field arising in the single-fiber pull-out test. Composites Science and Technology, 1994, 50: 393-405.
    [103] Beckert W, Lauke B. Fracture mechanics finite element analysis of debonding crack extension for a single fiber pull-out specimen. Journal of Materials Science Letters, 1995, A(203): 332-342.
    [104] Sun W, Lin F. Computer modeling and FEA simulation for composite single fiber pull-out. Journal of Thermoplastic Composite Materials, 2001, 14(4): 327-343.
    [105] Jiang X Y, Gao Q. Stress-transfer analysis for fiber/matrix interfaces in shortfiber-reinforced composites. Composites Science and Technology, 2001, 61: 1359-1366.
    [106] Leung C K Y, Ybanez N. Pullout of inclined flexible fiber in cementitious composite. Journal of Engineering Mechanics, 1997, 123(3): 239-246.
    [107] Naaman A E, Shah S P. Pull-out mechanism in steel fiber-reinforced concrete. Journal of the Structural Division, 1976, 102(8): 1537-1548.
    [108] Brandt A M. On the optimal direction of shear mental fibers in brittle matrix composites. Journal of Materials Science, 1985, 20: 3831-3841.
    [109] Leung C K, Chi J. Crack-bridging force in random ductile fiber brittle-matrix composites. Journal of Engineering Mechanics, 1995, 121(12): 1315-1324.
    [110] Leung C K, Shapiro N. Optimal steel fiber strength for reinforcement of cementitious materials. Journal of Materials in Civil Engineering, 1999, 11(2): 116-123.
    [111] Katz A, Li V C. Inclination angle effect of carbon-fibers in cementitious composites. Journal of Engineering Mechanics, 1995, 121(12): 1340-1348.
    [112] Zhang J, Li V C. Effect of inclination angle on fiber rupture load in fiber reinforced cementitious composites. Composites Science and Technology, 2002, 62: 775-781.
    [113] 董振英.纤维混凝土细观机理及应用研究:(博士学位论文).北京:清华大学,2003.
    [114] Sujivorakul C, Waas A M, Naaman A E. Pullout response of a smooth fiber with an end anchorage. Journal of Engineering Mechanics, 2000, 126(9): 986-993.
    [115] 董振英,李庆斌.异型钢纤维拉拔界面模型.工程力学,2004,21(6):102-107.
    [116] 金芷生,曾滨.异型钢纤维形状对钢纤维混凝土性能的影响.全国第4届纤维水泥与纤维混凝土学术会议,南京,1992.
    [117] 曾滨,金芷生.钢纤维混凝土纤维增强作用.北京科技大学学报,1995,17(5):485-488.
    [118] 田稳苓.异型钢纤维粘结机理研究.全国第8届纤维水泥与纤维混凝土学术会议,济南,2000.
    [119] Chanlillard N. Modeling the pullout of the wire-drawn steel fibers. Cement and Concrete Research, 1999, 29(3): 1027-1037.
    [120] Alwan J M, Naaman A E. Effect of mechanical clamping on the pull-out response of hooked steel fibers embedded in cementitious matrices. Concrete Science and Engineering, 1999, 1(3): 15-25.
    [121] Beyerlein I J, Zhu Y T, Mahesh S. On the influence of fiber shape in bone-shaped short-fiber composites. Composites Science and Technology, 2001, 61: 1341-1357.
    [122] Wetherhold R C, Lee F K. Shaped ductile fibers to improve the toughness of epoxy-matrix composites. Composites Science and Technology, 2001, 61: 517-530.
    [123] Zhang J, Stang H, Li V C. Experimental study on crack bridging in FRC under uniaxial fatigue tension. Journal of Materials in Civil Engineering, 2000, 12(1): 66-73.
    [124] 赵渠林.复合材料.北京:国防工业出版社,1979.
    [125] 汉南特著.陆建业译.纤维水泥与纤维混凝土.北京:中国建筑工业出版社,1986.
    [126] Naaman A E, Moavenzadeh F, Mcgarry F. Probabilistic analysis of fibre reinforced conceret. Journal of the Engineering Mechanics Division, 1974, 100(4): 397-413.
    [127] 姚武.钢纤维高强混凝土的力学性能研究.建筑石膏与胶凝材料,1999,10:18-19.
    [128] 高丹盈,汤寄予,朱海堂.钢纤维高强混凝土的配合比及基本性能研究.郑州大学学报(工学版),2004,25(3):46-51.
    [129] 焦楚杰,孙伟,高培正等.钢纤维高强混凝土力学性能研究.混凝土与水泥制品,2005,3:35-38.
    [130] 张晓峰.钢纤维高强砼和普通高强砼力学性能实验研究.贵州工学院学报,1996,25(3):54-59.
    [131] 赵人达,李方元,周益云.高强混凝土和高强钢纤维混凝土的配制及其性能研究.混凝土与水泥制品,2001,5:41-42.
    [132] 高丹盈,汤寄予,赵军.纤维高强混凝土弹性模量的试验研究.工业建筑,2004,34(10):47-49.
    [133] Faella D A, Naaman A g. Stress-strain properties of fiber reinforced mortar in compression. ACI Journal, 1985, 82(4): 475-483.
    [134] Mansur M A, Chin M S, Wee T H. Stress-strain relationship of high-strength fiber concrete in compression. Journal of Materials in Civil Engineering, 1999, 11(1): 21-28.
    [135] 严少华,钱七虎,孙伟等.钢纤维高强混凝土单轴压缩下应力应变关系.东南大学学报(自然科学版),2001,31(2):77-80.
    [136] 焦楚杰,孙伟,秦鸿根等.钢纤维高强混凝土单轴受压本构方程.东南大学学报(自然科学版),2004,34(3):366-369.
    [137] 田稳苓,李子祥.钢纤维膨胀混凝土轴压应力应变全曲线研究.河北工业大学学报,2000,29(5):1-5.
    [138] 高丹盈.重复荷载下钢纤维混凝土轴压全曲线的研究.水力发电,1994,5:18-22.
    [139] Marar K, Eren O, Elik T C. Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete. Materials Letters, 2001, 47(2):297-304.
    [140] 邱凯.粉煤灰高强度钢纤维混凝土的试验研究.贵州水力发电,2002,16(4):85-88.
    [141] 朱海堂,汤寄予,赵军.钢纤维高强混凝土抗拉强度试验研究.河南科学,2002,20(6):653-655.
    [142] Tjiptobroto P, Hansen W. Mechanism for tensile strain hardening in high performance cement-based fiber reinforced composites. Cement and Concrete Composites, 1991, 13:265-273.
    [143] 高丹盈,徐磊,李趁趁.钢纤维混凝土轴拉初裂强度的计算方法.郑州大学学报(工学版),2002,23(1):31-33.
    [144] 许国平,张启明,高丹盈.钢纤维间距理论在混凝土轴拉初裂强度计算中的应用.河南科学,2002,20(6):685-687.
    [145] Murakami H, Zeng J Y. Experimental and analytical study of SIMCON tension members. Mechanics of Materials, 1998, 28: 181-195.
    [146] Maalej M. Tensile properties of short fiber composites with fiber strength distribution. Journal of Materials Science, 2001, 36: 2203-2212.
    [147] Maalej M, Li V C, Hashida T. Effect of fiber rupture on tensile properties of short fiber composites. Journal of Engineering Mechanics, 1995, 121(8): 903-913.
    [148] 高丹盈,赵军,汤寄予.钢纤维高强混凝土劈拉强度尺寸效应试验研究.建筑材料学报,2004,7(3):295-298.
    [149] 汤寄予,高丹盈,赵广田.纤维高强砼劈拉强度—变形曲线的测试技术.仪器仪表学报,2004,25(4):23-24.
    [150] 李夕兵,罗章,赵伏军.中应变率下钢纤维混凝土受拉全过程实验研究.实验力学,2004,19(3):301-309.
    [151] 董振英,李庆斌,王光纶等.钢纤维混凝土轴拉应力-应变特性的试验研究.水利学报,2002,5:47-50.
    [152] 卢亦焱,肖焕雄.钢纤维混凝土受拉性能实验方法研究.实验力学,1999,14(3):259-266.
    [153] 卢亦焱,何少溪.钢纤维混凝土环向受拉全过程曲线试验研究.武汉水利电力大学学报,1995,28(3):285-292.
    [154] 钱春香,姚琏,叶连生.钢纤维砼轴心受拉的应力-应变全曲线及数学模型.混凝土与水泥制品,1990,2:21-23.
    [155] Li F M, Li Z J. Continuum damage mechanics based modeling of fiber reinforced concrete in tension. International Journal of Solids and Structures, 2001, 38: 777-793.
    [156] Lennart, David A, Salah A etc. Tensile basic creep of early-age concrete under constant load. Cement and Concrete Research, 2001, 31: 1895-1899.
    [157] Tjiptobroto P, Hansen W. Tensile strain hardening and multiple cracking in highperformance cement based composites. ACI Materials Journal, 1993, 90(1): 16-25.
    [158] Naaman A E. Characterization of high performance fiber reinforced cement composites. The 2nd International workshop of High Performance Fiber Reinforced Cement Composites, London, 1995.
    [159] 曲福进,赵国藩,黄承逵.砂浆渗浇钢纤维砼轴拉应力-应变全曲线的试验研究.大连理工大学学报,1996,36(6):785-788.
    [160] 李明惠.钢纤维砼轴心受拉应力-应变全曲线的研究.江苏建筑,1995,2:26-30.
    [161] 郭晓辉,李珠,孙珏.纤维增强混凝土拉伸软化本构方程的实验确定方法.太原工业大学学报,1995,26(3):34-37.
    [162] Kuriharaa N, Kuniedab M, Kamadab T etc. Tension softening diagrams and evaluation of properties of steel fiber reinforced concrete. Engineering Fracture Mechanics, 2000, 65: 235-245.
    [163] 赵尚传,傅智.钢纤维水泥混凝土路面接缝传荷能力分析.公路,2002,11:1-6.
    [164] ACI Committee 544. Measurement of properties of fiber reinforced concrete. ACI Materials Journal, 1988, 85(6):583-589.
    [165] The Concrete Society Technical Report 34. Concrete Industrial ground floors. Eatongate: the concrete society, 1994.
    [166] 上海市建设和管理委员会.切断型钢纤维混凝土应用技术规程DG/TJ08-011-2002.上海:上海市工程建设规范,2002.
    [167] 上海市建设委员会.铣削钢纤维混凝土应用技术规程DBJ08-59-97.上海:上海市工程建设规范,1997.
    [168] ASTM C1018-97. Standard test method for flexural toughness and first crack strength of fiber reinforced concrete (using beamwith third-point loading). Detroit: ASTM, 1997.
    [169] JSCE Standard SF-4. Method of Test for Flexural Strength and Flexural Toughness of Fiber Reinforced Concrete. Tokoyo: JSCE, 1984.
    [170] Bureau of Indian Standards IS: 516-1959. Methods of Test for Strength of Concrete. India: BIS, 1959.
    [171] Bureau of Indian Standards IS: 10262-1982. Recommended Guidelines for Concrete Mix Design. India: BIS, 1982.
    [172] Balaguru P, Narahari R, Patel M. Flexural toughness of steel fiberreinforced concrete, ACI Materials Journal, 1992, 89(6): 541-546.
    [173] Banthia N, Trottier J F. Test methods for flexural toughness characterization of fiber reinforced concrete: Some concerns and proposition. ACI Materials Journal, 1995, 92(1): 48-57.
    [174] Nataraja M C, Dhang N, Gupta A P. Toughness characterization of steel fiberreinforced concrete by JSCE approach. Cement and Concrete Research, 2000, 30: 593-597.
    [175] Jeng F S, Lin M L, Yuan $ C. Performance of toughness indices for steel fiber reinforced shotcrete. Tunnelling and Underground Space Technology, 2002, 17: 69-82.
    [176] Yue Y I, Li G Z, Xu X S, Zhao Z J. Properties and microstructures of plantfiber-reinforced cement-based composites. Cement and Concrete Research, 2000, 30: 1983-1986.
    [177] Natarajaa M C, Dhangb N, Guptab A P. Toughness characterization of steel fiberreinforced concrete by JSCE approach. Cement and Concrete Research, 2000, 30:593-597.
    [178] 李丽,秦鸿根.钢纤维掺量和基体强度对混凝土弯曲韧性的影响.郑州大学学报(工学版),2003,20(2):41-43.
    [179] Huang C K, Zhao G F. Properties of steel fiber reinforced concrete containing larger coarse aggregate. Cement and Concrete Composites, 1995, 17: 199-206.
    [180] 翟阳,吴佩刚,姜永波等.钢纤维高强混凝土的抗折强度.烟台大学学报(自然科学与工程版),1995,4:56-61.
    [181] 朱海堂,高丹盈,谢丽等.钢纤维高强混凝土弯曲韧性的研究.硅酸盐学报,2004,32(5):656-660.
    [182] 姚武,蔡江宁,吴科如等.钢纤维混凝士的抗弯韧性研究.混凝土,2002,152(6):31-34.
    [183] 李志业,王志杰,关宝树.钢纤维混凝土强度、变形和韧性的试验研究.铁道学报,1998,20(2):99-105.
    [184] 赵顺波,孙晓燕,李长永等.高强钢纤维混凝土弯曲韧性试验研究.建筑材料学报,2003,6(1):95-99.
    [185] 李丽,秦鸿根.钢纤维界面粘结强度和体积掺量对混凝土弯曲韧性的影响.河南科技大学学报(自然科学版),2003,24(1):82-85.
    [186] 高伟,易成,谢和平等.损伤理论在纤维混凝土弯曲性能研究中的应用.工业建筑,2002,32(11):1-5.
    [187] 王志杰.钢纤维混凝土的剪切性能.施工技术,2004,33(4):50-51.
    [188] 高丹盈,刘建秀.钢纤维混凝土基本理论.北京:科学技术文献出版社,1994.
    [189] 祝明桥,王齐仁,曹国娥等.超短异型钢纤维高强混凝土性能研究.混凝土与水泥制品,2001,1:36-37.
    [190] 高丹盈,朱海堂,汤寄予.钢纤维高强混凝土的抗剪强度.硅酸盐学报,2005,33(1):82-86.
    [191] 李志业,王志杰,关宝树等.钢纤维混凝土强度、变形和韧性的试验研究.铁道学报,1998,20(2):99-105.
    [192] 张云升,孙伟,秦鸿根等.基体强度和纤维外形对混凝土抗剪强度的影响.武汉理工大学学报,2005,27(1):36-39.
    [193] 高丹盈,朱海堂,汤寄予.纤维高强混凝土抗剪强度的试验研究.建筑科学,2004,20(5):69-73.
    [194] 高丹盈,朱海堂,汤寄予.纤维高强混凝土抗剪性能的试验研究.建筑结构学报,2004,25(6):88-93.
    [195] 朱海堂,高丹盈,汤寄予.纤维高强混凝土抗剪性能影响因素的研究.水力发电学报,2004,23(3):66-70.
    [196] Yue C Y. Interfacial properties of fibrous composites Part Ⅰ Model for the debonding and pull-out processes. Journal of Materials Science, 1992, 27:3173-3180.
    [197] Sujivorakul C, Waas A M, Naaman A E. Pullout response of s smooth fiber with an end anchorage. Journal of Engineering Mechanics, 1999, 126(9):986-993.
    [198] 杨庆生.短纤维复合材料的细观力学模型研究.大连理工大学学报,1994,34(2):218-221.
    [199] 张少实.纤维与基体界面剪切强度研究.复合材料学报,1995,12(3):125-128.
    [200] Kim J K, Lu S, Mai Y W. Interfacial debonding and fibre pull-out stresses Part Ⅳ Influence of interface layer on the stress transfer. Journal of Materials Science, 1994, 29: 554-561.
    [201] Morrison J K, Shah S P, Jenq Y S. Analysis of fiber debonding and pullout in composites. Journal of Engineering Mechanics, 1988, 114(2):277-294.
    [202] Li C Y, Mobasher B. Finite element simulations of fiber pullout toughening in fiber reinforced cement based composites. Advanced Cementious Based Materials, 1998, 7: 123-132.
    [203] Mirmiran A, Zagers K, Yuan W. Nonlinear finite element modeling of concrete confined by fiber composites. Finite Elements in Analysis and Design, 2000, 35: 79-96.
    [204] Abdelmoula R, Marigo J J. The effective behavior of a fiber bridged crack. Journal of the Mechanics and Physics of Solids, 2000, 48: 2419-2444.
    [205] 黄翔宇,石少卿,尹平.钢筋钢纤维混凝土既有裂缝梁中钢纤维组裂作用的有限元分析.后勤工程学院学报,2004,4:80-83.
    [206] 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [207] 宋玉普,赵国藩.钢筋混凝土结构分析中的有限单元法.大连:大连理工大学出版社,1994.
    [208] 江见鲸.混凝土结构非线性有限元分析.西安:陕西科学技术出版社,1994.
    [209] 田砾,杨明,孙雪飞等.钢纤维混凝土细观结构数值模拟自动生成技术——多边形骨料生成与有限元网格的剖分.青岛建筑工程学院学报,1998,19(4):1-5.
    [210] 宋玉普,赵国藩,彭放等.多轴应力下多种混凝土材料的通用破坏准则.土木工程学报,1996,29(1):25-32.
    [211] 申屠龙美.国外地面板研究评述.工业建筑,1994,4:19-23.
    [212] Westergaard H M. New formulas for stress in concrete pavements of airfields. Transactions ASCE, 1948, 113(3):425-444.
    [213] Meyerhof G G. Load carting capacity of concrete pavements. Journal of the Solid Mechanics and Foundations Division, 1962, 188(SM3):89-115.
    [214] 申屠龙美,蒋大骅.地面板承载力计算方法.工业建筑,1994,11:27-31.
    [215] 庄家华,申屠龙美,蒋大骅.混凝土地面板考虑裂缝的有限元分析.约束与普通混凝土强度理论及其应用学术会议,烟台,1987.
    [216] 中华人民共和国国家标准.建筑地面设计规范GB 50037.北京:中国建筑工业出版社,1996.
    [217] 周跃华.弹性地基钢纤维混凝土板抗裂性能试验研究.四川建筑科学研究,2000,26(3):39-41.
    [218] 戴冠民.钢纤维混凝土地面在亚太纸业公司浆板库工程中的应用.建筑结构,2001,31(9):67-70.
    [219] 张鑫.钢纤维混凝土建筑地面工程技术规程及其应用.工业建筑,2002,32(3):64-66.
    [220] 周跃华,陈世鸣.钢纤维混凝土与素混凝土地基板荷载性能对比试验.结构工程师,2001,2:41-44.
    [221] 陈世鸣,刘欣.钢纤维增强混凝土建筑地坪试验研究.工业建筑,2001,31(7):36-39.
    [222] 陈世鸣,刘欣.冷拔型钢纤维混凝土板韧性试验研究.土木工程学报,2002,35(1):21-24.
    [223] 陈世鸣,刘欣.冷拔型钢纤维增强混凝土在地面工程中的应用.建筑技术,2001,32(9):605-606.
    [224] Igarashi S, Bentur A, Mindess S. The effect of processing on the bond and interfaces in steel fiber reinforced cement composites. Cement and Concrete Composites, 1996, 18: 313-322.
    [225] 李丽,秦鸿根.钢纤维与水泥砂浆界面粘结性能的试验研究.洛阳大学学报,2002,17(4):82-85.
    [226] 易成.纤维拔出时耗能机理对纤维混凝土力学性能的影响.哈尔滨建筑大学学报,1998,31(6):88-93.
    [227] Naaman A E, Namur G G, Alwan J M etc. Fiber pullout and bond slip. Ⅰ: analytical study. Journal of Structural Engineering, 1991, 117(9): 2769-2790.
    [228] Igarashi S, Bentur A, Mindess S. The effect of processing on the bond and interfaces in steel fiber reinforced cement composites. Cement and Concrete Composites, 1996, 18: 313-322.
    [229] Azizinamini A, Stark M, Roller J etc. Bond performance of reinforcing bars embedded in high-strength concrete. ACI St., 1993, 90(5): 554-561.
    [230] Darwin D, Zuo J, Tholen M etc. Development length criteria for conventional and high relative rib area reinforcing bars. ACI St., 1996, 93(3): 347-359.
    [231] 徐有邻.各类钢筋粘结锚固性能的分析比较.福州大学学报(自然科学版),1996,24(SM):69-75.
    [232] 徐有邻,刘立新,管品武.螺旋肋钢丝粘结锚固性能的试验研究.混凝土与水泥制品,1998,4:24-29.
    [233] 粘结锚固专题研究组.钢筋砼粘结锚固的研究及设计建议.建筑结构,1986,4:2-12.
    [234] 徐有邻,邵卓民,沈文都.钢筋与混凝土的粘结锚固强度.建筑科学,19884:8-14.
    [235] 尚仁杰.混凝土动态本构行为研究:(博士学位论文).大连:大连理工大学,1994.
    [236] 王志,胡晓波,鲍光玉等.异形钢纤维混凝土性能试验研究.混凝土,2003,169(11):25-26.
    [237] 林小松,曹国娥.钢纤维外形对高强混凝土增强作用的影响研究.湘潭矿业学院学报,2002,7(3):63-66.
    [238] 过镇海.混凝土强度和变形.北京:清华大学出版社,1997.
    [239] Bao G, Song Y. Crack bridging nodels for fiber composites with slip-dependent interfaces. Joural of the Mechanics and Physics of Solids, 1993, 41(9): 1425-1444.
    [240] Timoshinko S. Strength of material. London: MacMillan, 1941.
    [241] 上海市工程建设标准化办公室.佳密克丝钢纤维混凝土建筑地面工程技术规程DBJ/CT-008-2000.上海:上海市建筑产品推荐性应用标准,2000.
    [242] 陈祖煜,高锋.地基承载力的数值分析方法.岩土工程学报,1997,19(5):6-13.
    [243] 叶文,刘效尧,吴长春.钢纤维混凝士路面板极限承载力的有限元分析.中国公路学报,1997,10(2):11-16.
    [244] 中华人民共和国国家标准.公路水泥混凝土路面设计规范JTGD 40-2002.北京:人民交通出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700