用户名: 密码: 验证码:
铁酸盐多铁材料光伏及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁电材料的光伏效应开路电压可达几千伏特,远优于传统的半导体p-n结光伏材料。传统铁电材料禁带宽度大(>3.3eV),因此其光伏光催化对应紫外光响应波段。而太阳光中紫外光仅占4%,可见光约占43%,因此发展可见光响应的新型铁电光伏材料是十分重要的。多铁材料通常是指一种具有磁性的特殊铁电材料。近年来发展的一些室温铁酸盐多铁材料如BiFeO3等,禁带宽度约为2~3eV,有望实现良好的可见光光伏及光催化效应,可用于太阳光分解水制氢和降解有机污染废水溶液,在环保领域具有很好的应用前景。本论文较系统地研究了铁酸盐多铁陶瓷及纳米材料的制备工艺、光伏和光催化性能,并分析了其物理机理。
     采用固相反应高温烧结法分别制备了铁酸盐多铁Pb(Fe1/2V1/2)O3陶瓷,并采用溶胶凝胶法制备了铁酸锌、铁酸镧和铁酸铋薄膜。研究了它们的可见光光伏性能。在多铁陶瓷Pb(Fe1/2V1/2)O3陶瓷中,诱导的光电流几乎是和外加光强成正比例,测得的可见光光伏开路电压输出达0.7V,远高于目前报道的铁酸铋材料(0.3V)。制备的多铁薄膜均表现出明显的可见光光伏性能,但是零偏置光电流几乎为零,这可能是因为缺陷浓度较高所致。通过分析对比半导体光伏、铁电/多铁材料光伏、高漏电多铁材料光伏三种类型材料的光伏物理机制,发现其光伏效应分别决定于界面能垒(界面效应)、铁电极化强度(体效应)及电场下缺陷定向迁移造成的带电缺陷浓度梯度。设计了相应的等效电路;并利用应变调控,使p-n结材料的光伏开路电压提高了约12%,光伏转化效率提高了约9.1%。
     采用水热法分别制备了BiFeO3、CuFe2O4、ZnFe2O4三种铁酸盐多铁纳米材料。实验表明均对罗丹明B溶液具有很好的光催化降解效果,降解效率分别达到99%、91%和95%;对质量浓度为10mg/L的罗丹明B溶液,最佳的催化剂用量分别为6g/L、1g/L和2g/L。
     采用水热法制备了多铁BiFeO3纳米棒,利用多铁材料压电特性,实现了机械催化效应。对罗丹明B溶液,其机械催化降解率达90%以上。进一步,利用机械催化和光催化效应联合,获得了提高的催化降解率。
Recently the photovoltaic effect in ferroelectric materials has attractedconsiderable interest. The open-circuit photo-voltage of ferroelectric materials can be upto several kV, which is much higher than that of traditional semiconductive p-n junctionphotovoltaic materials. In general, the band gap energy of traditional ferroelectricmaterials is very high (>3.3eV), which corresponds to the ultraviolet light. However,ultraviolet light accounts for only a small fraction (4%) of the sun’s energy compared tovisible light (43%). Then it is in urgent need of new ferroelectric photovoltaic materialswith low band gap energy to respond to visible light. Multiferroic materials aregenerally referred to the typical magnetic ferroelectric materials. Some multiferroicferrite materials developed in recent years such as BiFeO3, possess the low band gapenergy of2-3eV, which corresponds to the visible-light wavelength range. Then it ispossible to achieve the excellent visible-light photovoltaic and photocatalytic effect. Thevisible-light photovoltaic and photocatalytic effect of multiferroic materials can berespectively used in solar light splitting water for hydrogen clean energy production anddecomposing organic dye wastewaster, which make it hopeful for application in thefield of environmental science. In this work, the fabrication of multiferroic ferritematerials and their visible-light photovoltaic and photocatalytic performance isinvestigated. The main works in this dissertation are as following:
     The multiferroic ferrite Pb(Fe1/2V1/2)O3ceramic and BiFeO3, LaFeO3and ZnFe2O4films were synthesized through solid phase reaction sintering method and sol-gelmethod, respectively. The visible-light photovoltaic performance was characterized. Thephoto-excited electric current of Pb(Fe1/2V1/2)O3ceramic is almost proportional to theincident light illumination intensity. The open-circuit photo-voltage of Pb(Fe1/2V1/2)O3ceramic was up to~0.7V, which was much higher than the value (~0.3V) in BiFeO3film. These multiferroic films also behavior the obvious visible-light photovoltaic effect.However, the zero-bias photocurrent of multiferroic films is almost equal to zero, whichmay originate from the high defect concentration in the multiferroic ferrite films. Thedependence of environmental humidity on the surface electric properties of LaFeO3andZnFe2O4films. With the increase of humidity from10%to90%, the capacitance increases, while the electrical impedance decrease. The photovoltaic effects ofsemidocnducive p-n junction, ferroelectric/multiferroic materials, and typicalhigh-leakage multiferroic materials are compared and analyzed. Their physicalmechanisms are different. The photovoltaic effect of semidocnducive p-n junction isdependent on the p-n interface energy barriers and only occurs in the thin interface layer.The photovoltaic effect of ferroic/multiferroic materials is originated from theferroelectric remanent polarization strength and can occur in the whole bulk material.The photovoltaic effects of typical high-leakage multiferroic materials may be due tothe occurrence of defect concentration gradient distribution under the external electricfields. The equivalent circuits for the three photovoltaic effects were plotted in this work.Furthermore, by utilizing a magnetostrictive strain to modulate the energy bandgap ofsemiconductive Si p-n junction, the open-circuit voltage and the maximum photovoltaicoutput power of the Si solar cell could be enhanced by~12%and~9.1%, respectively.
     The ferrite BiFeO3, CuFe2O4and ZnFe2O4powders were synthesized throughhydrothermal reaction. It was found that these powders possessed excellent visible-lightphotocatalytic performance and could be used to degradate Rhodamine B dyewastewater solutions. The photocatalytic degradation ratios of BiFeO3, CuFe2O4andZnFe2O4powders are up to99%,91%and95%, respectively. The optimizedphotocatalytic additional masses of BiFeO3, CuFe2O4and ZnFe2O4powders todegradate Rhodamine B solution of10mg/L are6g/L,1g/L and2g/L, respectively.
     The multiferroic ferrite BiFeO3nanobars were synthesized through hydrothermalreaction method. The mechano-catalytic effect was realized via the product ofpiezoelectric effect and electro-chemically catalytic effect. For Rhodamine B dyesolution, the mechano-catalytic ratio of BiFeO3nanobars can be up to~90%. Furtherly,the enhanced catalytic degradation ratio could be achieved by combining photocatalyicand mechano-catalytic effects.
引文
Abbamonte P, Blumberg G, Rusydi A, et.al. Crystallization of charge holes in the spin ladder ofSr14Cu24O41. Nature,2004,431:1078-1081
    Alexe M and Hesse D. Tip-enhanced photovoltaic effects in bismuth ferrite. Nature Communications,2011,2,256
    Bandi V R, Grandhe B K, Jayasimhadri M, et al. Photoluminescence and structural properties ofCa3Y(VO4)3:RE3+(=Sm3+, Ho3+and Tm3+) powder phosphors for tri-colors. Joural of CrystalGrowth,2011,326(1):120
    Bellakki M B and Manivannan V. Citrate-gel synthesis and characterization of yttrium-dopedmultiferroic BiFeO3. Journal of sol-gel Science and Technology,2010,53(2):184-192
    Bhunia M K, Das S K, Dutta A, et al. Fine dispersion of BiFeO3nanocrystallites over highly orderedmesoporous silica material and its photocatalytic property. Journal of Nanoscience andNanotechnology,2013,13(4):2557-2565
    Blumberg G., Littlewood P., Gozar A.et al, Sliding density wave in Sr14Cu24O41ladder compounds,Science,2002,297(5581):584-587
    Brody P S. High voltage photovoltaic effect in barium titanate and lead titanate-lead zirconateceramics. Journal of Solid State Chemistry,1975,12(3-4):193-200
    Cao D W, Wang C Y, Zheng F G, et al. Understanding the nature of remnant polarizationenhancement, coercive voltage offset and time-dependent photocurrent in ferroelectric filmsirradiated by ultraviolet light. Journal of Materials Chemistry,2012,22:12592-12598
    Chang H W, Yuan F T, Yu Y C, et al. Photovoltaic property of sputtered BiFeO3thin films. Journal ofAlloys and Compounds,2013,574:402-406
    Chen B, Li M, Liu Y W, et al. Effect of top electrodes on photovoltaic properties of polycrystallineBiFeO3based thin film capacitors. Nanotechnology,2011,22(19):195201
    Chen B, Zuo Z H, Liu Y W, et al. Tunable photovoltaic effects in transparent Pb(Zr0.53,Ti0.47)O3capacitors. Applied Physics Letters,2012,100:173903
    Chen C,Zhao W, Lei P, et al. Photosensitized degradation of dyes in polyoxometalate solutionsversus TiO2dispersions under visible-light irradiation: mechanistic implications, Chemistry–AEuropean Journal,2004,10(8):1956-1965
    Chen T, Qiu L B, Yang Z B, et al. Novel solar cells in a wire format. Chemical Society Reviews,2013,42:5031
    Chen X B, Shen SH, Guo L J, et al. Semiconductor-based photocatalytic hydrogen generation.Chemical Reviews,2010,110:6503-6570
    Cheong S W and Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nature Materials,2007,6(1):13-20
    Choi T, Lee S, Choi Y J, et al. Switchable ferroelectric diode and photovoltaic effect in BiFeO3.Science,2009,324(5923):63-66
    Chung S Y, Kim I L D, Kang S J L, et al. Strong nonlinear current–voltage behaviour inperovskite-derivative calcium copper titanate. Nature Materials,2004,3(11):774-778
    Dong W, Guo Y, Guo B, et al. Enhanced photovoltaic effect in BiVO4semiconductor byincorporation with an ultrathin BiFeO3ferroelectric layer,2013,5(15):6925-6929
    Dunkle S S, Helmich R and Suslick K S. BiVO4as a Visible-light photocatalyst prepared byultrasonic spray pyrolysis. The Journal of Physical Chemistry C,2009,113(28):11980
    Eddingsaas N C and Suslick K S. Mechanoluminescence: Light from sonication of crystal slurries.Nature,2006,444:163
    Eerenstein W, Mathur N D and Scott J F. Multiferroic and magnetoelectric materials. Nature,2006,442(7104):759-765
    Farhadi S and Rashidi N. Microwave-induced solid-state decomposition of the Bi[Fe(CN)6]·5H2Oprecursor: A novel route for the rapid and facile synthesis of pure and single-phase BiFeO3nanopowder. Journal of Alloys and Compounds,2010,503(2):439-444
    Folen V J, Rado G T and Stalder E W. Anisotropy of the magnetoelectric effect in Cr2O3. PhysicalReview Letters,1961,6(11):607-608
    Foner S and Hanabusa M. Magnetoelectric effects in Cr2O3and (Cr2O3)0.8·(Al2O3)0.2, J. Appl. Phys.,1963,34(4):1246-1247
    Fujishima A and Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature,1972,238:37-38
    Gao F, Chen X Y, Yin K B, et al. Visible-Light photocatalytic properties of weak magnetic BiFeO3nanoparticles. Advanced Materials,2007,19(19):2889-2892
    Graydon O. Benefit of strain. Nature Photonics,2011,5:712
    Guo R, You L, Zhou Y, et al. Non-volatile memory based on the ferroelectric photovoltaic effect.Nature Communications,2013,4,1990
    Guo R, You L, Chen L, et al. Photovoltaic property of BiFeO3thin films with109degrees domains.Applied Physics Letters,2011,99(12):122902
    Guo Y P, Guo B, Dong W, et al. Evidence for oxygen vacancy or ferroelectric polarization inducedswitchable diode and photovoltaic effects in BiFeO3based thin films. Nanotechnology,2013,24(27):275201
    Hara M, Komoda M, Hasei H, et al. A study of mechano-catalysts for overall water splitting. TheJournal of Physical Chemistry B,2000,104(4):780-785
    Hashimoto T, Ishibashi K and Yoko T. Third-order nonlinear optical properties and dielectricproperties of Pb-complex perovskite thin films prepared by sol-gel method. Journal of Sol-GelScience and Technology,1997,9(2):211-218
    Hauser A J, Zhang J, Mier L, et al. Characterization of electronic structure and defect states of thinepitaxial BiFeO3films by UV-visible absorption and cathodoluminescence spectroscopies.Applied Physics Letters,2008,92,222901
    He R R and Yang P D. Giant piezoresistance effect in silicon nanowires. Nature Nanotechnology,2006,1,42
    Hern T S, Wong M F, Qi D C, et al. Mutual ferromagnetic–ferroelectric coupling in multiferroiccopper-doped ZnO. Advanced Materials,2011,23(14):1635–1640
    Hitoki G, Takata T, Ikeda S, et al. Mechano-catalytic overall water splitting on some mixed oxides.Catalysis Today,2000,63(2-4):175-181
    Hoffmann M R, Martin S T, Choi WY, et al. Environmental applications of semiconductorphotocatalysis. Chemical Reviews,1995,95(1):69-96
    Homes C C, Vogt T, Shapiro S, et al. Optical response of high-dielectric-constant perovskite-relatedoxide. Science,2001,293(5530):673-676
    Hong K H, Kim J, Lee S H, et al. Strain-driven electronic band structure modulation of Si nanowires.Nano Letters,2008,8(5):1335
    Hong K S, Xu H F, Konishi H, et al. Direct water splitting through vibrating piezoelectricmicrofibers in water. The Journal of Physical Chemistry Letters,2010,1(6):997-1002
    Hu X F, Mohamood T, Ma WH, et al. Oxidative decomposition of Rhodamine B dye in the presenceof VO2+and/or Pt (IV) under visible light irradiation: N-deethylation, chromophore cleavage,and Mineralization. The Journal of Physal Chemistry B,2006,110(51):26012-26018
    Huang H T. Solar energy: Ferroelectric photovoltaics. Nature photonics,2010,4,134
    Huang Z J, Cao Y, Sun Y Y, et al. Couping between the ferroelectric and antiferromagnetic orders inYMnO3. Physical Review B,1997,56(5):2623-2626
    Hubbard S M, Bailey C G, Cress C D, et al. Short circuit current enhancement of GaAs solar cellsusing strain compensated InAs quantum dots. Applied Physics Letters,2008,92,123512
    Hung C M, Jiang M D, Anthoninappen J, et al. Photo-induced electric phenomena inantiferromagnetic BiFeO3ceramics. Journal of Applied Physics,2013,113(17):17D905
    Hung C M, Tu C S, Yen W D, et al. Photovoltaic phenomena in BiFeO3multiferroic ceramics.Journal of Applied Physics,2012,111(7):07D912
    Huo Y, Jin Y and Zhang Y. Citric acid assisted solvothermal synthesis of BiFeO3microspheres withhigh visible-light photocatalytic activity. Journal of Molecular Ctalysis A-chemical,2010,331(1-2):15-20
    Ichiki M, Furue H, Kobayashi T, et al. Photovoltaic effect of ferroelectric PLZT in a layer ed and preferentially oriented film. Proceedings of SPIE,2006,6035:60350
    Ichiki M, Furue H, Kobayashi T, et al. Photovoltaic properties of (Pb, La)(Zr, Ti) O3films withdifferent crystallographic orientations. Applied Physics Letters,2005,87,222903
    Ichikia M, Morikawa Y, Mabune Y, et al. Electrical properties of photovoltaic lead lanthanumzirconate titanate in an electrostatic-optical motor application. Journal of the European CeramicSociety,2004,24(6)1709-1714
    Ikeda N, Ohsumi H, Ohwada K, et al. Ferroelectricity from iron valence ordering in thecharge-frustrated system LuFe2O4. Nature,2005,436:1136-1138
    Ikeda S, Takata T, Komoda M, et al. Mechano-catalysis—a novel method for overall water splitting.physical chemistry chemical physics,1999,1:4485-4491
    Ikeda S, Takata T, Kondo T, et al. Mechano-catalytic overall water splitting. ChemicalCommunications,1998,20:2185–2186
    Ji W, Yao K and Liang Y C. Bulk Photovoltaic Effect at Visible Wavelength in EpitaxialFerroelectric BiFeO3Thin Films. Advanced Materials,2010,22(15):1763
    Jia Y M, Luo H S, Or S W, et al. Dielectric behavior and phase transition in Perovskite oxidePb(Fe1/2Nb1/2)1-xTixO3single crystal. Journal of Applied Physics,2009,105,124109
    Jia Y M, Tian X L, Si Jianxiao, et al. Modulation of strain, resistance, and capacitance of tantalumoxide film by converse piezoelectric effect. Applied Physics Letters,2011,99,011905
    Ju L, Chen Z, Fang L, et al. Sol–gel synthesis and photo-fenton-like catalytic activity of EuFeO3nanoparticles. Journal of American Ceramic Society,2011,94(10):3418-3424
    Karazhanov S Z, Davletova A and Ulyashin A. Strain-induced modulation of band structure ofsilicon. Journal of Applied Physics,2008,104,024501
    Ke S M, Huang H T, Fan H Q, et al. Structural and electric properties of barium strontium titanatebased ceramic composite as a humidity sensor. Solid State lonics,2008,179(27-32):1632-1635
    Kim S and Gopalan V. Strain-tunable photonic band gap crystals. Journal of Applied Physics,2001,78,3015
    Kim S R and Choi S K. Effects of grain size and doping on photovoltaic current in (Pb1-xLax)TiO3ferroelectric ceramics. Ferroelectric Letters,2004,31(3-4):63-72
    Kunz M and Brown I D. Out-of-Center Distortions around Octahedrally Coordinated d0TransitionMetals. Journal of Solid State Chemistry,1995,115(2):395
    Li H, Jin K X, Yang S H, et al. Ultraviolet photovoltaic effect in BiFeO3/Nb-SrTiO3heterostructure.Journal of Applied Physics,2012,112(8):083506
    Li J F, Tatag i K and Zhang B P. PLZT ceramics from mechanically alloyed powder and theiranomalous photovoltaic effect. Journal of Materials Science,2004,39(8):2879-2882
    Li S, Jing L, Fu W, et al. Photoinduced charge property of nanosized perovskite-type LaFeO3and itsrelationships with photocatalytic activity under visible irradiation. Materials Research Bulletin,2007,42(2):203-212
    Li S, Lin Y H, Zhang B P, et al. Ctrolled Fabrication of BiFeO3Uniform microcrystals and theirmagnetic and photocatalytic behaviors. Journal of Physical Chemistry C,2010,114(7):2903-2908
    Li Z X, Shen Y, Yang C, et al. Significant enhancement in the visible light photocatalytic propertiesof BiFeO3–graphene nanohybrids. Journal of Materials Chemistry A,2013,1:823-829
    Lia G, Kako T, Wang D, et al. Composition dependence of the photophysical and photocatalyticproperties of (AgNbO3)1-x(NaNbO3)xsolid solutions. Journal of Solid State Chemistry,2007,180(10):2845–2850
    Liu H Y, Guo Y P, Guo B, et al. Synthesis and visible-light photocatalysis capability ofBiFeO3-(Na0.5Bi0.5)TiO3nanopowders by a sol-gel method. Solid State Sciences,2013,19:69-72
    Liu H Y, Guo Y P, Guo B, et al.BiFeO3-(Na0.5Bi0.5)TiO3butterfly wing scales: Synthesis,visible-light photocatalytic and magnetic properties. Journal of the European Ceramic Society,2012,32(16):4235-4340
    Liu Z and Yan F. Photovoltaic effect of BiFeO3/poly(3-hexylthiophene) heterojunction. physicastatus solidi (RRL)-Rapid Research Letters,2011,5(10-11):367-369
    Lubitz W, Reijerse E J and Messinge J. Solar water-splitting into H2and O2: design principles ofphotosystem II and hydrogenases. Energy&Environmental Science,2008,1,15
    Luo B C, Chen C L, Fan F, et al. The photovoltaic properties of BiFeO3/La0.7Sr0.3MnO3heterostructures. Chinese Physics Letters,2012,29(1):018104
    Luo W, Zhu L H, Wang N, et al. Efficient removal of organic pollutants with magnetic nanoscaledBiFeO3as a reusable heterogeneous Fenton-like catalyst. Environmental Science&Technology,2010,44(5):1786-1791
    Maiti C K, Bera L K and Chattopadhyay S. Strained-Si heterostructure field effect transistors.Semiconductor Science and Technology,1998,13(11):1225
    McGehee M D. Organic solar cells: Overcoming recombination. Nature Photonics,2009,3:250-252
    Moubah R, Rousseau O, Colson D, et al. Photoelectric Effects in Single Domain BiFeO3Crystals.Advanced Functional Materials,2012,22(22):4814-4818
    Nechache R, Harnagea C, Licoccia S, et al. Photovoltaic properties of Bi2FeCrO6epitaxial thin films.Applied Physics Letters,2011,98(20):202902
    Nonaka K, Akiyama M, Takase A, et al. Nonstoichiometry effects and their additivity on anomalousphotovoltaic efficiency in lead lanthanum zirconate titanate ceramics. Japanese Journal ofApplied Physics,1995,34(9):5389-5383
    Nonaka K, Akiyama M, Xu C N, et al. Enhanced photovoltaic response in lead lanthanumzirconate-titanate ceramics with A-site deficient composition forphotostrictor application.Japanese Journal of Applied Physics,2000,39(9A):5144-5145
    O’Regan B, Grfitzeliet M. A low-cost high-efficiency solar cell based on dye-sensitized.Nature,1991,353:737
    O’Reilly E P. Valence band engineering in strained-layer structures. Semiconductor Science andTechnology,1989,4:121
    Oh J, Yuan H C and Branz H M. An18.2%-efficient black-silicon solar cell achieved through controlof carrier recombination in nanostructures. Nature Nanotechnology,2012,7:743-748
    Pan C F, Niu S M, Ding Y, et al. Enhanced Cu2S/CdS coaxial nanowire solar cells bypiezo-phototronic effect. Nano Letters,2012,12(6):3302
    Pan L, Liu X, Sun Z, et al. ophotocatalysts via microwave-assisted solution-phase synthesis forefficient photocatalysis. Journal of Materials Chemistry A,2013,1(29):8299-8326
    Park H and Choi W Y. Photocatalytic reactivities of Nafion-coated TiO2for the degradation ofcharged organic compounds under UV or visible light. The Journal of Physal Chemistry B,2005,109(23):11667-11674
    Park T, Nussinov Z, Hazzard K R A, et al. Novel dielectric anomaly in the hole-doped La2Cu1-xLixO4and La2-xSrxNiO4insulators: signature of an electronic glassy state. Physical Review Letters.2005,94:017002
    Ponzoni C, Rosa R, Cannio M, et al. Electrophoretic deposition of multiferroic BiFeO3sub-micrometric particles from stabilized suspensions. Journal of the European Ceramic Society,2013,33(7):1325-1333
    Prashanthi K, Gupta M, Tsui Y Y, et al. Effect of annealing atmosphere on microstructural andphotoluminescence characteristics of multiferroic BiFeO3thin films prepared by pulsed laserdeposition technique. Applied Physics A: Materials Science&Processing,2013,110(4):903-907.
    Ra H S, Ok K M and Shiv Halasyamani P. Combining second-order Jahn Teller distorted cations tocreate highly efficient SHG materials: synthesis, characterization, and NLO properties ofBaTeM2O9(M=Mo6+or W6+). Journal of the American Chemical Society,2003,125(26):7764
    Rado G T and Folen VJ. Observation of the magnetically induced magnetoelectric effect andevidence for antiferromagnetic domains. Physical Review Letters,1961,7(8):310-311
    Ramesh R and Spaldin N A. Multiferroics: progress and prospects in thin films. Nature Materials,2007,6(1):21-29
    Reitz C, Suchomski C, Weidmann C, et al. Block copolymer-templated BiFeO3nanoarchitecturescomposed of phase-pure crystallites intermingled with a continuous mesoporosity: Effectivevisible-light photocatalysts. Nano Research,2011,4(4):414-424
    Sakar M, Balakumar S, Saravanan P, et al. Annealing temperature mediated physical properties ofbismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method. MaterialsResearch Bulletin,2013,48(8):2878-2885
    Scott J F. Ferroelectrics go bananas. Journal of Physics: Condensed Matter,2008,20,021001
    Semonin O E, Luther J M, Choi S, et al. Peak external photocurrent quantum efficiency exceeding100%via MEG in a quantum dot solar cell. Science,2011,334(6062):1530-1533
    Shi J, Starr M B, Xiang H, et al. Interface engineering by piezoelectric potential in ZnO-basedphotoelectrochemical anode. Nano Letters,2011,11(12):5587
    Smith C S and Hill M. Piezoresistance effect in germanium and silicon. Physical Review,1954,94,42
    Soltani T and Entezari M H. Photolysis and photocatalysis of methylene blue by ferrite bismuthnanoparticles under sunlight irradiation. Journal of Molecular Catalysis A: Chemical,2013,377:197-203
    Spaldin N A and Fiebig M. The renaissance of magnetoelectric multiferroics. Science,2005,309(5733):391-392
    Subramanian M A, He T, Chen J, et al. Giant room–temperature magnetodielectric response in theelectronic ferroelectric LuFe2O4. Advanced Materials,2006,18(13):1737-1739
    Tan G Q, Zheng Y Q, Miao H Y, et al. Controllable microwave hydrothermal synthesis of bismuthferrites and photocatalytic characterization. Journal of the American Ceramic Society,201295(1):280-289
    Tu C S, Hung C M, Schmidt V H, et al. The origin of photovoltaic responses in BiFeO3multiferroicceramics, Journal of Physics: Condensed Matter,2012,24,495902
    Tu C S, Hung C M, Schmidt V H, et al. The origin of photovoltaic responses in BiFeO3multiferroicceramics. Journal of Physics: Condensed Matter,2012,24(49)495902
    Tu C S, Hung C M, Xu Z R, et al. Calcium-doping effects on photovoltaic response and structure inmultiferroic BiFeO3ceramics. Journal of Applied Physics,2013,114(12):124105
    Van der Pauw L J. A method of measuring specific resistivity and Hall effect of discs of arbitraryshape. Philips Research Reports,1958,13(1):1-9
    Wang B, Wang S, Gong L, et al. Structural, magnetic and photocatalytic properties of Sr2+-dopedBiFeO3nanoparticles based on an ultrasonic irradiation assisted self-combustion method.Ceramics International,2012,38(8):6643-6649
    Wang L J, He Y, Hu J H, et al. DC humidity sensing properties of BaTiO3nanofiber sensors withdifferent electrode materials. Sensors and Actuators B: Chemical,2011,153(2):460-464
    Wang Q, Chen C C, Zhao D, et al. Change of adsorption modes of dyes on fluorinated TiO2and itseffect on photocatalytic degradation of dyes under visible irradiation. Langmuir,2008,24(14):7338-7345
    Wang W, Li N, Chi Y, et al. Electrospinning of magnetical bismuth ferrite nanofibers withphotocatalytic activity. Ceramics International,2012,39(4):3511-3518
    Wang X D, Song J H, Liu J, et al. Direct-current nanogenerator driven by ultrasonic waves. Science,2007,316(5821):102-105
    Wang X, Lin Y, Zhang Z C, et al. Photocatalytic activities of multiferroic bismuth ferritenanoparticles prepared by glycol-based sol-gel process. Journal of sol-gel Science andTechnology,2011,60(1):1-5
    Wang X, LinY, Ding X, et al. Enhanced visible-light-response photocatalytic activity of bismuthferrite nanoparticles. Journal of Alloys and Compounds,2011,509(23):6585-6588
    Wang X, ZhangY and Wu Z. Magnetic and optical properties of multiferroic bismuth ferritenanoparticles by tartaric acid-assisted sol-gel strategy. Materials Letters,2010,64(3):486-488
    Wang Z L and Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science,2006,312(5771):242-246
    Wang Z Y, Chen C. Zhang T, et al. Humidity sensitive properties of K+-doped nanocrystallineLaCo0.3Fe0.7O3. Sensors and Actuators B: Chemical,2007,126(2):678-683
    Wu C H. Effects of operational parameters on the decolorization of C.I. Reactive Red198inUV/TiO2-based systems. Dyes and Pigments,2008,77(1):31-38
    Wu X H, Miao J, Zhao Y, et al. Novel multiferroic Bi2Fe4O9nanoparticles: the interesting optical,photocatalytic, and multiferroic properties. Optoelectronics and Advanced Materials-RapidCommunications,2013,7(1-2):116-120
    Wu Z, Zhang Y, Fang C, et al. Magnetostriction-strain-induced enhancement and modulation ofPhotovoltaic performance in Si-p-n/TbxDy1-xFe2composite. physica status solidi (a),2013,211(3):641-644
    Wu Z, Zhang Y, Ma K, et al. Strong visible-light photovoltaic effect in multiferrroic Pb(Fe1/2V1/2)O3bulk ceramics.physica status solidi (RRL)-Rapid Research Letters,2014,8(1):36-39
    Xu Q Y, Wen Z, Gao J L, et al. Multiferroic ZnO obtained by substituting oxygen with nitrogen.Chinese Physics B,2011,20(8):087505
    Yang Q, Wang W H, Xu S, et al. Enhancing light emission of ZnO microwire-based diodes bypiezo-phototronic effect. Nano Letters,2011,11(9):4012
    Yang S Y, Martin L W, Byrnes S J, et al.Photovoltaic effects in BiFeO3.Applied Physics Letters,2009,95(6):062909
    Yang S Y, Seidel J, Byrnes S J, et al. Above-bandgap voltages from ferroelectric photovoltaicdevices. Nature Nanotechnology,2010,5:143-147
    Yang Y C, Zhong C F, Wang X H, et al. Room temperature multiferroic behavior of Cr-doped ZnOfilms. Journal of Applied Physics,2008,104(6):064102
    Yang Y, Guo W X, Zhang Y, et al. Piezotronic effect on the output voltage of P3HT/ZnOmicro/nanowire heterojunction solar cells. Nano Letters,2011,11(11):4812
    Yao K and Gan B K. Larg e photo-induced voltage in a ferroelectric thin film with in-planepolarization. Applied Physics Letters,2005,87(21):212906
    Yuk J and Troczynski T. Sol–gel BaTiO3thin film for humidity sensors. Sensors and ActuatorsB:Chemical,2003,94(3):290–293
    Zang Y, Xie D, Chen Y, et al. Electrical and thermal properties of a carbon nanotube/polycrystallineBiFeO3/Pt photovoltaic heterojunction with CdSe quantum dots sensitization. Nanoscale,2012,4(9):2926-2930.
    Zhang G, Wu H, Li G, et al. New high T-c multiferroics KBiFe2O5with narrow band gap andpromising photovoltaic effect. Scientific Reports,2013,3,1265
    Zhang J J, Su X D, Shen M R, et al. Enlarging photovoltaic effect: combination of classicphotoelectric and ferroelectric photovoltaic effects. Scientific Reports,2013,3,2109
    Zhang J, Su X, Shen M, et al. Enlarging photovoltaic effect: combination of classic photoelectric andferroelectric photovoltaic effects. Scientific Reports.2013,3,2109
    Zhang Y, Yan Y and Wang Z L. Piezo-phototronics effect on nano/microwire solar cells. Energy&Environmental Science,2012,5,6850
    Zhao J, Liu Y, Li X, et al. Highly sensitive humidity sensor based on high surface area mesoporousLaFeO3prepared by a nanocasting route. Sensors and Actuators B: Chemical,2013,181:802-809
    Zhao Y, Miao J, Zhang X, et al. Ultra-thin BiFeO3nanowires prepared by a sol-gel combustionmethod: an investigation of its multiferroic and optical properties. Journal of Materials Science:Materials in Electronics,2012,23(1):180-184
    Zheng R K, Wang Y, Chan H L W, et al. Control of the strain and magnetoresistance ofLaMnO3+δthin films using the magnetostriction of Terfenol-D alloy. Journal of AppliedPhysics,2010,108,124103
    曹健,邢杰,何彬,等. BiFeO3光伏效应研究进展.光谱实验室,2012,29(5):2689-2694
    陈震,陈晓,郑曦,等.溶液pH及电流浓度对电化学法生成羟基自由基降解机制的影响.环境科学研究,2002,15(3):42-44
    傅杰,沈昱,程国伟,等.尖晶石型铁酸铜的制备及其可见光催化性能.大连交通大学学报,2011,32(6):101-104
    李永平.铁酸铋纳米材料的化学合成、表征及其光电转换与光催化特性:[博士学位论文].青岛:青岛大学,2012
    林家敏,谢吉民,吕晓萌,等. CuFe2O4纳米粉体的制备及其可见光催化性能.环境科学与技术,2008,31(11):21-23
    刘兵.单晶铁酸铋的调控合成和磁性:[博士学位论文].开封:河南大学,2011
    刘亚子,杨绍贵.催化剂BiFeO3的制备及其光催化性能研究.环境监控与预警,2011,3(4):42-26
    路新瀛,梁开明,顾守仁,等.氧空位对氧化锆相结构稳定性及相变过程的影响.硅酸盐学报,1996,24(6):670-674
    吕勇.基于掺杂铁酸铋薄膜的铁电场效应和光伏效应研究:[硕士学位论文].南京:南京大学,2012
    全宝富,邱法斌.电子功能材料及元器件.长春:吉林大学出版社,2001.第五章
    王晓华.纳米钛酸钡湿敏元件的介电特性及感湿机理研究:[硕士学位论文].大连:大连理工大学,2005
    县涛,杨华,戴剑锋,等.粒径可控的纳米铁酸铋的制备及其光催化性能.催化学报,2011,32(4):618-623
    殷之文.电介质物理学(第二版).北京:科学出版社,2003.
    赵宇,贾越辉,李阳,等. pH对TiO2光催化降解罗丹明B的影响.大学化学,2011,26(5):54-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700