用户名: 密码: 验证码:
基于泄漏电流递归分析的绝缘子状态检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绝缘子闪络严重危害电力系统及其输变电设备的安全运行,因此积极开展绝缘子运行状态的检测研究,对预防闪络事故,提高电网运行可靠性具有重要意义。本文基于泄漏电流检测绝缘子运行状态的研究现状,在人工污秽试验方法的基础上,将混沌理论的递归分析技术应用于泄漏电流的特征分析,结合绝缘子表面动态变化和闪络过程,旨在研究及时有效的绝缘子状态检测与闪络预测方法。
     首先针对绝缘子在灾害性浓雾天气下容易发生的闪络事故,通过观察闪络现象与过程,对闪络发展各个阶段的泄漏电流进行时间序列的混沌特征判别,计算和分析了Lyapunov指数、分形维数、功率谱密度、吸引子相图以及Poincare截面,论证了泄漏电流具有混沌特征,阐明了泄漏电流递归分析方法应用于绝缘子泄漏电流非线性特征分析的可行性。
     在建立浓雾环境下泄漏电流与绝缘子闪络过程对应关系的基础上,运用小波变换方法提取闪络发展各个阶段泄漏电流的频率分布与特征,通过相空间重构技术将频率分量的时间序列拓展至m维空间,根据递归分析技术得到各个频率分量发展变化的递归图及递归定量指标,提出了泄漏电流高频分量可以有效反映绝缘子表面放电的非线性特征,提高了检测与预测的准确性。
     为了研究大气环境因素对绝缘子运行状态的影响,在人工污秽试验基础上开展了污秽程度、环境温度和相对湿度等诸多因素下绝缘子的状态检测研究,提取与绝缘子表面动态变化密切相关的泄漏电流特征量,在论证当前特征分析方法局限性的基础上,根据泄漏电流递归图拓扑结构及其定量指标有效揭示了环境参数对外绝缘状态的影响程度与机理,建立了基于泄漏电流递归分析的绝缘子运行状态检测方法。
     最后,基于绝缘子雾凇闪络现象的观察与泄漏电流的递归分析,检测并研究了绝缘子在雾凇环境下的闪络过程与机理,提出泄漏电流递归图能够定性表征绝缘子雾凇闪络过程中表面放电特征,并且递归定量分析法进一步增强对闪络过程的监测分析。
     泄漏电流递归分析法为绝缘子运行状态提供了一种可视化的检测方法,递归图拓扑结构及其定量指标有效反映了绝缘子表面状态,揭示了表面放电的非线性特征及发展过程,提高了绝缘子状态检测的有效性和准确性。
Generally, the flashover accidents of outdoor insulators can cause serious influence on the operation stability of power system and its equipments. Therefore, it is significant to evaluate and monitor the insulator performance for the prevention of the flashover accidents and the improvement of the power system reliability. In this paper, based on the present investigation of leakage current for evaluating and monitoring outdoor insulators, the recurrent plot technique is proposed to analyze the characteristics of leakage current through the artificial contamination experiments. In accordance with dynamic behaviors and flashover process on the insulator surface, the results obtained aim to investigate the effective methods for performance evaluation and flashover protection of outdoor insulators.
     In order to determine whether the leakage current during the flashover process has chaotic characteristics, the experiments simulating the insulator flashover in heavy fog were carried out and the chaotic analysis method of time series was selected to analyze the non-linear properties of leakage current in accordance with the flashover process. Lyapunov exponent, fractal dimension, power spectral density, chaos attractor, as well as Poincare map were calculated to reveal that the variation of leakage current during the flashover process has chaotic characteristics. The results demonstrate the feasibility of using the recurrent plot technique for the non-linear characteristic analysis of leakage current.
     Based on the corresponding relationship between the leakage current and the flashover process in heavy-fog conditions, the wavelet transform technique was applied to decompose the leakage current into different frequency components. The temporal series of the extracted components are extended to m-dimensional phase space by using a phase-space reconstructed method. The recurrent plot is obtained to show that the topological structure of the high-frequency components is prominent to identify non-linear properties of discharge activities. The dynamic behaviors on the insulator surface are graphically illustrated on the rectangular block structures with higher density of points. Based on the analysis of the high-frequency components, the quantitative indicators of recurrent plot are obtained to reflect the underlying mechanism of flashover process. The results obtained indicate that the recurrent plot technique is helpful to improve the accuracy of insulator evaluation.
     Considering the effect of wet-contaminated environment on the insulator performance, the artificial contamination experiments were conducted to investigate the performance evaluation in multi-environmental factors including contamination degree, ambient temperature and relative humidity. The characteristics of leakage current were extracted to reflect dynamic behaviors on the insulator surface. Based on the limitation of the present analysis method, the topological structure and quantitative indicator of recurrent plot of the leakage current were obtained to reflect the influence mechanism of environmental factors on the outdoor insulation. The recurrent plot method was established for the relationship between the leakage current and the insulator performance.
     Finally, the phenomena of the rime flashover were observed and the non-linear characteristics of leakage current were analyzed. The experiments are helpful to monitor and reveal the process and mechanism of insulator flashover in rime conditions. The results show that the recurrent plot of leakage current can qualitatively reveal the discharge characteristics during the rime flashover process, and the further quantitative analysis enhances the monitoring and the understanding of the flashover mechanism.
     In conclusion, the recurrent plot technique gives a visible monitoring method for outdoor insulators to monitor the flashover process and evaluate the operating performance. The topological structure of recurrent plot and its quantification indicators can effectively represent the surface performance and further reveal the characteristics and state transition of surface discharges during the flashover process. Therefore, the recurrent plot analysis of leakage current is an effective method for the insulator monitoring system.
引文
[1]关志成,刘瑛岩,周远翔,等.绝缘子与输变电设备外绝缘.北京:清华大学出版社, 2006.
    [2]刘泽洪.复合绝缘子使用现状及其在特高压输电线路中的应用前景.电网技术, 2006, 30(12): 1~7.
    [3]李政敏,胡琰峰.输变电工程中的复合绝缘子综述.西北电力技术, 2006, 34(2): 34~36.
    [4]易辉.我国输电线路用绝缘子运行现状.电力设备, 2005, 6(3): 1~4.
    [5]张文亮,吴维宁,吴光亚等.我国绝缘子的发展现状与应用前景.高电压技术, 2004, 30(1): 10~12.
    [6]孙才新,司马文霞,舒立春.大气环境与电气外绝缘.北京:中国电力出版社, 2002.
    [7]宿志一.防止大面积污闪的根本出路是提高电网的基本外绝缘水平-对我国电网大面积污闪事故的反思.中国电力, 2003, 36(12): 57~61.
    [8]王绍武.污秽地区有机外绝缘的特性的研究[学位论文].北京:清华大学, 2001.
    [9]崔江流,宿志一,车文俊,等. 2001年初东北、华北和河南电网大面积污闪事故分析.电力设备, 2001, 4: 6~20.
    [10]胡毅.“2.22电网大面积污闪”原因分析及防污闪对策探讨.电瓷避雷器, 2001, 4: 3~6.
    [11]周正.常德及湘潭电网大面积污闪事故的分析.电力安全技术, 2003, 5(4): 23,30.
    [12]樊灵孟,刘平原,郑晓光,何宏明.广东电网污闪原因分析和防污对策.电瓷避雷器, 2006, 2: 1~6.
    [13] D. Metal Leite. Registration instruments for measurements of leakage currents on polluted insulators. International Symposium on High Voltage Engineering, 1989: 1~4.
    [14] S. M. Gubanski, A. Dernfalk, J. Andersson, et al. Diagnostic methods for outdoor polymeric insulators. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1065~1080.
    [15]李璟延,姚陈果,胡建林,等.染污绝缘子放电发展区段与污闪预警的实验研究.中国电机工程学报, 2008, 28(13): 8~14.
    [16]赵林杰,李成榕,熊俊,等.基于带电检测的复合绝缘子憎水性评价.中国电机工程学报, 2008, 28(16): 135~142.
    [17]朱虎,李卫国,林冶.绝缘子检测方法的现状与发展.电瓷避雷器, 2006, 6: 13~17.
    [18] T. Suda. Frequency characteristics of leakage current waveforms of a string of suspension insulator. IEEE Transactions on Power Delivery, 2005, 20(1): 481~487.
    [19] S. Kumagai and N. Yoshimura. Leakage current characterization for estimating the conditions of ceramic and polymeric insulating surfaces. IEEE Transactions on Dielectrics and Electrical Insulation, 2004, 11(4): 681~690.
    [20]关志成,王绍武,梁曦东,等.我国电力系统污闪事故及其对策.高电压技术, 2000, 26(2): 37~39.
    [21]王黎明,李治,陈永明.基于泄漏电流的绝缘子染污状态在线监测技术的发展.电力设备, 2003, 4(6): 14~17.
    [22]严玉婷,文习山,王建武,等.绝缘子表面泄漏电流在线监测的研究综述.电瓷避雷器, 2005, 3: 8~11, 28.
    [23] M. A. R. M. Fernando and S. M. Gubanski. Leakage currents on non-ceramic insulators and materials. IEEE Transactions on Dielectrics and Electrical Insulation, 1999, 6(5): 660~667.
    [24]惠阿丽,林辉.高压绝缘子泄漏电流的分形特征.高电压技术, 2008, 34(6): 1271~1276.
    [25] F. March, G. G. Karady and R. Sundararajan. Linear stochastic analysis of polluted insulator leakage current. IEEE Transactions on Power Delievery, 2002, 17(4): 1063~1069.
    [26]李治,王永江,王黎明,等.绝缘子泄漏电流和放电现象的初步研究.高电压技术, 2002, 28(B12): 1~2, 14.
    [27] B. Marungsri, H. Shinokubo and R. Matsuoka. Effect of specimen configuration on deterioration of silicone rubber for polymer insulators in salt fog ageing test. IEEE Transactions on Dielectrics and Electrical Insulation, 2006, 13(1): 129~138.
    [28] G. Montoya, I. Ramirez and R. Hernandez. The leakage current as a diagnostic tool for outdoor insulation. IEEE/PES Transmission and Distribution Conference and Exposition: 2008: 1~4.
    [29]蒋兴良,曹娟.覆冰绝缘子闪络过程泄漏电流监测设计与实现.高电压技术, 2003, 29(8): 17~19, 31.
    [30] S. Kumagai, B. Marungsri, H. Shinokubo and R. Matsuoka. Performances of silicone and ceramic materials used for outdoor insulation in field test. International Symposium on Electrical Insulating Materials, 2005: 336~339.
    [31] S. H. Kim, E. A. Cherney and R. Hackam. Suppression mechanism of leakage current on RTV coated porcelain and silicone rubber insulators. IEEE Transactions on Power Delievery, 1991, 6(4): 1549~1556.
    [32] A. E. Vlastbs and T. Orbeck. Outdoor leakage current monitoring of silicone composite insulators in coastal service conditions. IEEE Transactions on Power Delievery, 1996, 11(2): 1066~1070.
    [33]赵子玉,彭宗仁,谢恒堃.悬式绝缘子污层电导率与泄漏电流的现场测试技术研究.电工技术学报, 1997, 12(2): 43~46.
    [34] Jeong-Ho Kim, Woo-Chang Song and Jae-Hyung Lee, et al. Leakage current monitoring and outdoor degradation of silicone rubber. IEEE Transactions on Dielectrics and Electrical Insulation, 2001, 8(6): 1108~1115.
    [35]关志成,毛颖科,王黎明.污秽绝缘子泄漏电流特性研究.高电压技术, 2008, 34(1): 1~6.
    [36]乐波,王黎明,毛颖科.污秽绝缘子高频泄漏电流特征的研究.高压电器, 2005, 41(5): 401~407.
    [37] S. H. Kim and R. Hackam. Effects of saline-water flow rate and air speed on leakage current in RTV coatings. IEEE Transactions on Power Delivery, 1995, 10(4): 1956~1964.
    [38] S. A. Sebo, J. D. Wch and Tiebin Zhao. Evaluation of leakage current pulse data of polymer insulator aging tests. IEEE International Conference on Conduction and Breakdown in Solid Dielectrics, 1998: 426~429.
    [39]杜欣慧,戴云航,王志刚,宫改花.饱和受潮条件下的绝缘子泄漏电流特性.高电压技术, 2007, 33(9): 6~9.
    [40]李治.基于泄漏电流的绝缘子染污状态评价的研究[学位论文].北京:清华大学电机系, 2003.
    [41]梅冰笑,舒立春,蒋兴良,等.污秽绝缘子交流试验泄漏电流分离研究.高电压技术, 2005, 31(9): 18~20.
    [42]熊俊,李成榕,赵林杰,等.恒压洁净雾环境中复合绝缘子表面泄漏电流特征参量分析.电网技术, 2007, 31(15): 70~74.
    [43]关志成,王新,张福增,等.高海拔地区玻璃绝缘子泄漏电流分析.陕西电力, 2007, 35(9): 1~7.
    [44] Yingke Mao, Zhicheng Guan and Liming Wang. Analysis of the leakage current pulses of outdoor insulators in different relative humidity. Conference on Electrical Insulation and Dielectric Phenomena, 2007: 400~403.
    [45] M. A. R. M. Fernando and S. M. Gubanski. Leakage current patterns on contaminated polymeric surfaces. IEEE Transactions on Electrical Insulation, 1999, 6(5): 688~694.
    [46] T. Suda. Study on the frequency characteristics of leakage current waveforms of artificially polluted 12t suspension insulators by the clean fog method. International Symposium on High Voltage Engineering, 1999: 115~118.
    [47] T. Suda. Frequency characteristics of leakage current waveforms of an artificially polluted suspension insulator. IEEE Transactions on Dielectric and Electrical Insulation, 2001, 8(4): 705~709.
    [48] A. H. EI-Hag, S. H. Jayaram and E. A. Cherney. Use of low frequency harmonic components as a signature to detect arcing with HTV silicone rubber in salt-fog. IEEE International Symposium on Electrical Insulation, 2002: 212~215.
    [49] A. H. EI-Hag, S. H. Jayaram and E. A. Cherney. Fundamental and low frequency harmonic components of leakage current as a diagnostic tool to study aging of RTV and HTV silicone rubber in salt-fog. IEEE Transactions on Dielectric and Electrical Insulation, 2003, 10(1): 128~136.
    [50] A. H. EI-Hag, S. H. Jayaram and E. A. Cherney. Influence of shed parameters on the aging performance of silicone rubber insulators in salt-fog. IEEE Transactions on Dielectric and Electrical Insulation, 2003, 10(4): 655~664.
    [51] A. H. EI-Hag, S. H. Jayaram and E. A. Cherney. Effect of insulator profile on aging performance of silicone rubber insulators in salt-fog. IEEE Transactions on Dielectric and Electrical Insulation, 2007, 14(2): 352~359.
    [52]张重远,黄彬,王娟,律方成.悬式瓷制绝缘子泄漏电流与表面污秽的关系.高电压技术, 2008, 34(4): 655~659.
    [53]姚陈果,李璨延,米彦,孙才新,等.绝缘子安全区泄漏电流频谱特征提取及污秽状态预测.中国电机工程学报, 2007, 27(30): 1~8.
    [54]李璟延,司马文霞,孙才新,等.染污绝缘子放电中泄漏电流的频谱变化.高电压技术, 2008, 34(3): 455~457.
    [55] Y. C. Song and D. H. Choi. High-frequency components of leakage current as diagnostic tool to study ageing of polymer insulators under salt fog. Electronics Letters, 2005, 41(12): 684~685.
    [56] P. S. Ghosh, S. Chakravorti and N. Chatterjee. Estimation of time-to-flashover characteristics of contaminated electrolytic surfaces using a neural network. IEEE Transactions on Dielectric and Electrical Insulation, 1995, 2(6): 1064~1074.
    [57] M. M. Lavalle and G. R. Ortiz. Flashover forecasting on HV insulators with a back prorogation neural net. Canada Journal Electric and Computer Engineering, 1996, 21(1): 29~32.
    [58] M. Ugur, W. Auckland, B. R. Varlaw and Z. Emin. Neural networks to analyze surface tracking on solid insulators. IEEE Transactions on Dielectric and Electrical Insulation, 1997, 4(6): 763~766.
    [59] P. Cline, W. Lannes and G. Richards. Use of pollution monitors with a neural network to predict insulator flashover. Electric Power Systems Research, 1997, 42(1): 27~33.
    [60] P. Dixit and H. G. Gopal. ANN based three stage classification of arc gradient of contaminated porcelain insulators. International Conference on Solid Dielectrics, 2004: 5~9.
    [61] A. N. Jahromi, A. H. El-Hag, S. H. Jayaram, E. A., et al. Prediction of leakage current of composite insulators in salt fog test using neural network. Annual Report Conference on Electrical Insulation and Dielectric Phenomena, 2005:
    [62] A. N. Jahromi, A. H. El-Hag, S. H. Jayaram, E. A. Cherney, et al. A neural network based method for leakage current prediction of polymeric insulators. IEEE Transactions on Power Delivery, 2006, 21(1): 506~507.
    [63] V. T. Kontargyri, A. A. Gialketsi, G. J. Tsekouras, et al. Design of an artificial neural network for the estimation of the flashover voltage on insulators. Electric Power System Research, 2007, 77(12): 1532~1540.
    [64] G. E. Asimakopoulou, V. T. Kontargyri and G. J. Tsekouras,; Artificial neural network optimisation methodology for the estimation of the critical flashover voltage on insulators. IET Transactions on Science, Measurement & Technology, 2009, 3(1): 90~104.
    [65]韩建民,张长江,王丽侠.基于小波神经网络的绝缘子漏电量预测方法.仪器仪表学报, 2005, 26(8): 74~75.
    [66]杨庆,司马文霞,蒋兴良,等.复杂环境条件下绝缘子闪络电压预测神经网络模型的建立及应用.中国电机工程学报, 2005, 25(13): 155~159.
    [67]陈升,王基一,应伟国.基于BP神经网络的绝缘子泄漏电流量预测方法.浙江电力, 2007, 26(1): 18~22.
    [68]毛颖科,关志成,王黎明,乐波.基于BP人工神经网络的绝缘子泄漏电流预测.中国电机工程学报, 2007, 27(27): 7~12.
    [69]何相佑,向凤红,忽建蕊.基于BP人工神经网络的绝缘子等值附盐密度预测.绝缘材料, 2008, 41(4): 58~61.
    [70] J. Montesinos, R. S. Gorur and J. Burnham. Estimation of flashover probability of aged nonceramic insulators in service. IEEE Transactions on Power Delievery, 2000, 15(2): 820~826.
    [71] W. L. Vosloo and J. P. Holtzhausen. The prediction of insulator leakage currents from environmental data. IEEE Africon Conference in Africa, 2002: 603~608.
    [72]贺博,林辉.人工污秽试验中绝缘子泄漏电流的统计特性.高电压技术, 2006, 32(8): 4~6.
    [73] S. Venkataraman and R. S. Gorur. Extending the applicability of insulator flashover models by regression analysis. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(2): 368~374.
    [74]聂一雄,尹项根,刘春,等.用模糊逻辑方法对绝缘子串在线检测结果的评定.中国电机工程学报, 2003, 23(3): 131~136.
    [75]焦尚彬,刘丁,郑岗,等.基于模糊逻辑方法的高压绝缘子污秽程度评定.电力系统自动化, 2005, 29(7): 84~87.
    [76] E. Natan, R. Munteanu and R. Rabinovici. Prediction of insulator flashover based on leakage current and humidity measurements. IEEE Convention of Electrical and Electronics Engineers, 2006: 260~264.
    [77]李波,刘念,王秀婕.高压电网绝缘子在线绝缘性能的多级模糊综合评判.电网技术, 2007, 31(5): 75~79.
    [78] M. Savaghebi, A. Gholami, A. Jalilian and H. Hooshyar. A neuro-fuzzy approach for estimation of time-to-flashover characteristic of polluted insulators. IEEE International Conference on Power and Energy, 2008: 1485~1487.
    [79]卢侃,孙建华.混沌学传奇,上海:上海翻译出版公司, 1991.
    [80] I. M. Irurzun, P. Bergero, V. Mola, et al. Dielectric breakdown in solids modeled by DBM and DLA. Chaos, Solitons and Fractals, 2002, 13(6):1333~1343.
    [81] A. N. Kolmogorov. On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR, 1954, 98(4): 527~530.
    [82] V. I. Arnold. Proof of a theorem of A.N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations. Russian Mathematical Surveys, 1963, 18(5): 9~36.
    [83] E. N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 1963, 20(2): 130~141.
    [84] D. Ruelle and F. Takens. On the nature of Turbulence. Communications in Mathematical Physics, 1971, 23(4): 343~344.
    [85] T. Y. Li and J. A. Yorke. Period three implies chaos. American Mathematical Monthly, 1975, 82: 985~992.
    [86]王兴元.复杂非线性系统中的混沌.北京:电子工业出版社, 2003.
    [87]张济忠.分形.北京:清华大学出版社, 1995.
    [88]陈士华,陆君安.混沌动力学初步.武汉:武汉水利电力大学出版社, 1998.
    [89] L. Cao. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D, 1997, 110(1): 43~50.
    [90] H. S. Kim, R. Eykholt and J. D. Salas. Nonlinear dynamics, delay times, and embedding windows. Physica D, 1999, 127(1): 48~60.
    [91]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社, 2002.
    [92]王兴元,王明军.超混沌Lorenz系统.物理学报, 2003, 56(9): 5136~5141.
    [93] A. Wolf, J. B. Swift, H. L. Swinney, et al. Determining Lyapunov exponents from a time series. Physica D, 1985, 16(3): 285~317.
    [94]梁志珊,王丽敏.基于Lyapunov指数的电力系统短期负荷预测.中国电机工程学报, 1998, 18(5): 368~371.
    [95]张军.最大Lyapunov指数计算的几种方法.地震, 1994, 8(4): 86~92.
    [96]杨绍清,章新华,赵长安.一种最大李雅普诺夫指数估计的稳健算法物理学报. 2000, 49(4): 636~640.
    [97] M. T. Rosenstein, J. J. Collins and C. J. De Luca. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 1993, 65(1): 117~134.
    [98] A. M. Fraser and H. L. Swinney. Independent coordinates for strange attractors from mutual information. Physical Review A, 1986, 33(2): 1134~1140.
    [99]王文均,叶敏,陈显维.长江径流时间序列混沌特征的定量分析.水科学进展, 1994, 5(2): 87~94.
    [100]徐宁,张明,邢彦峰.概率统计函数在工件表面形貌分析中的应用.现代制造工程, 2004, 3: 58~59.
    [101]张筑生.微分动力系统原理.北京:科学出版社, 1987.
    [102]王靖岳,王浩天.飞轮调速器反馈控制系统的混沌及控制,动力学与控制学报, 2008, 6(2): 134~137.
    [103]周军,关志成,王黎明.高海拔复合绝缘子污闪特性研究.高电压技术, 2004, 30(4): 9~10.
    [104] S. M. Gubanski. Modern outdoor insulation-concerns and challenges. IEEE Electrical Insulation Magazine, 2005, 21(6): 5~11.
    [105] J. P. Eckmann, S. O. Kamphorst and D. Ruelle. Recurrence plots of dynamical systems. Europhys Lett., 1987, 4(9): 973~977.
    [106] J. V. Maizel and R. P. Lenk. Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc. Natl. Acad. Sci. U.S.A., 1981, 78(12): 7665~7669.
    [107] G. M. Mindlin and R. Gilinore. Topological analysis and synthesis of chaotic time series. Physica D, 1992, 58(1-4): 229~242.
    [108] J. P. Zbilut and C. L. Webber. Embeddings and delays as derived from quantification of recurrence plots. Physics lettels A, 1992, 171(3-4): 199~203.
    [109] M. Koebbe, G. Mayer-Kress. Use of recutrence plots in the analysis of time-series data. Proceedings of SFI studies in the science of complexity, Addison-Wesley,Redwood City, 1992: 361~378.
    [110] M. Thiel, M. C. Romano, J. Kurths, etc. Infuluence of obscrvational noise on the recurrence quantification analysis. Physica D, 2002, 171(3): 138~152.
    [111]金宁德,陈万鹏.混沌递归分析在油水两相流流型识别中的应用.化工学报, 2006, 57(2): 274~280.
    [112]吕勇,徐金梧,李友荣.递归图和近似熵在设备故障信号复杂度分析中的应用.机械强度, 2006, 28(3): 317~321.
    [113]陈静,李亚安,王东海.基于递归分析的水声信号处理.哈尔滨工程大学学报, 2006, 27(5): 649~652.
    [114] M. A. R. M. Fernando and S. M. Gubanski. Leakage current patterns on contaminated polymeric surfaces. IEEE Trans. Elect. Insul., 1999, 6(5): 688–694.
    [115] S. Kumagai and N. Yoshimura. Leakage current characterization for estimating the conditions of ceramic and polymeric insulating surfaces. IEEE Trans. Dielec. Electr. Insul., 2004, 11(4): 681–690.
    [116] S. G. Matllat. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674~693.
    [117]曾文曲,文有为,孙炜.分形小波与图象压缩.沈阳:东北大学出版社, 2002.
    [118]程正兴.小波分析算法和应用.西安:西安交通大学出版社, 1998.
    [119]张贤达,保铮.非平稳信号分析与处理,北京:国防工业出版社, 1999.
    [120] M. Holscheider. Wavelets: an analysis tool. Oxford: Clarendon Press, 1995.
    [121] O. Chaari, M. Meunier and F. Brouaye. Wavelets: a new tool for the resonant grounded poer distribution systems relaying. IEEE Trans. on Power Delivery, 1996, 11(3): 1301~1308.
    [122] S. Mallat and S. Zhong. Characterization of signals from multiscale edges. IEEE Trans. on Pattern Analysis and Machine intelligence, 1992, 14(7): 710~732.
    [123] D. Chen. Spline wavelets of small support. Society for Industial and Applied Mathematics, 1995, 26(2): 500~517.
    [124] I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications on Pureand Applied Mathematics, John Wiley & Sons.Inc, 1988: 909~996.
    [125]欧阳明鉴,杜伯学,魏国忠.小波变换在局部放电声信号提取中的应用.电力系统及其自动化学报, 2004, 16(4): 16~19.
    [126] S. Kumagai, B. Marungsri, H. Shinokubo, etc. Comparison of leakage current and aging of silicone rubbers and porcelain in both field and salt-fog tests. IEEE Trans. Dielec. Electr. Insul., 2006, 13(6): 1286~1302.
    [127]谢述教,蒋兴良,王强,等.覆冰绝缘子直流闪络特性研究现状.高电压技术, 2004, 30(1): 16~18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700