用户名: 密码: 验证码:
老年期大鼠慢性脑低灌注时少突胶质细胞结构功能损害及相关分子变化的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     脑卒中,一直是威胁人类生命与健康的重要疾病,其中缺血性卒中,约占70-80%。据统计,全世界每年约有1500万人发生脑卒中,仅美国就有近500万,在我国该病发病率约为120~180/10万,死亡率约为60~120/10万,幸存者75%丧失劳动力,40%重度致残,每年直接或间接经济损失高达数百亿元。尤其是,当今世界及我国人口老化日趋加速的情况下,脑卒中的发病率更有日渐增高趋势,其危害性更加突出。然而,这类疾病一旦发生,可选择的治疗方法往往有限,早前阶段的预防与治疗将是主要的原则。并从目前大量的研究报告显示,慢性脑低灌注,极有可能是脑卒中、老年期痴呆等疾病早前阶段,且在中老年人群中,约2/3处于慢性低灌注状态。因此,人们也形象地称之为“威胁中老年人生命与健康的隐形杀手”!
     慢性脑低灌注,是一种常见的脑缺血损伤,临床上也称慢性脑血流灌注不足(Chronic cerebral hypoperfusin,CCH),是指由不同原因导致的大脑慢性、供血减少,从而引发的脑缺血、缺氧,进而出现的一系列脑功能障碍的慢性脑损伤。早期由于症状体征并不明显,脑的结构和功能可能并没有严重的损伤,因此往往并不引起病患者的重视,但实际上,大脑某些结构,如某些细胞或亚细胞成分,功能分子等可能已经产生变化,如果长期得不到控制或纠正,最终可能进展为不可逆性脑损伤。
     由于慢性低灌注损伤,早期往往是可逆的。由此,给该疾病的治疗及相关疾病预防带来了希望,也给相关研究带来了更多价值。但长期以来,关于脑损伤与修复,及其神经生物学研究中,神经元学说始终是主轴,胶质细胞功能及其研究受到忽略,相关研究并未得到同步进展,胶质细胞研究至少落后数十年。事实上,在大脑神经网络中胶质细胞的作用远比以往所认识的要活跃得多,重要得多。
     在脑缺血性损伤的研究中,以往认为神经元和灰质可能具有高度敏感性而脑白质,少突胶质细胞对缺血可能具有较高的耐受性。但目前人们逐渐对其认识有重大转变,根据分子病理学研究显示,慢性低灌注损伤极有可能是导致白质损害主要原因,特别是老年期脑白质改变的重要途径,但少突胶质细胞(Oligodendrocyte,OL)对慢性低灌注反应性、损害特点及机制研究虽逐渐受到重视,但相关研究仍然有限。
     因此,本研究首先通过采用双侧颈总动脉部分狭窄方法建立老年大鼠慢性低灌注损伤模型基础上,运用组织病理学、超微结构等方法对损伤后轴索、髓鞘以及少突胶质结构功能损害进行观察与评价,同时并运用免疫组织化学和免疫萤光、免疫印迹技术以及神经电生理和行为学技术,并分别观察了与大脑信息处理和传导相关的重要结构:轴突-髓鞘连结装置Ranvier's结区的分子Caspr2表达和分布变化;动物认知与中枢传导功能变化;以及髓鞘标志蛋白MPB、PLP的变化;OPCs活化改变;并对各指标变化特点及可能机制进行了初步分析,其结果可能对临床卒中、VD等相关疾病发生、发展转归判断及其防治有重要指导作用。
     本研究共分三部分:
     一、可控性双侧颈总动脉部分狭窄致慢性脑低灌注模型建立及脑组织病理学与超微结构评价
     1.方法
     利用针线法,采用SD老年大鼠,无菌技术条件下,行颈正中分离并游离出双侧颈总动脉,在颈总动脉近心侧距颈内动脉和颈外动脉分叉处约1.5 cm,置相应型号(0.5号或不同型号)注射针头,用丝线将颈总动脉与针头紧扎,然后取出针心,致双侧颈总动脉部分狭窄,血流灌注减少,从而导致慢性低灌注,程度可控;在低灌注后2周和1、3月,行脑组织病理形态学和电镜观察。
     2.结果
     (1)模型动物,除麻醉意外,无死亡率,且稳定性和可重复性好,低灌注程度效果可靠、肯定;
     (2)病理组织学检查,脑组织无局限性或弥散性脑梗死,但脑组织白质纤维成分变得疏松,随时相延长,3月时纤维结构相对紊乱;细胞成分,皮层、海马神经元有缺失,CA1区明显,并与对照组比较有显著性差异(P<0.05);
     (3)电镜检测,慢性低灌注损伤后轴突、髓鞘、少突胶质细胞具有明显改变。①轴突内有囊泡和致密颗粒,结构模糊,有脊崩解、破坏、线粒体空化现象;髓鞘可见板层结构排列紊乱,有的出现融合,亦有髓鞘局部变形,髓鞘空泡化,髓鞘与轴突间隙增宽,部分出现髓鞘脱失,髓鞘变薄、轴索脱失。②少突胶质细胞电子密度增高,胞浆内及细胞间隙可见残余小体;③部分海马CA1神经元有损害,出现核仁消失或变小,胞浆电子密度增高,粗面内质网、高尔基体扩张,线粒体有嵴紊乱和空化,部分皱折甚至分叶,核仁增大和靠边,胞浆游离核糖体增多,有的线粒体畸形,出现包含物。
     二、慢性脑低灌注对老年大鼠脑组织Caspr2表达及认知与电生理功能的影响
     1.方法
     将老年SD大鼠,随机分为,老年慢性低灌注损伤组(n=15)和老年非慢性低灌注损伤对照组(即仅有手术过程,而未行颈动脉狭窄脑血流灌注处正常水平,n=12),在建模完成后于第2周、1、3月,分别对低灌注损伤组和对照组采用神经行为学,电生理学以及免疫萤光组织化学和免疫印迹方法,行认知行为(Morris水迷宫)测定、以及中枢传导功能,内嗅皮层—海马(即穿通通路,Perforant pathway)传导潜伏期测定、以及脑白质轴突-髓鞘连结装置Ranvier's结近结侧区Caspr2表达进行定性和定量分析。
     2.结果
     (1)慢性低灌注损伤组,定位航行试验(place navigtion)逃避潜伏时较对照组明显延长(p<0.05):空间探索试验(spalial probe),穿越平台次数明显减少,路径、及第一次穿越平台潜伏期与对照组比较均有明显统计差异(p<0.05);
     (2)中枢传导功能,穿通通路传导潜伏期明显较对照组延长(p<0.05),并随时相延长传导速度减退愈明显。
     (3)白质区域,特别是胼胝体等部位密集成束神经纤维内Caspr2表达,低灌注损伤组呈明显下调(p<0.05),各时相组比较也有明显差异(p<0.05)。
     (4)其中,Caspr2表达定量分析并与逃避潜伏时、穿越平台潜伏期,中枢传导潜伏期有明显相关性(各相关系数检验,p<0.05)。
     三、慢性低灌注时老年大鼠脑组织髓鞘蛋白MBP、PLP变化及其少突胶质前体细胞的活化改变。
     1.方法
     动物组别,既设立老年慢性低灌注损伤组和老年非慢性低灌注损伤对照组,为更进一步比较青年与老年在慢性低灌注损害中的差异,同时增加设立了青年慢性低灌注损伤组和相应对照组。指标选择,同样采用免疫组织化学和免疫印迹技术方法,并进一步观察了,慢性低灌注损伤时脑白质髓鞘标志蛋白MBP、PLP的变化,以及OPCs的特异标志蛋白NG2、O4的表达和分布的变化。
     2.结果
     (1)NG2、O4阳性细胞,在青老年大鼠皮层、海马以及皮质下白质各脑区均有分布,并与O4表达分布趋于一致;但慢性低灌注损伤后,NG2阳性细胞数,青老年均呈明显减少,有统计学差异(P<0.05);青年与老年组之间比较也有差异(P<0.05),青年组NG2增殖更明显;
     (2)慢性低灌注损伤后,白质MBP与PLP表达均呈显著下降,并随时相延长呈渐进性表达下降。PLP免疫印迹分析,老年低灌注损伤组与老年对照组比较有显著差异(P<0.05),各时相组比较表达逐渐减弱(P<0.05)。
     本研究主要结论如下:
     1.本研究,采用双侧颈总动脉部分狭窄方法建立了老年大鼠慢性低灌注模型。该模型从形态学观察显示,具有与临床低灌注脑白质损伤影象学相一致的特性,没有明显梗死灶,却具有明确的髓鞘、轴索以及少突胶质细胞等成分的超微结构改变;且具有稳定性和可重复性好,贴近临床,作为模拟慢性低灌注损害是一种较可靠的成功模型。
     2.在此基础上,采用形态学和超微结构方法,重点对少突胶质细胞结构易损特点进行了进一步观察和分析,进一步证实了少突胶质细胞对慢性缺血同样具有易损性。并提示临床相关治疗既要注意神经元也要注意少突胶质的保护治疗才是最完整的治疗选择。
     3.本研究发现,低灌注损伤后脑白质Ranvier's结区分子Caspr2表达明显下调,并具有与认知与中枢传导功能下降明显相关性,提示Caspr2改变可能是慢性低灌注损伤脑内传导和白质功能损害重要环节和可能的分子基础。
     4.本实验证实,慢性低灌注损伤时动物具有明显认知和中枢传导功能损害,随时相呈渐进性减退趋势,但病理形态学显示并无明显梗死灶。因而提示,在临床上超早期对中老年病患者进行神经心理、认知功能、诱发电位、甚至功能影象学检测可能对慢性低灌注损害程度、转归判断以及是否进展为卒中或VD可能具有预警信号作用。
     5.本实验证实,髓鞘蛋白MBP、PLP表达下降,提示慢性低灌注时少突胶质细胞具有明显损害;同时,也进一步提示作为髓鞘蛋白MBP、PLP可为本病评价是较敏感指标。
     6.本实验发现,少突胶质前体细胞(OPCs)具有明显增殖活化,且老年大鼠较青年大鼠明显减弱,推测可能为慢性低灌注损伤后的一种代偿适应或修复机制,OPCs活化并可能受老年因素影响,其具体机制值得并仍有待进一步探讨。
Backgrounds:
     Brain stroke has been a critical disease threatening human lives and health. Of the patients with it, 70-80 % of them suffered from ischemic stroke. It is reported that the disease occurs in 15 million people in the world annually and 5 million of them are Americans. In China, its morbidity is about 120-180/100000 and the mortality 60-120/100000. A percentage of 75% of the surviving patients loss their labor and 40% of them are severely disabled. The annual direct and indirect economic loss is as high as several hundred billion yuan.
     In particular, the human aging of society in the world and China is increasing, thus the mobidities of stroke and senile dementia are also increasing. The prevention and treatment of stroke and senile dementia becomes a great challenge in the fields of geriatrics and neurology. Such disease is difficult to recover. Therefore, the early prevention is the major principle.
     Large numbers of researches show that chronic hypoperfusion injury is more likely to be the early stage of stroke and senile dementia. Meanwhile, about 2/3 of the middle-aged and aged people are in the state of it. Thus chronic hypoperfusion injury is called a potential killer for life and health of the middle-aged and aged.
     Chronic hypoperfusion injury, clinically called chronic cerebral hypoperfusion(CCH), refers to chronic and extensive ischemia of cerebral tissue due to various reasons resulting in cerebral ischemia and hypoxia to cause chronic cerebral injury presenting as a series of cerebral functional disorders. And it is usually reversible at the early stage, which gives hope to treatment of chronic hypoperfusion injury, and prevention of stroke and senile dementia, and brings more valuable points for studies.
     For a long time, researchers have paid close attention to neurobiological features, post-injury repair of nurons. Glial cells are considered to have the effects of supporting and noruishing. As such, the studies on glial cells have been ignored. In fact, the effects of glial cells in cerebral nervous network are more complicated and important than we have expected. In addition, few studies have been conducted to investigate the effects of glial cells after cerebral ischemic injury.
     Consequently, the model of chronic hypoperfusion injury was established in aged rats by partial narrowing of bilateral common carotid arteries. Then pathological and ultrastructural examinations were employed to observe and evaluate the damage in axon, myelin sheath and oligodendrocyte. The relevant critical strucutures of oligodendrocytes in white matter such as axon-myelin sheath connecting Ranvier's reagion and its associated structures were observed and morphological, cognitive and behavorial as well as electrophysiological features determined to primarily study and evaluate the chronic hypoperfusion. The results of which might be of great guidance for judgment of chronic hypoperfusion injury degree and reversion and prevention and treatment of stroke and VD . This study was divided into the following 3 parts:
     Part I Establishment of model of chronic hypoperfusion injury by controllable partial stenosis of bilateral common carotid artery and pathological and ultrastructural evaluation of cerebral tissue
     Methods
     The suturing method was used and aged rats employed. Under the asepsis condition, the bilateral common carotid arteries were separated. A syringe needle was bound with the common carotid arteries at a lower place about 1.5cm to the bifurcation of internal and external carotid arteries .The syringe needle was then with drawn to cause partial narrowing of bilateral common carotid arteries and reduction in blood infusion of cerebral tissue at a controllable degree. Two weeks and 1 and 3 months after the hypoperfusion, pathomorphological and electron microscopic examinations of the cerebral tissue were performed.
     Results
     1. There was no death of the rats except for anesthesia-induced one. The model had good stability and repeatability and the hypoperfusion was of reliable results.
     2. Pathological examination showed that there was no focal and diffusive cerebral infarction. However, the fibrotic components in the white matter became rare. In 3 months after the chronic hypoperfusion, the fibrous components were relatively mixed. There was loss of cell compoents, in cortical and hippocampus neurons , especially CA1, and they were significantly more obvious than in the control group (P<0.05).
     3. Electron microscopy revealed that there were significant changes in axons, myelin sheath and oligodendrocytes. a) Vesicles and dense granule intensive particles of opaque structure, axon decomposition, destruction and mitochondrial vocuolation were seen in the axons. The layer structure of the myelin sheath was disarranged in mass. There were fusion, local deformation and vacuolation of myelin sheath, The gap increased distance between the sheath and axons widened,and partial loss of the sheath was observed.. b) The electronic density of the oligodendrocytes increased and there were corpuscles in cytoplasm and cellular interstitia. c) Part of CA1 neurons in hippocampus were damaged, which is presented as nucleolus disappearance or reduction in size, increase in electronic density of the cytoplasm, dilatation of the reticulum and Golgi body, disorder and vacuolation of mitochondria. Meanwhile, some mitochondria were malformed to have contents.
     Part II Effects of chronic cerebral hypoperfusion on expression of Caspr2 in cerebral tissue and cognitive and electrophysiological functions in aged rats
     Methods:
     The aged rats were divided into the CCH group (n=15) and control group (n=12). The model of chronic hypoperfusion was established in the experimental group while no partial narrowing of the bilateral common carotid arteries was performed in the control. In 2 weeks and 1 and 3 months after hypoperfusion, cognitive and behavorial , central conductive function, perforant-pathway transduction speed, expression of Caspr2 in Ranvier's node were determined with behavioral method, electrophysiological method, immunofluorescent method and immune blotting, respectively.
     Results:
     1.The escape latency was significantly prolonged, times of crossing platform in spatial probing markedly decreased in the experimental group as compared with the control (P<0.05) ,The first time passing hidden platform also prolonged significantly(P<0.05).
     2. The perforant-pathway conductive time was remarkably longer in the expenimental group than in the control (P<0.05). Meanwhile, the transduction speed was more rapidly decreased with time prologation in the experimental group.
     3. The Caspr2 expression in the white matter was significantly down-regulated in the experimental group as compared with the control (P<0.05). Furthermore, there was marked difference between the 2 groups at different phases.
     4 .The level of Caspr2 expression was significantly correlated to escape latency, crossing platform latency and central conductive latency (P<0.05).
     Part III Changes in expression of myelin sheath protein MBP and PLP and activation of oligodendricyte precursor cells during chronic cerebral hypoperfusion in aged rats
     Methods:
     We established the aged CCH groups , aged CCH control groups, young experimental and young control groups. The changes in MBP and PLP levels and expression of NG2 and 04 protein were investigated.
     Results:
     1. In aged and young experimental groups, the NG2-positive cells distributed in cortex, hippocampus and subcontical white matter, which is consistent with distribution of 04 protein. However, the cells were significantly decreased in the 2 experimental groups after chronic hypoperfusion (P<0.05). There was also maked difference between the aged and young experimental group (P<0.05). The proliferation of NG2-positive cells was more obvious in the young experimental group.
     2. After the chronic hypoperfusion injury, the expression of both MBP and PLP in the white matter was markedly decreased and this decrease was more and more rapid along with time prolongation. PLP was significantly lower in the aged experimental group than in the aged control (P<0.05). There was significant difference between the 2 groups at different phases (P<0.05).
     The major conclusions in this study are as follows:
     1. The established model is the same as clinical cases of chronic cerebral hypoperfusion in imaging features. Meanwhile, it has good stability and repeatability and can be used to simulate chronic cerebral hypoperfusion
     2. The pathological and ultrastructural examinations show that the oligodendrocytes are highly sensitive and susceptible during chronic hypoperfusion injury, which suggests that both neurons and oligodendrocytes should be protected in clinical practice.
     3. The Caspr2 expression in Ranvier's node is significantly decreased after chronic hypoperfusion injury and the decrease is significantly correlated to decrease in cognitive and central conductive functions, which suggests that change in Caspr2 might be the critical link to and possible molecular basis for cerebral functional damage after chronic hypoperfusion injury.
     4. The finding that cognitive and central transduction functions are markedly reduced after chronic hypoperfusion injury in animals suggests that very early determination of cognitive function and evoked potentials in middle-aged and aged patients are of the role of alert for judgment of severity of chronic hypoperfusion injury, and possible development to cerebral infarction and senile dementia.
     5. MBP and PLP expression decreased, which suggested that oligodendrocytes was marked injuried during chronic hypoperfusion. The result also showed that MBP and PLP may be used as sensitive parameter for judgeing white damage.
     6. There is obvious proliferation and activation of Oligodendrocyte precursor cells (OPCs), OPCs and the proliferation is remarkably reduced in aged rats as compared with the young ones, which might be a mechanism of compensation or repair after chronic hypoperfusion injury. The activation of the OPCs might also be affected by aging, the mechanism of which needs to be further clarified.
引文
1. Farkas E, de Wilde MC, Kiliaan AJ,Luiten PG, Chronic cerebral hypoperfusion-related neuropathologic changes and compromised cognitive status: window of treatment. Drugs Today (Barc), 2002. 38(5): 365-76.
    2. Farkas E, Luiten PG,Bari F, Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev, 2007. 54(1): 162-80.
    3. Horvath S, [The pathological and clinical consequences of chronic cerebral hypoperfusion]. Orv Hetil, 2001. 142(7): 323-9.
    4. Sarti C, Pantoni L, Bartolini L,Inzitari D, Cognitive impairment and chronic cerebral hypoperfusion: what can be learned from experimental models. J Neurol Sci, 2002. 203-204: 263-6.
    5. Kalaria RN, The role of cerebral ischemia in Alzheimer's disease. Neurobiol Aging, 2000. 21(2): 321-30.
    6. Mitsias PD, Ewing JR, Lu M, Khalighi MM, Pasnoor M, Ebadian HB, Zhao Q, Santhakumar S, Jacobs MA, Papamitsakis N, Soltanian-Zadeh H, Hearshen D, Patel SC,Chopp M, Multiparametric iterative self-organizing MR imaging data analysis technique for assessment of tissue viability in acute cerebral ischemia. AJNR Am J Neuroradiol, 2004. 25(9): 1499-508.
    7. Ohtani R, Tomimoto H, Kondo T, Wakita H, Akiguchi I, Shibasaki H, Okazaki T, Upregulation of ceramide and its regulating mechanism in a rat model of chronic cerebral ischemia. Brain Res, 2004. 1023(1): 31-40.
    8. Sorensen AG, Wu O, Copen WA, Davis TL, Gonzalez RG, Koroshetz WJ, Reese TG, Rosen BR, Wedeen VJ,Weisskoff RM, Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology, 1999. 212(3): 785-92.
    9. Stoeckel MC, Wittsack HJ, Meisel S,Seitz RJ, Pattern of cortex and white matter involvement in severe middle cerebral artery ischemia. J Neuroimaging, 2007. 17(2): 131-40.
    10. Roman GC, Vascular dementia prevention: a risk factor analysis. Cerebrovasc Dis, 2005. 20 Suppl 2: 91-100.
    11. Misu Y, Furukawa N, Arai N, Miyamae T, Goshima Y,Fujita K, DOPA causes glutamate release and delayed neuron death by brain ischemia in rats. Neurotoxicol Teratol, 2002. 24(5): 629-38.
    12. White BC, Grossman LI, O'Neil BJ, DeGracia DJ, Neumar RW, Rafols JA,Krause GS, Global brain ischemia and reperfusion. Ann Emerg Med, 1996. 27(5): 588-94.
    13. Gresle MM, Jarrott B, Jones NM,Callaway JK, Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Res, 2006. 1110(1): 13-22.
    14. Karadottir R, Cavelier P, Bergersen LH,Attwell D, NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature, 2005. 438(7071): 1162-6.
    15. Wang F, Liang Z, Hou Q, Xing S, Ling L, He M, Pei Z,Zeng J, Nogo-A is involved in secondary axonal degeneration of thalamus in hypertensive rats with focal cortical infarction. Neurosci Lett, 2007. 417(3): 255-60.
    16. Farkas E, Donka G, de Vos RA, Mihaly A, Bari F,Luiten PG, Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol, 2004. 108(1): 57-64.
    17. Petersson KH, Pinar H, Stopa EG, Faris RA, Sadowska GB, Hanumara RC,Stonestreet BS, White matter injury after cerebral ischemia in ovine fetuses. Pediatr Res, 2002. 51(6): 768-76.
    18. Wakayama A, Graf R, Rosner G,Heiss WD, Deafferentation versus cortical ischemia in a rabbit model of middle cerebral artery occlusion. Stroke, 1989. 20(8): 1071-8.
    19. Chui H, Vascular dementia, a new beginning: shifting focus from clinical phenotype to ischemic brain injury. Neurol Clin, 2000. 18(4): 951-78.
    20. Lal BK, Cognitive function after carotid artery revascularization. Vasc Endovascular Surg, 2007. 41(1): 5-13.
    21. Nunn J.Hodges H, Cognitive deficits induced by global cerebral ischaemia: relationship to brain damage and reversal by transplants. Behav Brain Res, 1994. 65(1): 1-31.
    22. Denisenko-Nehrbass N, Oguievetskaia K, Goutebroze L, Galvez T, Yamakawa H, Ohara O,Camaud M,Girault JA,Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres.Eur J Neurosci,2003.17(2):411-6.
    23.Poliak S,Gollan L,Martinez R,Custer A,Einheber S,Salzer JL,Trimmer JS,Shrager P,Peles E,Caspr2,a new member of the neurexin superfamily,is localized at the juxtaparanodes of myelinated axons and associates with K+ channels.Neuron,1999.24(4):1037-47.
    24.Poliak S,Gollan L,Salomon D,Berglund EO,Ohara R,Ranscht B,Peles E,Localization of Caspr2 in myelinated nerves depends on axon-glia interactions and the generation of barriers along the axon.J Neurosci,2001.21(19):7568-75.
    25.Geinisman Y,Age-related decline in memory function:is it associated with a loss of synapses? Neurobiol Aging,1999.20(3):353-6;discussion 359-60.
    26.Small SA,Age-related memory decline:current concepts and future directions.Arch Neurol,2001.58(3):360-4.
    27.Ohta K,Iwai M,Sato K,Omori N,Nagano I,Shoji M,Abe K,Dissociative increase of oligodendrocyte progenitor cells between young and aged rats after transient cerebral ischemia.Neurosci Lett,2003.335(3):159-62.
    28.Nakano S,Kato H,Kogure K,Neuronal damage in the rat hippocampus in a new model of repeated reversible transient cerebral ischemia.Brain Res,1989.490(1):178-80.
    29.Nanri M.Watanabe H,[Availability of 2VO rats as a model for chronic cerebrovascular disease].Nippon Yakurigaku Zasshi,1999.113(2):85-95.
    30.Ritchie LJ,De Butte M,Pappas BA,Chronic mild stress exacerbates the effects of permanent bilateral common carotid artery occlusion on CA1 neurons.Brain Res,2004.1014(1-2):228-35.
    31.周振华,陈康宁,周宇,黄河清,李露斯,郭田友,可控制狭窄程度的鼠颈动脉狭窄模型建立及认知功能改变.中国临床康复,2004.8(28):6052-6054,i001.
    32.Bennett SA,Tenniswood M,Chen JH,Davidson CM,Keyes MT,Fortin T,Pappas BA,Chronic cerebral hypoperfusion elicits neuronal apoptosis and behavioral impairment.Neuroreport,1998.9(1):161-6.
    33.Farkas E,Luiten PG,Bari F,Permanent,bilateral common carotid artery occlusion in the rat:A model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev, 2007.
    34. Fernando MS, Simpson JE, Matthews F, Brayne C, Lewis CE, Barber R, Kalaria RN, Forster G, Esteves F, Wharton SB, Shaw PJ, O'Brien JT,Ince PG, White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke, 2006. 37(6): 1391-8.
    35. Kajs-Wyllie M, Antihypertensive treatment for the neurological patient: a nursing challenge. J Neurosci Nurs, 1999. 31(3): 142-51.
    36. Pulsinelli WA.Brierley JB, A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke, 1979. 10(3): 267-72.
    37. Lim C, Alexander MP, LaFleche G, Schnyer DM,Verfaellie M, The neurological and cognitive sequelae of cardiac arrest. Neurology, 2004. 63(10): 1774-8.
    38. Walker LC, Kitt CA, Struble RG, Wagster MV, Price DL,Cork LC, The neural basis of memory decline in aged monkeys. Neurobiol Aging, 1988. 9(5-6): 657-66.
    39. Gallagher M.Pelleymounter MA, Spatial learning deficits in old rats: a model for memory decline in the aged. Neurobiol Aging, 1988. 9(5-6): 549-56.
    40. Fedoroff S, Berezovskaya O,Maysinger D, Role of colony stimulating factor-1 in brain damage caused by ischemia. Neurosci Biobehav Rev, 1997. 21(2): 187-91.
    41. Morioka M, Hamada J, Ushio Y,Miyamoto E, Potential role of calcineurin for brain ischemia and traumatic injury. Prog Neurobiol, 1999. 58(1): 1-30.
    1. Bellen HJ, Lu Y, Beckstead R,Bhat MA, Neurexin IV, caspr and paranodin—novel members of the neurexin family: encounters of axons and glia. Trends Neurosci, 1998. 21(10): 444-9.
    2. Denisenko-Nehrbass N, Oguievetskaia K, Goutebroze L, Galvez T, Yamakawa H, Ohara 0, Carnaud M,Girault JA, Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres. Eur J Neurosci, 2003. 17(2): 411-6.
    3. Poliak S, Gollan L, Salomon D, Berglund EO, Ohara R, Ranscht B, Peles E, Localization of Caspr2 in myelinated nerves depends on axon-glia interactions and the generation of barriers along the axon. J Neurosci, 2001. 21(19): 7568-75.
    4. Traka M, Goutebroze L, Denisenko N, Bessa M, Nifli A, Havaki S, Iwakura Y, Fukamauchi F, Watanabe K, Soliven B, Girault JA,Karagogeos D, Association of TAG-1 with Caspr2 is essential for the molecular organization of juxtaparanodal regions of myelinated fibers. J Cell Biol, 2003. 162(6): 1161-72.
    5. Aya-ay J, Mayer J, Eakin AK, Muffly BG, Anello M, Sandy JD,Gottschall PE, The effect of hypoxic-ischemic brain injury in perinatal rats on the abundance and proteolysis of brevican and NG2. Exp Neurol, 2005. 193(1): 149-62.
    6. Brown AA, Xu T, Arroyo EJ, Levinson SR, Brophy PJ, Peles E,Scherer SS, Molecular organization of the nodal region is not altered in spontaneously diabetic BB-Wistar rats. J Neurosci Res, 2001. 65(2): 139-49.
    7. Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, Stephan DA,Morton DH, Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med, 2006. 354(13): 1370-7.
    8. Scherer SS.Arroyo EJ, Recent progress on the molecular organization of myelinated axons. J Peripher Nerv Syst, 2002. 7(1): 1-12.
    9. Shibata M, Ohtani R, Ihara M,Tomimoto H, White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke, 2004. 35(11): 2598-603.
    10. Kamijyo Y, Garcia JH,Cooper J, Temporary regional cerebral ischemia in the cat. A model of hemorrhagic and subcortical infarction. J Neuropathol Exp Neurol, 1977. 36(2): 338-50.
    11. Lee JK, Park MS, Kim YS, Moon KS, Joo SP, Kim TS, Kim JH,Kim SH, Photochemically induced cerebral ischemia in a mouse model. Surg Neurol, 2007. 67(6): 620-5; discussion 625.
    12. Petersson KH, Pinar H, Stopa EG, Faris RA, Sadowska GB, Hanumara RC,Stonestreet BS, White matter injury after cerebral ischemia in ovine fetuses. Pediatr Res, 2002. 51(6): 768-76.
    13. Farkas E, de Wilde MC, Kiliaan AJ,Luiten PG, Chronic cerebral hypoperfusion-related neuropathologic changes and compromised cognitive status: window of treatment. Drugs Today (Barc), 2002. 38(5): 365-76.
    14. Lal BK, Cognitive function after carotid artery revascularization. Vasc Endovascular Surg, 2007. 41(1): 5-13.
    15. Lim C, Alexander MP, LaFleche G, Schnyer DM,Verfaellie M, The neurological and cognitive sequelae of cardiac arrest. Neurology, 2004. 63(10): 1774-8.
    16. Mobius HJ, Pharmacologic rationale for memantine in chronic cerebral hypoperfusion, especially vascular dementia. Alzheimer Dis Assoc Disord, 1999. 13 Suppl 3: S172-8.
    17. Kalaria RN, The role of cerebral ischemia in Alzheimer's disease. Neurobiol Aging, 2000. 21(2): 321-30.
    18. Sorensen AG, Wu O, Copen WA, Davis TL, Gonzalez RG, Koroshetz WJ, Reese TG, Rosen BR, Wedeen VJ,Weisskoff RM, Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology, 1999. 212(3): 785-92.
    19. Poliak S, Gollan L, Martinez R, Custer A, Einheber S, Salzer JL, Trimmer JS, Shrager P,Peles E, Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels. Neuron, 1999. 24(4): 1037-47.
    20. Poliak S, Salomon D, Elhanany H, Sabanay H, Kiernan B, Pevny L, Stewart CL, Xu X, Chiu SY, Shrager P, Furley AJ,Peles E, Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J Cell Biol, 2003. 162(6): 1149-60.
    21. Peles E.Salzer JL, Molecular domains of myelinated axons. Curr Opin Neurobiol, 2000. 10(5): 558-65.
    22. Inda MC, DeFelipe J,Munoz A, Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells. Proc Natl Acad Sci U S A, 2006. 103(8): 2920-5.
    23. Stoeckel MC, Wittsack HJ, Meisel S,Seitz RJ, Pattern of cortex and white matter involvement in severe middle cerebral artery ischemia. J Neuroimaging, 2007. 17(2): 131-40.
    24. Farkas E, Donka G, de Vos RA, Mihaly A, Bari F,Luiten PG, Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol, 2004. 108(1): 57-64.
    25. McDonald JW, Levine JM,Qu Y, Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity. Neuroreport, 1998. 9(12): 2757-62.
    26. Karadottir R, Cavelier P, Bergersen LH,Attwell D, NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature, 2005. 438(7071): 1162-6.
    27. Gresle MM, Jarrott B, Jones NM,Callaway JK, Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Res, 2006. 1110(1): 13-22.
    28. DeGirolami U, Crowell RM,Marcoux FW, Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey. J Neuropathol Exp Neurol, 1984. 43(1): 57-71.
    29. Mitsias PD, Ewing JR, Lu M, Khalighi MM, Pasnoor M, Ebadian HB, Zhao Q, Santhakumar S, Jacobs MA, Papamitsakis N, Soltanian-Zadeh H, Hearshen D, Patel SC,Chopp M, Multiparametric iterative self-organizing MR imaging data analysis technique for assessment of tissue viability in acute cerebral ischemia. AJNR Am J Neuroradiol, 2004. 25(9): 1499-508.
    30. Chui H, Vascular dementia, a new beginning: shifting focus from clinical phenotype to ischemic brain injury. Neurol Clin, 2000. 18(4): 951-78.
    31. Rockwood K, Bowler J, Erkinjuntti T, Hachinski V,Wallin A, Subtypes of vascular dementia. Alzheimer Dis Assoc Disord, 1999. 13 Suppl 3: S59-65.
    32. Wang F, Liang Z, Hou Q, Xing S, Ling L, He M, Pei Z,Zeng J, Nogo-A is involved in secondary axonal degeneration of thalamus in hypertensive rats with focal cortical infarction. Neurosci Lett, 2007. 417(3): 255-60.
    33. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A,Chopp M, Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab, 2007. 27(1): 6-13.
    34. Allen JS, Bruss J,Damasio H, The aging brain: the cognitive reserve hypothesis and hominid evolution. Am J Hum Biol, 2005. 17(6): 673-89.
    35. Cabeza R, Cognitive neuroscience of aging: contributions of functional neuroimaging. Scand J Psychol, 2001. 42(3): 277-86.
    36. Giannakopoulos P, Gold G, Kovari E, von Gunten A, Imhof A, Bouras C,Hof PR, Assessing the cognitive impact of Alzheimer disease pathology and vascular burden in the aging brain: the Geneva experience. Acta Neuropathol, 2007. 113(1): 1-12.
    1. Chen ZJ, Negra M, Levine A, Ughrin Y,Levine JM, Oligodendrocyte precursor cells: reactive cells that inhibit axon growth and regeneration. J Neurocytol, 2002. 31(6-7): 481-95.
    2. Jarjour AA. Kennedy TE, Oligodendrocyte precursors on the move: mechanisms directing migration. Neuroscientist, 2004. 10(2): 99-105.
    3. Levine JM, Reynolds R,Fawcett JW, The oligodendrocyte precursor cell in health and disease. Trends Neurosci, 2001. 24(1): 39-47.
    4. Wolswijk G, Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain, 2002. 125(Pt 2): 338-49.
    5. Farkas E, Donka G, de Vos RA, Mihaly A, Bari F,Luiten PG, Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol, 2004. 108(1): 57-64.
    6. Cho KO, La HO, Cho YJ, Sung KW,Kim SY, Minocycline attenuates white matter damage in a rat model of chronic cerebral hypoperfusion. J Neurosci Res, 2006. 83(2): 285-91.
    7. Liu Y, Silverstein FS, Skoff R,Barks JD, Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr Res, 2002. 51(1): 25-33.
    8. Nguyen L, Borgs L, Vandenbosch R, Mangin JM, Beukelaers P, Moonen G, Gallo V, Malgrange B,Belachew S, The Yin and Yang of cell cycle progression and differentiation in the oligodendroglial lineage. Ment Retard Dev Disabil Res Rev, 2006. 12(2): 85-96.
    9. Noble M, Wolswijk G, Wren D, The complex relationship between cell division and the control of differentiation in oligodendrocyte-type-2 astrocyte progenitor cells isolated from perinatal and adult rat optic nerves. Prog Growth Factor Res, 1989. 1(3): 179-94.
    10. Vos JP, Gard AL,Pfeiffer SE, Regulation of oligodendrocyte cell survival and differentiation by ciliary neurotrophic factor, leukemia inhibitory factor, oncostatin M, and interleukin-6. Perspect Dev Neurobiol, 1996. 4(1): 39-52.
    11. de Castro F.Bribian A, The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res Brain Res Rev, 2005. 49(2): 227-41.
    12. Chen ZJ, Ughrin Y,Levine JM, Inhibition of axon growth by oligodendrocyte precursor cells. Mol Cell Neurosci, 2002. 20(1): 125-39.
    13. Tan AM, Zhang W,Levine JM, NG2: a component of the glial scar that inhibits axon growth. J Anat, 2005. 207(6): 717-25.
    14. Valeriani V, Dewar D,McCulloch J, Quantitative assessment of ischemic pathology in axons, oligodendrocytes, and neurons: attenuation of damage after transient ischemia. J Cereb Blood Flow Metab, 2000. 20(5): 765-71.
    15. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A,Chopp M, Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab, 2007. 27(1): 6-13.
    16. McDonald JW, Levine JM,Qu Y, Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity. Neuroreport, 1998. 9(12): 2757-62.
    17. Gresle MM, Jarrott B, Jones NM,Callaway JK, Injury to axons and oligodendrocytes following endothelin-1-induced middle cerebral artery occlusion in conscious rats. Brain Res, 2006. 1110(1): 13-22.
    18. Karadottir R, Cavelier P, Bergersen LH,Attwell D, NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature, 2005. 438(7071): 1162-6.
    19. Brazel CY, Nunez JL, Yang Z,Levison SW, Glutamate enhances survival and proliferation of neural progenitors derived from the subventricular zone. Neuroscience, 2005. 131(1): 55-65.
    20. Misu Y, Furukawa N, Arai N, Miyamae T, Goshima Y,Fujita K, DOPA causes glutamate release and delayed neuron death by brain ischemia in rats. Neurotoxicol Teratol, 2002. 24(5): 629-38.
    21. White BC, Grossman LI, O'Neil BJ, DeGracia DJ, Neumar RW, Rafols JA,Krause GS, Global brain ischemia and reperfusion. Ann Emerg Med, 1996. 27(5): 588-94.
    22. Garcia-Alix A, Cabanas F, Pellicer A, Hernanz A, Stiris TA,Quero J, Neuron-specific enolase and myelin basic protein: relationship of cerebrospinal fluid concentrations to the neurologic condition of asphyxiated full-term infants. Pediatrics, 1994. 93(2): 234-40.
    23. Kurumatani T, Kudo T, Ikura Y,Takeda M, White matter changes in the gerbil brain under chronic cerebral hypoperfusion. Stroke, 1998. 29(5): 1058-62.
    24. Chen YH, Yet SF,Perrella MA, Role of heme oxygenase-1 in the regulation of blood pressure and cardiac function. Exp Biol Med (Maywood), 2003. 228(5): 447-53.
    25. Korotinski S, Katz A,Malnick SD, Chronic ischaemic bowel diseases in the aged—go with the flow. Age Ageing, 2005. 34(1): 10-6.
    26. Ohta K, Iwai M, Sato K, Omori N, Nagano I, Shoji M,Abe K, Dissociative increase of oligodendrocyte progenitor cells between young and aged rats after transient cerebral ischemia. Neurosci Lett, 2003. 335(3): 159-62.
    27. Hossmann KA, [Experimental principles of tolerance of the brain to ischemia]. Z Kardiol, 1987. 76 Suppl 4: 47-66.
    28. Shanley PF, The pathology of chronic renal ischemia. Semin Nephrol, 1996. 16(1): 21-32.
    1. Jarjour AA.Kennedy TE, Oligodendrocyte precursors on the move: mechanisms directing migration. Neuroscientist, 2004. 10(2): 99-105.
    2. Levine JM, Reynolds R,Fawcett JW, The oligodendrocyte precursor cell in health and disease. Trends Neurosci, 2001. 24(1): 39-47.
    3. Tan AM, Zhang W,Levine JM, NG2: a component of the glial scar that inhibits axon growth. J Anat, 2005. 207(6): 717-25.
    4. Wolswijk G, Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain, 2002. 125(Pt 2): 338-49.
    5. de Castro F.Bribian A, The molecular orchestra of the migration of oligodendrocyte precursors during development. Brain Res Brain Res Rev, 2005. 49(2): 227-41.
    6. Bribian A, Barallobre MJ, Soussi-Yanicostas N,de Castro F, Anosmin-1 modulates the FGF-2-dependent migration of oligodendrocyte precursors in the developing optic nerve. Mol Cell Neurosci, 2006. 33(1): 2-14.
    7. Buttery PC, Mallawaarachchi CM, Milner R, Doherty P,ffrench-Constant C, Mapping regions of the beta1 integrin cytoplasmic domain involved in migration and survival in primary oligodendrocyte precursors using cell-permeable homeopeptides. Biochem Biophys Res Commun, 1999. 259(1): 121-7.
    8. Casaccia-Bonnefil P.Liu A, Relationship between cell cycle molecules and onset of oligodendrocyte differentiation. J Neurosci Res, 2003. 72(1): 1-11.
    9. Milner R, Edwards G, Streuli C,Ffrench-Constant C, A role in migration for the alpha V beta 1 integrin expressed on oligodendrocyte precursors. J Neurosci, 1996. 16(22): 7240-52.
    10. Noble M, Wolswijk G,Wren D, The complex relationship between cell division and the control of differentiation in oligodendrocyte-type-2 astrocyte progenitor cells isolated from perinatal and adult rat optic nerves. Prog Growth Factor Res, 1989. 1(3): 179-94.
    11. Nguyen L, Borgs L, Vandenbosch R, Mangin JM, Beukelaers P, Moonen G, Gallo V, Malgrange B,Belachew S, The Yin and Yang of cell cycle progression and differentiation in the oligodendroglial lineage. Ment Retard Dev Disabil Res Rev, 2006. 12(2): 85-96.
    12. Raff MC.Lillien LE, Differentiation of a bipotential glial progenitor cell: what controls the timing and the choice of developmental pathway? J Cell Sci Suppl, 1988. 10: 77-83.
    13. Vos JP, Gard AL,Pfeiffer SE, Regulation of oligodendrocyte cell survival and differentiation by ciliary neurotrophic factor, leukemia inhibitory factor, oncostatin M, and interleukin-6. Perspect Dev Neurobiol, 1996. 4(1): 39-52.
    14. Baas D, Legrand C, Samarut J,Flamant F, Persistence of oligodendrocyte precursor cells and altered myelination in optic nerve associated to retina degeneration in mice devoid of all thyroid hormone receptors. Proc Natl Acad Sci U S A, 2002. 99(5): 2907-11.
    15. Chen ZJ, Negra M, Levine A, Ughrin Y,Levine JM, Oligodendrocyte precursor cells: reactive cells that inhibit axon growth and regeneration. J Neurocytol, 2002. 31(6-7): 481-95.
    16. Fok-Seang J, DiProspero NA, Meiners S, Muir E,Fawcett JW, Cytokine-induced changes in the ability of astrocytes to support migration of oligodendrocyte precursors and axon growth. Eur J Neurosci, 1998. 10(7): 2400-15.
    17. Jessen KR, Mirsky R,Morgan L, Role of cyclic AMP and proliferation controls in Schwann cell differentiation. Ann N Y Acad Sci, 1991. 633: 78-89.
    18. Levine JM, Enquist LW,Card JP, Reactions of oligodendrocyte precursor cells to alpha herpesvirus infection of the central nervous system. Glia, 1998. 23(4): 316-28.
    19. Mirsky R. Jessen KR, Schwann cell development, differentiation and myelination. Curr Opin Neurobiol, 1996. 6(1): 89-96.
    20. Mirsky R, Parkinson DB, Dong Z, Meier C, Calle E, Brennan A, Topilko P, Harris BS, Stewart HJ,Jessen KR, Regulation of genes involved in Schwann cell development and differentiation. Prog Brain Res, 2001. 132: 3-11.
    21. Raff M, Apperly J, Kondo T, Tokumoto Y,Tang D, Timing cell-cycle exit and differentiation in oligodendrocyte development. Novartis Found Symp, 2001. 237: 100-7; discussion 107-12, 158-63.
    22. Raff MC, Hart IK, Richardson WD,Lillien LE, An analysis of the cell-cell interactions that control the proliferation and differentiation of a bipotential glial progenitor cell in culture. Cold Spring Harb Symp Quant Biol, 1990. 55: 235-8.
    23. Dziembowska M, Tham TN, Lau P, Vitry S, Lazarini F,Dubois-Dalcq M, A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia, 2005. 50(3): 258-69.
    24. Chen ZJ, Ughrin Y,Levine JM, Inhibition of axon growth by oligodendrocyte precursor cells. Mol Cell Neurosci, 2002. 20(1): 125-39.
    25. Levine JM.Reynolds R, Activation and proliferation of endogenous oligodendrocyte precursor cells during ethidium bromide-induced demyelination. Exp Neurol, 1999. 160(2): 333-47.
    26. Levine JM, Stincone F,Lee YS, Development and differentiation of glial precursor cells in the rat cerebellum. Glia, 1993. 7(4): 307-21.
    27. McDonald JW, Levine JM,Qu Y, Multiple classes of the oligodendrocyte lineage are highly vulnerable to excitotoxicity. Neuroreport, 1998. 9(12): 2757-62.
    28. Ono K, Yasui Y, Rutishauser U,Miller RH, Focal ventricular origin and migration of oligodendrocyte precursors into the chick optic nerve. Neuron, 1997. 19(2): 283-92.
    29. Tsai HH, Frost E, To V, Robinson S, Ffrench-Constant C, Geertman R, Ransohoff RM,Miller RH, The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. Cell, 2002. 110(3): 373-83.
    30. Vignais L, Nait Oumesmar B, Mellouk F, Gout O, Labourdette G, Baron-Van Evercooren A,Gumpel M, Transplantation of oligodendrocyte precursors in the adult demyelinated spinal cord: migration and remyelination. Int J Dev Neurosci, 1993. 11(5): 603-12.
    31. Fok-Seang J, Mathews GA, ffrench-Constant C, Trotter J,Fawcett JW, Migration of oligodendrocyte precursors on astrocytes and meningeal cells. Dev Biol, 1995. 171(1): 1-15.
    32. Merchan P, Bribian A, Sanchez-Camacho C, Lezameta M, Bovolenta P,de Castro F, Sonic hedgehog promotes the migration and proliferation of optic nerve oligodendrocyte precursors. Mol Cell Neurosci, 2007. 36(3): 355-368.
    33. Ogata T, Yamamoto S, Nakamura K,Tanaka S, Signaling axis in schwann cell proliferation and differentiation. Mol Neurobiol, 2006. 33(1): 51-62.
    34. Deng W, Rosenberg PA, Volpe JJ, Jensen FE, Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci U S A, 2003. 100(11): 6801-6.
    35. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, Lu M, Raginski K, Vanguri P, Smith A,Chopp M, Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab, 2007. 27(1): 6-13.
    36. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J,Chopp M, Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience, 2006. 137(2): 393-9.
    1. Albert MS, Memory decline: the boundary between aging and age-related disease. Ann Neurol, 2002. 51(3): 282-4.
    2. Allen JS, Bruss J,Damasio H, The aging brain: the cognitive reserve hypothesis and hominid evolution. Am J Hum Biol, 2005. 17(6): 673-89.
    3. Backman L.Farde L, Dopamine and cognitive functioning: brain imaging findings in Huntington's disease and normal aging. Scand J Psychol, 2001. 42(3): 287-96.
    4. Buckner RL, Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron, 2004. 44(1): 195-208.
    5. Costa A, Nappi RE, Sinforiani E, Bono G, Poma A,Nappi G, Cognitive function at menopause: neuroendocrine implications for the study of the aging brain. Funct Neurol, 1997. 12(3-4): 175-80.
    6. de Magalhaes JP.Sandberg A, Cognitive aging as an extension of brain development: a model linking learning, brain plasticity, and neurodegeneration. Mech Ageing Dev, 2005. 126(10): 1026-33.
    7. Roman GC, Vascular dementia prevention: a risk factor analysis. Cerebrovasc Dis, 2005. 20 Suppl 2: 91-100.
    8. Small SA, Age-related memory decline: current concepts and future directions. Arch Neurol, 2001. 58(3): 360-4.
    9. Geinisman Y, Age-related decline in memory function: is it associated with a loss of synapses? Neurobiol Aging, 1999. 20(3): 353-6; discussion 359-60.
    10. Stoll S, Hafner U, Pohl O,Muller WE, Age-related memory decline and longevity under treatment with selegiline. Life Sci, 1994. 55(25-26): 2155-63.
    11. Cotman CW, Head E, Muggenburg BA, Zicker S,Milgram NW, Brain aging in the canine: a diet enriched in antioxidants reduces cognitive dysfunction. Neurobiol Aging, 2002. 23(5): 809-18.
    12. Gallagher M.Pelleymounter MA, Spatial learning deficits in old rats: a model for memory decline in the aged. Neurobiol Aging, 1988. 9(5-6): 549-56.
    13. Hanninen T, Hallikainen M, Koivisto K, Partanen K, Laakso MP, Riekkinen PJ, Sr.,Soininen H, Decline of frontal lobe functions in subjects with age-associated memory impairment. Neurology, 1997. 48(1): 148-53.
    14. Kumar V, Goldstein MZ,Doraiswamy PM, Advances in pharmacotherapy for decline of memory and cognition in patients with Alzheimer's disease. Psychiatr Serv, 1996. 47(3): 249-53.
    15. Farkas E, Donka G, de Vos RA, Mihaly A, Bari F,Luiten PG, Experimental cerebral hypoperfusion induces white matter injury and microglial activation in the rat brain. Acta Neuropathol, 2004. 108(1): 57-64.
    16. Foster TC, Involvement of hippocampal synaptic plasticity in age-related memory decline. Brain Res Brain Res Rev, 1999. 30(3): 236-49.
    17. Bartres-Faz D, Clemente IC,Junque C, [White matter changes and cognitive performance in aging]. Rev Neurol, 2001. 33(4): 347-53.
    18. Gottfries CG, Neurochemical aspects on aging and diseases with cognitive impairment. J Neurosci Res, 1990. 27(4): 541-7.
    19. Hajjar I, Keown M,Frost B, Antihypertensive agents for aging patients who are at risk for cognitive dysfunction. Curr Hypertens Rep, 2005. 7(6): 466-73.
    20. Lanari A, Silvestrelli G, De Dominicis P, Tomassoni D, Amenta F,Parnetti L, Arterial hypertension and cognitive dysfunction in physiologic and pathologic aging of the brain. Am J Geriatr Cardiol, 2007. 16(3): 158-64.
    21. McNay EC, The impact of recurrent hypoglycemia on cognitive function in aging. Neurobiol Aging, 2005. 26 Suppl 1: 76-9.
    22. Raz N.Rodrigue KM, Differential aging of the brain: patterns, cognitive correlates and modifiers. Neurosci Biobehav Rev, 2006. 30(6): 730-48.
    23. Tuomainen S.Hanninen T, [Cognitive aging]. Duodecim, 2000. 116(12): 1293-8; quiz 1298, 1308.
    24. Whalley LJ, Deary IJ, Appleton CL,Starr JM, Cognitive reserve and the neurobiology of cognitive aging. Ageing Res Rev, 2004. 3(4): 369-82.
    25. Helmchen H.Reischies FM, [Normal and pathological cognitive aging]. Nervenarzt, 1998. 69(5): 369-78.
    26. John ER.Prichep LS, Neurometric studies of aging and cognitive impairment. Prog Brain Res, 1990. 85:555-65.
    27. Kramer AF, Bherer L, Colcombe SJ, Dong W,Greenough WT, Environmental influences on cognitive and brain plasticity during aging. J Gerontol A Biol Sci Med Sci, 2004. 59(9): M940-57.
    28. Kugler CF, Taghavy A,Platt D, The event-related P300 potential analysis of cognitive human brain aging: a review. Gerontology, 1993. 39(5): 280-303.
    29. Li SC.Sikstrom S, Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation. Neurosci Biobehav Rev, 2002. 26(7): 795-808.
    30. Resnick SM.Maki PM, Effects of hormone replacement therapy on cognitive and brain aging. Ann N Y Acad Sci, 2001. 949: 203-14.
    31. Sperling R, Functional MRI studies of associative encoding in normal aging, mild cognitive impairment, and Alzheimer's disease. Ann N Y Acad Sci, 2007. 1097: 146-55.
    32. Toescu EC.Verkhratsky A, The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell, 2007. 6(3): 267-73.
    33. Vandenberghe R.Tournoy J, Cognitive aging and Alzheimer's disease. Postgrad Med J, 2005. 81(956): 343-52.
    34. Connor L, Memory in old age: patterns of decline and preservation. Semin Speech Lang, 2001.22(2): 117-25.
    35. Walker LC, Kitt CA, Struble RG, Wagster MV, Price DL,Cork LC, The neural basis of memory decline in aged monkeys. Neurobiol Aging, 1988. 9(5-6): 657-66.
    36. Richards M.Deary IJ, A life course approach to cognitive reserve: a model for cognitive aging and development? Ann Neurol, 2005. 58(4): 617-22.
    37. Fedoroff S, Berezovskaya O,Maysinger D, Role of colony stimulating factor-1 in brain damage caused by ischemia. Neurosci Biobehav Rev, 1997. 21(2): 187-91.
    38. Misu Y, Furukawa N, Arai N, Miyamae T, Goshima Y,Fujita K, DOPA causes glutamate release and delayed neuron death by brain ischemia in rats. Neurotoxicol Teratol, 2002. 24(5): 629-38.
    39. Morioka M, Hamada J, Ushio Y,Miyamoto E, Potential role of calcineurin for brain ischemia and traumatic injury. Prog Neurobiol, 1999. 58(1): 1-30.
    40. White BC, Grossman LI, O'Neil BJ, DeGracia DJ, Neumar RW, Rafols JA,Krause GS, Global brain ischemia and reperfusion. Ann Emerg Med, 1996. 27(5): 588-94.
    41. Anger WK, Animal test systems to study behavioral dysfunctions of neurodegenerative disorders. Neurotoxicology, 1991. 12(3): 403-13.
    42. Brockmann D.Morgenroth E, Comparing global sensitivity analysis for a biofilm model for two-step nitrification using the qualitative screening method of Morris or the quantitative variance-based Fourier Amplitude Sensitivity Test (FAST). Water Sci Technol, 2007. 56(8): 85-93.
    43. Demoulin C, Fauconnier C, Vanderthommen M,Henrotin Y, [Recommendations for a basic functional assessment of low back pain]. Rev Med Liege, 2005. 60(7-8): 661-8.
    44. Gage FH, Chen KS, Buzsaki G, Armstrong D, Experimental approaches to age-related cognitive impairments. Neurobiol Aging, 1988. 9(5-6): 645-55.
    45. Kotwal GJ, Lahiri DK,Hicks R, Potential intervention by vaccinia virus complement control protein of the signals contributing to the progression of central nervous system injury to Alzheimer's disease. Ann N Y Acad Sci, 2002. 973: 317-22.
    46. Mohammed AK, Wahlstrom G, Tiger G, Bjorklund PE, Stenstrom A, Magnusson O, Archer T, Fowler CJ,Nordberg A, Impaired performance of rats in the Morris swim-maize test late in abstinence following long-term sodium barbital treatment. Drug Alcohol Depend, 1987. 20(3): 203-12.
    47. Wolfer DP.Lipp HP, Dissecting the behaviour of transgenic mice: is it the mutation, the genetic background, or the environment? Exp Physiol, 2000. 85(6): 627-34.
    48. Wrenn CC.Crawley JN, Pharmacological evidence supporting a role for galanin in cognition and affect. Prog Neuropsychopharmacol Biol Psychiatry, 2001. 25(1): 283-99.
    49. Bose B, Jones SC, Lorig R, Friel HT, Weinstein M,Little JR, Evolving focal cerebral ischemia in cats: spatial correlation of nuclear magnetic resonance imaging, cerebral blood flow, tetrazolium staining, and histopathology. Stroke, 1988. 19(1): 28-37.
    50. DeGirolami U, Crowell RM,Marcoux FW, Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey. J Neuropathol Exp Neurol, 1984. 43(1): 57-71.
    51. Kalaria RN, The role of cerebral ischemia in Alzheimer's disease. Neurobiol Aging, 2000. 21(2): 321-30.
    52. Kataoka K, Graf R, Rosner G, Heiss WD, Experimental focal ischemia in cats: changes in multimodality evoked potentials as related to local cerebral blood flow and ischemic brain edema. Stroke, 1987. 18(1): 188-94.
    53. Mandai K, Matsumoto M, Kitagawa K, Matsushita K, Ohtsuki T, Mabuchi T, Colman DR, Kamada T,Yanagihara T, Ischemic damage and subsequent proliferation of oligodendrocytes in focal cerebral ischemia. Neuroscience, 1997. 77(3): 849-61.
    54. Sorensen AG, Wu 0, Copen WA, Davis TL, Gonzalez RG, Koroshetz WJ, Reese TG, Rosen BR, Wedeen VJ,Weisskoff RM, Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology, 1999. 212(3): 785-92.
    55. Ohta K, Iwai M, Sato K, Omori N, Nagano I, Shoji M,Abe K, Dissociative increase of oligodendrocyte progenitor cells between young and aged rats after transient cerebral ischemia. Neurosci Lett, 2003. 335(3): 159-62.
    56. Nanri M.Watanabe H, [Availability of 2VO rats as a model for chronic Cerebrovascular disease]. Nippon Yakurigaku Zasshi, 1999. 113(2): 85-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700