用户名: 密码: 验证码:
缘蝽科昆虫线粒体COI基因的分子系统学研究(半翅目:异翅亚目)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缘蝽科隶属于半翅目Hemiptera,异翅亚目Heteroptera,缘蝽次目Infraorder Pentatomomorpha,缘蝽总科Coreoidea。属世界性分布,已知250属约1800种。我国已知约63属近200种,全部为植食性。其吸取寄主的营养器官和繁殖器官的汁液,为害作物。国内外已从分类学、分子系统学、生物地理学、生物防治等各个方面对缘蝽科进行了广泛的研究。在系统学方面,缘蝽科内族间、属种间的系统发育关系一直存在着较大的争论,目前已从外部形态特征、分子生物学特征、酯酶同工酶等方面进行过探讨。
     线粒体编码细胞色素C氧化酶亚基I基因(COI)已成为当前动物分子系统学中应用最广泛的分子标记之一,特别是在昆虫中。本研究采用PCR产物直接测序法测定(13种)及从NCBI上下载(3种)共计缘蝽科11属16种昆虫的线粒体COI 726 bp的序列,借助系统发育分析软件,采用邻接法(NJ)、最小进化法(ME)、最大简约法(MP)、最大似然法(ML)及贝叶斯推论法(BI)五种方法探讨了缘蝽科部分种类的系统发育关系。通过分析讨论,得出如下结论:
     1.缘蝽科16种昆虫COI基因T、C、A、G的平均含量分别为37.0%、14.9%、33.4%和14.8%。A+T平均含量达到70.4%,G+C平均含量达到29.6%,A+T的含量明显高于G+C的含量,表现出非常强的A+T含量偏向性,同多数昆虫的核苷酸频率相一致。缘蝽科16种昆虫COI基因726 bp序列共编码242个氨基酸,由20种氨基酸组成,其中丝氨酸(Ser)、异亮氨酸(Ile)含量最高,反映出COI基因在氨基酸组成上具有一定偏向性。
     2.缘蝽科16种昆虫COI转换频率和颠换相同;转换主要发生在T与C之间,颠换主要发生在A与T之间。密码子第二位点的转换与颠换数目都比较小,占转换与颠换总数的5.4%和1.9%;密码子第三位的转换和颠换的频率都较高,转换频率占总数的71.4%,颠换占总数的80.4%。
     3.从GenBank上下载红蝽总科的Physopelta quadriguttata和猎蝽总科的Triatoma maculate作为外群,建立缘蝽科11属16种间的系统发育关系。结果显示狭义巨缘蝽族两属为一个单系群,竹缘蝽族的两个属为一单系群,缘蝽属与棘缘蝽属亲缘关系非常近。
     4.五种建树方法显示出了几个问题:同缘蝽族是否为一单系群,普缘蝽属为何与同缘蝽族聚在一起;瘤缘蝽属与怪缘蝽属是否应为一单系群并同归于菲缘蝽族;怪缘蝽属与黑缘蝽属(沟缘蝽亚科)关系似乎更为接近。
     5.运用COI基因的核苷酸序列对缘蝽科昆虫进行分子系统研究时,各属种间的分类关系都比较明确,得到的树的拓扑结构大都一致。因此,COI基因在分析种间和属间的系统发育关系时,是一个较为有效的分子标记。
Coreidae are a big family of Heteroptera. There are 250 genera, 1800species known in the world, and about 63 genera, 200 species known in China. Coreidaewhich is a kind of phytophagous insects and important pests of agriculture and foresthave been studied widely in many fields such as taxonomy, molecular phylogeny,biogeography, etc. However, there are still lots of debates on the phylogeneticrelationships among tribes and genera levels. Phylogenetic relationships of Coreidaehave been studied by external morphological characters, molecular characters,Isoenzymes, etc.
     The mitochondrial cytochrome oxidase subunit I (COI) gene is one of the mostwidely used genetic marker for molecular systematics of animals, especially in insects.In this research, the COI gene sequences were amplified by PCR, and then sequenceddirectly through cycling sequencing method. 726 bp sequences of 16 species ofCoreidae were obtained. Based on the analyses of COI gene sequences, wereconstructed the phylogenetic relationships of these species by using Neighbor-Joining(NJ), Minimum Evolution (ME), Maximum Parsimony (MP), Maximum Likelihood(ML) and Bayesian Inference (BI) methods. The conclusions are showed as follows:
     1) The average contents of T, C, A andG to COI gene of 16 species in Coreidae are37.0%, 14.9%, 33.4% and 14.8%, respectively, A+T content is 70.4%, while G+Ccontent is 29.6%, which shows a strong A+T bias. These sequences code 242 aminoacids and contain 20 kinds of amino acids, respectively. The contents of Set and Ile arethe highest.
     2) To these 16 species of Coreidae, ratio of transition to transversion (R) of COIgene sequence is 1; Transitions are the same with transversions; most transitions occurbetween T and C, while most transversions occur between A and T. Substitution of thesecond position of codons are the lowest: transition are 5.4% of all transition, whiletransversion are 1.9%. And Substitutions of the third position of codons are the highest:transitions are 71.4%, while transversions are 80.4%.
     3) The phylogenetic relationships among 16 species of Coreidae and outgroups which include Physopelta quadriguttata (Hemiptera: Pyrrhocoroidea) and Triatomamaculate (Hemiptera: Reduviidae) had been reconstructed. The results show that: towspecies of the Mictini s. str is a monophyletic group; two genera of Cloresmini is amonophyletic group; Coreus has a high relative relationship with Cletus.
     4) The five tree-building methods provide some questions: Homoeocerini is amonophyletic group or not? And why is the Plinachtus clustered with theHomoeocerini? Acanthocoris and Cordysceles belong to a monophyletic group or not?And are they belong to Physomerini? The relative relationships between Cordyscelesand Hygia seem to be high.
     5) The research on phylogenetic tree shows that COI gene is an efficient symbol instudy of the phylogenetic evolution of interspecies and intragenus, so it is a usefulmarker.
引文
[1] 萧采瑜.中国蝽类昆虫鉴定手册,第一册[M].北京:科学出版社,1977,198-268.
    [2] 李新正.缘蝽科比较形态学研究I(异翅亚目:缘蝽科)[J].动物学研究,1996,17(1):1-7.
    [3] 李新正.缘蝽科族级单元系统发育关系支序分析(异翅亚目:缘蝽总科)[J].动物分类学报,1997,22(1):60-69.
    [4] 韩明升.巨缘蝽亚科一新种(半翅目:缘蝽科)[J].昆虫学报,1991,34(2):204-205.
    [5] 岑业文,谢文海.广西翅缘蝽属一新种(半翅目:异翅亚目:缘蝽科)[J].动物分类学报,1996,21(1):89-91.
    [6] 任树芝.赭缘蝽属新种记述(半翅目:异翅亚目:缘蝽科)[J].南开大学学报,1992,3(1):55-58.
    [7] 任树芝.武陵山区缘蝽科新种记述(半翅目:异翅亚目)[J].动物分类学报,1993,18(3):344-352.
    [8] 任树芝.中国曼缘蝽属记述(半翅目:缘蝽科)[J].昆虫分类学报,1983,5(4):321-325.
    [9] 任树芝,金琴英.西藏缘蝽亚科记述(半翅目:缘蝽科)[J].中国科学院上海昆虫研究所.昆虫学研究集刊(第5集)[C].上海:上海科学技术出版社,1985.313-318.
    [10] 任树芝.中国岗缘蝽属及一新种记述(半翅目:缘蝽科)[J].动物分类学报,1984,9(2):197-200.
    [11] 任树芝.中国黑缘蝽属新种记述(半翅目:缘蝽科)[J].昆虫学报,1987,30(1):321-325.
    [12] 陈振耀.广东省竹缘蝽属一新种(半翅目:缘蝽科)[J].动物分类学报,1986,11(3):325-326.
    [13] 刘强,郑乐怡.中国缘蝽属一新种(半翅目:缘蝽科)[J].昆虫学报,1994,37(4):468-469.
    [14] 萧采瑜,郑乐怡,任树芝.半翅目:缘蝽科、狭蝽科[J].西藏昆虫,1981(1):186-192.
    [15] 能乃扎布.内蒙古昆虫志(第一卷第一册).半翅目异翅亚目[M].呼和浩特:内蒙古人民出版社,1986,24-313.
    [16] 李长安,王瑞,李青森,等.太行山区(山西境内)半翅目昆虫调查研究(1)—蝽科、缘蝽科、异蝽科、同蝽科、猎蝽科、长蝽科、盲蝽科[J].山西大学学报(自然科学版),1992,15(1):87-90.
    [17] 王启瑞,郑哲民,朱刚利.缘蝽科四种昆虫同工酶鉴别(半翅目:缘蝽科)[J].昆虫分类学报,2001,23(1):9-14.
    [18] 聂晓萌,郑哲民.我国缘蝽总科研究概况[J].河南农业科学,2005,8:56-59.
    [19] 黄原.分子系统学—原理方法及应用[M].北京:中国农业出版社,1998,1-362.
    [20] 姚云志,彩万志,任东.中国异翅目化石研究现状[J].动物分类学报,2004,29(1):33-37.
    [21] Carl W. Schaefer. The Pentatomomorpha (Hemiptera: Heteroptera): an annotated outline of its systematic history[J]. Eur J Entomol, 1993, 90: 105-122.
    [22] Harry Brailovskya. A new genus and a new species of leptoscelidini (heteroptera: coreidae: coreinae) from brazil[J]. Proceedings of the Entomological Society of Washington, 2001, 103(4): 917-921.
    [23] Harry Brailovsky, Ernesto Barreraa. Two new genera and four new species of colpurini (heteroptera: coreidae: coreinae) from new guinea[J]. Proceedings of the Entomological Society of Washington, 106(2): 424-433.
    [24] Gorb S. N., Gorb E. V.. Ontogenesis of the attachment ability in the bug Coreus marginatus (Heteroptera, Insecta) [J]. Exp. Biol., 2004, 207 (17): 17-24.
    [25] Morita A., Soga K., Hoson T., et al.. Changes in mechanical properties of the cuticle and lipid accumulation in relation to adult diapause in the bean bug, Riptortus clavatus [J]. Insect Physiol., 1999, 45(3): 241-247.
    [26] 黄大卫.昆虫系统学研究现状及发展趋势[J].世界农业,1995,6:1-6.
    [27] Ackerly D. D.. Taxon sampling, correlated evolution, and independent contrasts[J]. Evolution, 2000, 54: 1480-1492.
    [28] Rosenberg M. S., Kumar S.. Incomplete taxon sampling is not a problem for phylogenetic inference[J]. Proc.Natl.Acad.Sci, 2001, 98(19): 10751-10756.
    [29] Pollock D. D., Zwickl D. J., McGuire J. A., Hillis DM. Increased taxon sampling is advantageous for phylogenetic inference[J]. Syst. Biol., 2002, 51(4): 664-671.
    [30] Zwickl D. J., Hillis D. M.. Increased taxon sampling greatly reduces phylogenetic error[J]. Syst. Biol., 2002, 51(4): 588-598.
    [31] Rosenberg M. S., Kumar S..Taxon sampling, bioinformatics, and phylogenomics[J]. Syst. Biol., 2003, 52(1): 119-124.
    [32] Cummings M. P., Otto S. P., Wakeley J.. Samlping properties of DNA sequence data in phylogenetic analysis[J]. Mol. Biol. Evol., 1995, 12(5): 814-822.
    [33] 袁金荣,刘振湘.动物系统发育与分子系统学研究的理论基础及方法研究进展[J].湖南林业科技,2006,33(3):1-3.
    [34] Masatoshi nei,Sudhir Kummar著.吕宝忠,钟扬等译.分子进化与系统发育[M].北京:高等教育出版社,2002,1-299.
    [35] Nei M.. Molecular evolutionary genetics[M]. New York: Columbia University Press, 1987.
    [36] Swofford D. L.. PAUP*.Phytogenetic Analysis Using parsimony (*and other Methods) [R].Version4. Sunderland: SinauerAssociates, 2002.
    [37] Kimrua M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nueleotide sequences[J]. Mol. Biol. Evol., 1980, 16: 111-120.
    [38] Saitou N., Nei M.. The neighbor-joining method: A new method for reconstructing phylogenetic trees[J]. Mot. Biol. Evol., 1987. (4): 406-425.
    [39] Sneath P. H. A., Sokal R. R. Numerical Taxonomy[M]. San Francisco: Freeman, 1973.
    [40] Felsenstein. J.. PHYLIP (phylogeny inference package)[R]. Version 3. sc. 1993.
    [41] 张亚平.从DNA序列到物种树[J].动物学研究,1996,17(3):247.
    [42] 翟中和.细胞生物学[M].北京:高等教育出版社,1999,1-402.
    [43] 高泽.线粒体DNA[M].北京:科学出版社,1982,100-109.
    [44] 廖顺尧,鲁成.动物线粒体基因组研究进展[J].生物化学与生物物理进展,2000,27(5):508-512.
    [45] 陈复生,付承玉,汪泰初.动物线粒体基因分子系统学研究进展[J].安徽农业科学,2003,31(4):596-598,601.
    [46] Kumazawa Y., Ota H., et al. The complete nucleotide sequence of a snake(Dinodon semicarinatus) mitochondrial genome with two identical control regions[J].Genetics, 1998, 150(1): 313-329.
    [47] Lee W. J., Kocher T. D.. Complete sequence of a sea lam pey(Petromyzon marinus) mitochondrial genome: early establishment of the vertebrate genome organization[J]. Genetics, 1995, 139(2): 873-887.
    [48] Gares R.. Drosophila melanogaster mitochondrial DNA: gene organization and evolutionary considerations[J]. Genetics, 1998, 118(4): 649-663.
    [49] Hiesel R., Wissinger B., et al. RNA editing in plant mitochondrion[J]. Science, 1989, 246(4937): 1632-1633.
    [50] Solignac M., Monnerot M., et al. Mitochondrial DNA heteroplasmy in Drosophila mauritiana[J]. Proc Natl A cad Sci USA, 1983, 80(22): 6942-6946.
    [51] David O. F., Sklbinskl, Zouros S. E., et al. Mitochondrial DNA inheritance[J]. Nature, 1994, 368(6474): 817-818.
    [52] Quesada H., Warren M., Skibinski D. O. F.. Nonneutral evolution and differential mutation rate of gender-associated mitochondrial DNA lineages in the marine mussel mytilus[J]. Genetics, 1998,149(3): 1511-1526.
    
    [53] Aquadro C. F., Greenberg B. D.. Human mitochondrial DNA variation and evolution: analysis of nucleotide sequences from seven individuals [J]. Genetics, 1983,103(1): 287-312.
    [54] Arnason E., Rand D. M.. Heteroplasmy of short tandem repeats in mitochondrial DNA of Atlantic Cod, Gadus morhua[J]. Genetics, 1992,132(1): 211-220.
    [55] Hashimoto T., Sanchez L. B.. Secondary absence of mitochondria in Giardia lamblia and Trichomonas baginalis revealed by alyl-tRNA synthetase phylogeny[J]. Proc Natl Acad Sci USA, 1998, 95(12): 6860-6865.
    [56] Rand D. M., Dorfsman M., Kann L. M.. Neutral and non-neutral evolution of drosophila mitochondrial DNA[J]. Genetics, 1994,138(3): 741-756.
    [57] Zardoya R., Meyer A.. The complete nucleotide sequence of the mitochondrial genome of the lungfish(P.rotopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates[J]. Genetics, 1996,142(4): 1249-1263.
    [58] Zardoya R., Meyer A.. The complete DNA sequence of the mitochondrial genome of a 'Living Fossil', the coelacanth(Latimeria chalumnae)[J], Genetics, 1997, 146(3): 995-1010.
    [59] Delarbre C., Spruyt N., et al. The complete nucleotide sequence of the mitochondrial DNA of the dogfish, Scyliorhinus canicula[J]. Genetics, 1998, 150(1): 331-344.
    [60] Densmore L. D., Wright J. W., et al. Length variation and heteroplasmy are frequent in mitochondrial DNA from part henogenetic and bisexual lizards(genus cnemidophorus)[J]. Genetics, 1985,110(4): 689-707.
    [61] Kennedy P., Nachman M. W.. Deleterious mutations at the mitochondrial ND3 gene in South American Marsh Rats(Holochilus)[J]. Genetics, 1998, 150(1):359-368.
    [62] 成新跃,周红章,张广学.分子生物学技术在昆虫系统学研究中的应用[J].动物分类学报,2000,25(2):121-133.
    [63] 张亚平.从DNA序列到物种树[J].动物学研究,1996,17(3):247-252.
    [64] 张亚平.动物线粒体DNA多态性的研究概况[J].动物学研究,1992,13(3):289-298.
    [65] Simon C., Frati F., Becckenbanch A., et al. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers[J]. Annals of the Entomological Society of America, 1994, 87(6): 651-701.
    [66] Caterino M. S., Cho S., Sperling F. A. H.. The current state of insect molecular systematics: a thriving tower of Babel[J]. Annu. Rev. Entomol., 2000, 45: 1-54.
    [67] 王备新,杨莲芳.线粒体DNA序列特点与昆虫系统学研究[J].昆虫知识,2002,39(2):88-92.
    [68] Masahiko M., Kenjiro K., Toru S.. Discrimination among Japanese Species of the Orius Flower Bugs (Heteroptera: Anthocoridae) Based on PCR-RFLP of the Nuclear and Mitochondrial DNAs[J]. Appl. Entomol. Zool., 2000, 35(3): 301-307.
    [69] Shufran K.A., Burd J.D., Anstead J.A., et al. Mitochondrial DNA sequence divergence among greenbug (Homoptera: Aphididae) biotypes: evidence for host-adapted races[J]. Insect Mol. Biol., 2000, 9(2): 279-284.
    [70] Ostermeier C., lwatat S., Michel H.. Distinct alterations in mitochondrial mass and function charcterize different models of apoptosis[J]. Curr. Opin. Struct. Biol., 1996, 6: 460-466.
    [71] Kadenbach B., Barth J., Akgun R., et al. Regulation of mitochondrial energy generation in health and disease[J]. Biochim Biophys Acta, 1995, 1271: 103-109.
    [72] Zardoya R, Garrido-Pertierra A, Bautista J M. The complete nucleotide sequence of mitochondrial DNA genome of the rainbow trout, Oncorhynchus mykiss[J]. Mol. Evol., 1995, 41(6): 942-951
    [73] 邱持平等.日本血吸虫NADH脱氢酶1和细胞色素c氧化酶Ⅰ基因部分序列(英文)[J].中国寄生虫学与寄生虫病杂志,1997,15(6):378-381.
    [74] 石朝辉,邱持平等.湖北省庙河地区钉螺细胞色素c氧化酶l基因差异的研究[J].中国寄生虫学与寄生虫病杂志,2001,19(1):41-44.
    [75] 孔晓瑜,姜艳艳.魁蚶线粒体16SrRNA和COI基因片段序列测定及其应用前景[J].海洋科学,2001,25(12):46-48.
    [76] 孔晓瑜.中华绒螯蟹与日本绒螯蟹线粒体COI基因片段的序列比较研究[J].青岛海洋大学学报,2001,31(6):861-866.
    [77] 张广军,邱持平等.基于线粒体基因分析的中华血吸虫分子种系发生研究[J].中国寄生虫学与寄生虫病杂志,2002,20(1):10-13.
    [78] 孔晓瑜,张留所.太平洋牡蛎核糖体DNA转录间隔子和线粒体基因片段序列测定[J].中国水产科学,2002,9(4):304-308.
    [79] 董云伟,牛翠娟等.单只轮虫DNA提取及其细胞色c氧化酶Ⅰ亚基部分序列测定[J].动物学研究,2002,23(1):81-83.
    [80] 王正蓉,包怀恩.用mtCOⅡ技术测定云南及贵州四地区的牛带绦虫[J].中国寄生虫学与寄生虫病杂志,2003,21(1):20-23.
    [81] 李铁华,詹斌等.美洲钩虫及十二指肠钩虫细胞色素c氧化酶Ⅰ基因测序[J].中华流行病学杂志,2003,24(6):81-83.
    [82] 陈虹,陈汉彬.中国不同地理株白纹伊蚊细胞色素c氧化酶Ⅰ亚基基因序列比较[J].中华流行病学杂志,2003,24(6):491-493.
    [83] 洪加林,陈名刚等.浙江永嘉县并殖吸虫DNA序列分析、形态及序列研究[J].中国寄生虫病防治杂志,2003,16(2):101-104.
    [84] 郭天慧.三优梭子蟹线粒体DNAl6SrRNA和COl基因片段序列的比较研究[J].中国海洋大学学报,2004,34(1):22-28.
    [85] 田英芳,黄刚,郑哲民等.一种简易的昆虫基因组DNA提取方法[J].陕西师范大学学报(自然科学版),1999,27(4):82-84.
    [86] Desalle R. T., Freedman T., Prager E. M., et al. Tempo and mode of sequence evolution in mitochondrial DNA of Hawaiian Drosophila[J]. J. Mol. Evol., 1987, 26: 157-164.
    [87] Holmquist R.. Transitions and transversions in evolutionary descent: an approach to understanding [J]. J. Mol. Evol., 1983, 19: 134-144.
    [88] Irwin D. M.. Ancient duplications of the human proglucagon gene[J]. Genomics, 2002, 79(5): 741-746.
    [89] Stys P. The morphology and relationship of pentatomoid Heteraptera[J]. Acta. Zool. Hung, 1964, 10: 229.
    [90] Wheeler W C, Schuh R T, Bang R. Cladistic relationships among higher groups of Heteroptera: congruence between morphological and molecular data sets[J]. Ent. Scand.,1993,24:121-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700