用户名: 密码: 验证码:
编织复合材料结构与材料一体化优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统复合材料构件的设计过程,一般是先设计出具有一定性能的复合材料,再由这种具有特定性能的复合材料加工成构件,而编织复合材料构件和材料是同时形成,不再由复合材料加工成复合材料构件,因此采用传统的方法很难设计出具有最佳性能的复合材料构件。材料细观结构和宏观结构都对构件的性能有显著的影响,要充分发挥编织复合材料的潜能,需要同时从材料和结构两个尺度出发,发展新的优化设计方法。本文针对编织复合材料结构,围绕宏观力学性能预测、细观结构优化设计方法和结构与材料一体化优化设计方法开展研究工作。
     在编织复合材料细观结构特征分析的基础上,采用正弦曲线和三次B样条曲线模拟纤维束的走向和截面形式,建立了二维编织复合材料的细观结构分析模型;假设经纱截面为矩形,采用三次B样条曲线和双切线模拟经向纤维束走向,直线和三次B样条曲线模拟纬纱的走向和截面形式,建立2.5维浅交直联编织复合材料的细观结构分析模型。以此为基础,论文对比分析了刚度平均法、细观力学有限元法、高精度通用单胞模型和节点插值子胞模型四种方法在编织复合材料的宏观力学性能预测中的可行性和有效性。
     将水平集法和高精度通用单胞模型结合,将离散变量优化问题转化为连续变量优化问题,将多相材料细观结构拓扑优化设计转化为形状优化设计,提出了一种新的多相材料细观结构优化设计方法。为了实现细观拓扑结构的任意变化,采用数字阵列来描述细观结构形式,并对遗传算法的交叉方式进行了改进,提出了新的复合材料细观结构拓扑优化设计方法。利用编织复合材料细观结构分析模型和细观力学有限元法,建立宏观力学性能与细观结构参数之间的关系,提出了编织复合材料细观结构优化设计方法。
     利用高精度通用单胞模型和多相材料构件结构分析,将细观结构形式和多相材料构件性能联系起来,建立了多相材料结构与材料一体化优化设计方法。将编织复合材料力学性能预测和复合材料构件结构分析结合起来,将材料优化和结构优化结合起来,同时以细观结构参数和宏观结构参数为设计变量,建立了编织复合材料结构与材料一体化优化设计方法。
     分别以2维平纹和2.5维浅交直联编织复合材料为研究对象,进行编织复合材料涡轮导向叶片的结构与材料的一体化优化设计。将复合形法的局部搜索能力和遗传算法的全局寻优能力相结合,发展了混合遗传算法,分别采用复合形法、遗传算法和混合遗传算法进行结构与材料一体化优化设计,并研究了应力和位移约束对优化结果的影响情况。
     分析了2维平纹编织复合材料涡轮导向叶片分析的多项式响应面和RBF神经网络模型的计算精度。以RBF神经网络为基础,提出了基于近似模型的编织复合材料涡轮导向叶片的结构与材料一体化优化设计方法。
During the traditional design of composite structures, the mechanical properties of the composites were designed at first, and then the composites were made into complex components. However, for the braided composites, the mechanical properties and the shape of the components were manufactured at the same time. It is difficult to get perfect properties of the braided composite components using the traditional design approach. The microstructure and macrostructure both have large influence on the performance of the composite components. In order to realize the large potential of the braided composites completely, a new optimization design method considering scales in both structure and material should be developed. In this thesis, the mechanical properties prediction approach, microstructure optimization design approach and integrated optimization design approach based on structure and material were investigated.
     The microstructure model of the two-dimensional plain weave and braided composites were derived based on the microstructure analysis. The sinusoid curve was used to model the undulation of the yarns. The cross section shape was assumed to be cubic B-spline. For the 2.5-dimensional braided composites, the cross section of the warp yarn was assumed to be rectangle, and the undulation perform was modeled by the cubic B-spline and bitangent. The direction and cross section of weft yarn were modeled by beeline and B-spline respectively. The Stiffness Average Method (SAM), Micromechanical Finite Element Method (MFEM), High-fidelity Generalized Method of Cells (HFGMC) and Node Interpolation Cell Method (NICM) were used to predict the composites’mechanical property. The feasibility and validity of these four methods were also investigated.
     By combining the Level Set Method with HFGMC, transferring the discrete variables optimization into continuous variables optimization, and changing the microstructure topological optimization design into shape optimization design, a new micro-structural optimization design method of multiple phases composite was proposed. To perform the random transformation of topological microstructure, another new composite topological optimization design method was developed. In this method, the microstructure was described by Digital Array, and the cross operation of genetic algorithm was improved. A microstructure optimization method of braided composite was proposed by establishing the relationship between the macro mechanical properties and micro structure parameters using the microstructure models and micromechanical finite element method.
     The relationship between the microstructure and macrostructure mechanical properties was derived using HFGMC and structural analysis of composite components. An integrated optimization design method of multi-phase composites based upon structure and material was established. By combining the mechanical properties prediction with the components structural analysis, uniting the structure optimization with the material optimization, and taking the microstructure parameters and macrostructure parameters as the design variables, the integrated optimization design method of braided composites based upon structure and material was established.
     The integrated optimization design of turbine guide vane made of two-dimensional plain weave and 2.5-dimensional angle-interlock braided composites based upon structure and material was investigated. By incorporating the advantages of Complex method’s local search capability with the Genetic Algorithm’s global search capability, the hybrid Genetic Algorithm method was developed. The Complex method, Genetic Algorithm method and hybrid Genetic Algorithm method were all used to perform the integrated optimization design of the composite turbine guide vane. The effects of stress and displacement constraints on optimization design were also analyzed.
     The computation accuracy of the analysis results for the two-dimensional plain weave composite turbine vanes using polynomial response surface model and radical basis function (RBF) neural network model was analyzed. An integrated optimization design method of braided composites turbine guide vane based upon structure and material using RBF neural network model was proposed.
引文
[1]陈光.航空发动机发展综述[J].航空制造技术,2000,2(6):24-27.
    [2]梁春华.连续纤维增强的金属基复合材料部件在航空涡扇发动机上的应用[J].航空制造技术,2009,15:32-35.
    [3]陈振中,金业壮,陈礼清.铝、钛基复合材料在航空发动机上的应用分析[J].航空发动机,2006,32(4):40-42.
    [4]梁春华.高性能航空发动机先进风扇和压气机叶片综述[J].航空发动机,2006,32(3):84-52.
    [5] T. Ishikawa, T-W Chou. Stiffness and Strength Behaviour of Woven Fabric Composites[J]. Journal of Materials Science, 1982, 17: 3211-3220.
    [6] T. Ishikawa, T-W Chou. One-Dimensional Micromechanical Analysis of Woven Fabric Composites[J]. AIAA Journal, 1983, 21(12): 1714-1721.
    [7] Naik, Shembekar. Elastic behavior of woven fabric composites: 1-lamina analysis[J]. Journal of Composite Material, 1992, 26: 2196-2225.
    [8] S. K. Mital, P. L. N. Murthy, C. C. Chamis. Simplified micromechanics of plain weave composites. NASA TM-107165, 1996.
    [9] V. S. Bhavani, V. M. Ramesh. Analytical method for micromechanics of textile composites[J]. Composites Science and Technology, 1997, 57: 703-713.
    [10] B. N. Cox, M. S. Dadkhah. The macroscopic elasticity of 3D woven composites[J]. Journal of Composites Materials, 1995, 32(15): 785-918.
    [11] Z. Hashin. Analysis of properties of fiber composites with anisotropic constituents[J]. Journal of Applied Mechanics, 1979, 46: 543-550.
    [12] R. Tanov, A. Tabiei. Computationally efficient micromechanical models for woven fabric composite elastic moduli[J]. Journal of Applied Mechanics, 2001, 68(4): 553-560.
    [13] A. Tabiei, Weitao Yi. comparative study of predictive methods for woven fabric composite elastic properties[J]. Composites Structures, 2002, 58: 149-164.
    [14] M. V. Donadon, B. G. Falzon, L. Iannucci, etc. A 3-D micromechanical model for predicting the elastic behaviour of woven laminates[J]. Composites Science and Technology, 2007, 67: 2467-2477.
    [15]燕瑛,丁逸强.二维和三维纺织结构复合材料弹性形的研究[J].航空学报,1996,17(7)增刊:98-102.
    [16]王新峰,周光明,周宏,等.三维机织弯交复合材料细观结构研究及弹性形分析[J].玻璃纤维,2003,2:3-8.
    [17]张增光.2D-C/SiC复合材料的弹性常数预测及失效模式研究[D].西北工业大学硕士学位论文,2005.
    [18] L. Jonathan. Mechanical behavior of woven ceramic matrix composites[D]. University of Maryland, 1998.
    [19]董伟锋,肖军,李勇,等.2.5维编织复合材料弹性性能的力量研究[J].南京航空航天大学大学学报,2005,37(5):659-663.
    [20]高建辉.三维机织复合材料结构振动分析技术研究[D].南京航空航天大学大学硕士学位论文,2006.
    [21]张立泉,蒋云,郭洪伟,等.2.5D编织复合材料弹性性能的分析和实验验证[J].玻璃纤维,2006,4:1-4.
    [22]周储伟,喻溅鉴,周光明.三维机织复合材料的一种梁单元细观力学模型[J].复合材料学报,2004,21(6):155-160.
    [23] Chang Yanjun, Jiao Guiqiong, Wang Bo, etc. Elastic behavior analysis of 3D angle-interlock woven ceramic composites[J]. Acta Mechanica Solida Sinica, 2006, 19(2): 152-159.
    [24]郑君,温卫东,崔海涛,等.2.5维机织结构复合材料的弹性性能预测[J].航空动力学报,2008,23(11):2031-2035.
    [25]许英杰,张卫红,杨军刚,等.平纹机织多元多层碳化硅陶瓷基复合材料的等效弹性模量预测[J].航空学报,2008,29(5):1350-1355.
    [26] Whitcomb J. D. Three-dimensional stress analysis of plain weave composites[A]. Composie Materials: Fatigue and Fracture(Third Volume)[C]. ASTM STP 1110, TKO's Brien Ed. American Society for Testing and Materials, Philadelphia, 1991, 417-438.
    [27] Y C Zhang, J. Harding. A numerical micromechanics analysis of the mechanical properties of plain weave composite[J]. Computers and Structures, 1990, 36: 839-844.
    [28] S.R. Kalidinadi, E. Franco,Numerical evaluation of isostrain and weighted-average models for elastic moduli of three-dimensional composites[J] Composites Science and Technology, 1997, 57: 293-305.
    [29] V. R. Aitharaju, R. C. Averill. Three-dimensional properties of woven-fabric composites[J]. Composites Science and Technology, 1999, 59: 1901-1911.
    [30] P. C. chou, J. Carleone, C. M. hsu. Elastic constants of layerd media[J]. Journal of Composite Material, 1972, 6: 80-93.
    [31] I. Ivanov, A. Tabiei. Three-dimensional computational micro-mechanical model for woven fabriccomposites[J]. Composite Structures, 2000, 54: 489-496.
    [32] K. H. Tsai, Chung-Li Hwan, Wen-Liang Chen, etc. A parallelogram spring model for predicting the effective elastic properties of 2D braided composites[J]. Composite Structures, 2008, 83: 273-283.
    [33]董伟锋,肖军,李勇.2.5维编织复合材料力学性能的有限元分析[J].材料科学与工程学报,2007,25(5):657-662.
    [34]许英杰,张卫红,汪海滨.多元多层平纹机织CMC-SiC弹性常数的多尺度均匀化高效预测方法[J].材料科学与工程学报,2008,26(4):526-529.
    [35]汪海滨,张卫红,杨军刚,等.考虑孔隙和微裂纹缺陷的C/C-SiC编织复合材料等效模量计算[J].复合材料学报,2008,25(3):182-189.
    [36] J. Aboudi. Micromechanical analysis of composites by the method of cells[J]. Applied Mechanics Reviews, 1989, 42: 193-221.
    [37] T.E. Wilt, S.M. Arnold. Micromechanics Analysis Code (MAC) User Guide: Version 1.0, NASA /TM-1994-106706, 1994.
    [38] S. M. Arnold, B. A. Bednarcyk, T. E. Wilt, etc. Micromechanics analysis code with generalized method of cells (MAC/GMC) users guide: Version 3.0, NASA/TM-1999-209070, 1999.
    [39] J. Aboudi, M. J. Pindera, S. M. Arnold. High-fidelity generalization method of cells for inelastic periodic multiphase materials. National Aeronautics and Space Administration NASA/TM-2002-211469, 2002.
    [40] J. Aboudi, M. J. Pindera. High-fidelity micromechanical modeling of continuously reinforced elastic multiphase materials undergoing finite deformations[J]. Mathematics and Mechanics of Solids, 2004, 9: 599-628.
    [41] Y. Bansal, M-J. Pindera. Finite-volume direct averaging micromechanics of heterogeneous materials with elastic-plastic phases[J]. International Journal of Plasticity, 2006, 22: 775-825.
    [42] Y. Bansal. Finite Volume Direct Averaging Micromechanics of Heterogeneous Media, PH.D, Engineering and Applied Science, University of Virginia, 2005.
    [43]宋迎东,雷友锋,孙志刚,等.一种新的纤维增强复合材料细观力学模型[J].南京航空航天大学学报,2003,35(4):435-440.
    [44]孙志刚,宋迎东,高德平.改进的二维高精度通用单胞模型[J].固体力学学报,2005,26(2):235-240.
    [45]孙志刚,高希光,宋迎东,等.改进的三维高精度通用单胞模型[J].航空动力学报,2008,23(7):1318-1322.
    [46]高希光,宋迎东,孙志刚.陶瓷基复合材料高精度宏细观统一本构模型研究[J].航空动力学报,2008,23(9):1617-1622.
    [47]高希光,孙志刚,廉英琦,等.弱界面黏结通用单胞模型理论及应用[J].航空动力学报,2009,24(8):1684-1690.
    [48]高希光,孙志刚,廉英琦,等.弱界面黏结通用单胞模型数值分析[J].航空动力学报,2009,24(9):2019-2025.
    [49]高希光.陶瓷基复合材料损伤耦合的宏细观统一本构模型研究[J].南京航空航天大学博士学位论文,2008.
    [50] Xiguang Gao, Yingdong Song, Zhigang Sun. Quadrilateral Subcell Based Finite Volume Micromechanics Theory for Multiscale Analysis of Elastic Periodic Materials[J]. Journal of Applied Mechanics, 2009, 76(1): 011013-1-011013-7.
    [51] D. Sadagopan, R. Pitchumani. A Combinatorial Optimization Approach to Composite Materials Tailoring. Journal of Mechanical Design, 1997, 119: 494-503.
    [52] D. Sadagopan, R. Pitchumani. Application of Genetic Algorithms to Optimal Tailoring of composite Materials. Composites Science and Technology, 1998, 58: 571-589.
    [53] M. Gobbi, G. Mastinu. On the Optimal Design of Composite Material Tubular Helical Springs. Kluwer Academic Publishers, Printed in the Netherlands, Meccanica 2001, 36: 525-553.
    [54] F. Ratle, B. Lecarpentier, R. Labib, etc. Multi-objective Optimization of a Composite Material Spring Design Using an Evolutionary Algorithm. PPSNⅧLNCS 3242, 2004, pp. 803-811.
    [55] S.L. Veldman, O.K. Bergsma, A. Beukers, K. Drechsler. Bending and optimization of an inflated braided beam. Thin-Walled Structures, 2005, (43): 1338-1354.
    [56]蔡敢为.具有三维纤维增强复合材料构件的机构动力学研究[D].华中理工大学博士学位论文,1998.
    [57] Cai Gangwei. The Design of Flexible Three-Dimensional Braided Composite with Linkage Optimal Mechanisms Fabricated from Link Properties [C]. International Conference on Mechanical Transmissions and Mechanisms, 1997: 405-409.
    [58]李兆军,蔡敢为,孟令启.含复合材料构件机构系统的优化综合[J].机械设计,2005,22(11):13~16.
    [59]左惟炜,肖来元,廖道训.三维编织复合材料高压储气瓶的屈曲分析与优化设计[J].中国机械工程,2007,18(3):286~291.
    [60]孙颍,李嘉禄,亢一澜,等.三维四向编织复合材料刚度的细观力学设计[J].纺织学报,2007,28(5):70-73.
    [61] M.P. Bendsoe, N. Kikuchi. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71: 197-224.
    [62] K. Suzuki, N. Kikuchi. A homogenization method for shape and topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 1991, 93: 291-318.
    [63] O. Sigmund. Material with prescribed constitutive parameters: an inverse homogenization problem[J]. International Journal of Solids and Structures, 1994, 31(17): 2313-2329.
    [64] O. Sigmund. Tailoring materials with prescribed elastic properties[J]. Mechanics of Materials, 1995, 20(4): 351-368.
    [65] O. Sigmund. S. Torquato. Design of materials with extreme thermal expansion using a three-phase topology optimization method[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(6): 1037-1067.
    [66] H. Rodrigues, J. M. Guedes, M. P. Bendsoe. Hierarchical optimization of material and structure[J]. Structural and Multidisciplinary Optimization, 2002, 24: 1~10.
    [67] P. G. Coelho, P. R. Fernandes, J. M. Guedes, etc. A hierarchical model for comcurrent material and topology optimization of three-dimensional structures[J]. Structural and Multidisciplinary Optimization, 2008, 35: 107-115.
    [68]袁振.复合材料结构多尺度拓扑优化设计理论与数值研究[D].合肥:中国科学技术大学博士学位论文,2002.
    [69]刘涛,邓子辰.考虑材料设计变量的热-固耦合结构的优化设计[J].固体力学学报,2006,27(4):374-378.
    [70]孙士平,张卫红,戴高明,等.轻质材料与结构的一体化设计[J].航空学报,2006,27(3):413-417.
    [71]阎军.超轻金属结构与材料性能多尺度分析与协同优化设计[D].大连理工大学博士学位论文,2007.
    [72] Ling Liu, Jun Yan, Gengdong Cheng. Optimum structure with homogeneous optimum truss-like material[J]. Computers and Structures, 2008, 86: 1417-1425.
    [73] L. Jonathan. Mechanical behavior of woven ceramic matrix composite[D]. University of Maryland, 1998.
    [74] D. Kenaga, J. F. Doyle, C. T. Sun. The characterization of boron/aluminum in the nonlinear range as an orthotropic elastic plastic material[J]. Journal of Composite Materials, 1987, 2: 516-531.
    [75]孙靖民.机械设计优化[M].北京:机械工业出版社,2003.
    [76] [日]玄光男,程润伟著,江定伟译.遗传算法与工程设计[M].科学出版社,2000.
    [77] Chin-Lung Hsieh, Wei-Hsing Tuan. Elastic and thermal expansion beahvior of two-phase composites[J]. Materials Science and Engineering A, 2006, 425(1-2): 349-360.
    [78] M. M. Neves, H. Rodrigues, J. M. Guedes. Optimal design of periodic linear elastic microstructures[J]. Computers and Structures, 2000, 76(1-3): 421-429.
    [79]董颖,刘欢杰,许宝栋,等.一种基于实数编码的改进遗传算法[J].东北大学学报(自然科学版),2005,26(4):321-323.
    [80] P. L. N. Murthy, S. K. Mital, J. A. DiCarlo. Characterizing the properties of a woven SiC/SiC composite using W-CEMMCAN computer code[R]. NASA/TM-1999-209173, 1999.
    [81] P. L. N. Murthy, N. N. Nemeth, D. V. Brewer, etc . Probabilistic analysis of a SiCSiC ceramic matrix compsoite turbine vane[J]. Composites Part B engineering, 2008, 39: 694-703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700