用户名: 密码: 验证码:
基于微观组织演变的钛合金本构关系模型及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金是航空工业中应用广泛的金属结构材料。由于钛合金的组织和性能对变形时的热加工参数比较敏感,使其适合的热加工参数范围较狭隘,用一般的锻造方法难以获得理想的微观组织和性能。研究钛合金在锻造成形过程中的变形规律,对获得理想的锻件性能有重要作用。
     建立金属材料的本构关系模型,是运用有限元方法对金属塑性成形过程进行数值模拟的前提条件。在金属材料的热成形中,除了经历应力和应变的变化外,材料的微观组织也经历一系列复杂的变化。本文在TC6合金微观组织实验的基础上,研究了锻造工艺参数对微观组织的影响,提出了基于微观组织演变的本构关系模型,并运用遗传算法求解材料常数。
     本文基于微观组织演变的本构关系模型,对不同变形温度、凸模速度和摩擦条件下钛合金盘的等温锻造过程进行了三维数值模拟,研究了变形工艺参数对等效应变、等效应力和晶粒尺寸的影响,计算了各变形条件下的位移—载荷曲线。
Titanium alloy is a structure material of metal widely used in aircraft industry. The microstructure and performance of titanium is relatively sensitive to the process parameters in the hot deformation processes, and the optimal process parameters is in relatively narrow range, and then it is in difficulty to obtain ideal microstructure and performance with the common forging technique. To study the deformation mechanism in forging process of titanium alloy plays an important role in practice.
    To establish the constitutive relationship is a precondition to simulate the plastic deformation during the hot plastic deformation of metals. Besides the stress and strain change of metals, microstructure undergoes a series of complicated changes. Based on the experimental results of microstructure of a TC6 alloy, influence of process parameters on microstructure evolution has been studied, the constitutive relationship based on microstructure evolution has been developed, and the material constants have been calculated with the help of evolution programming.
    Based on the constitutive relationship coupled microstructure evolution, 3D-FE simulation of isothermal forging process of TC6 titanium alloy disc is performed dealing with different deformation temperature, punch velocity and shear factor of friction, effect of process parameters on equivalent strain, equivalent stress and grain size is calculated, and load-displacement curve is calculated.
引文
1 李东.高技术时代的钛合金材料技术发展战略及对策剖析.世界有色金属.1999,9:16~19
    2 彭艳萍,曾凡昌,王俊杰等.国外航空钛合金的发展应用及其特点分析.材料工程.1997,10:3~6
    3 刘静安,周昆.航空航天用铝合金材料的开发与应用趋势.铝加工.1997,6:51~59
    4 娄贯涛.钛合金的研究应用现状及发展方向.钛工业进展.2003,2:9~13
    5 O.索朗宁娜.热强钛合金.张志方,葛志明译.北京:第三机械工业部第六二一研究所.
    6 R. W. Clough. The Finite Element Method in Plane Stress Analysis. J. Struct. Pic, ASCE, Proc. 2nd Conf. Electronic Computation, 1960: 345
    7 R. D. Cook. Concepts and Application of Finite Element Analysis. John Wiley & Sons, 1981
    8 龙驭球.有限元法概论.北京:人民教育出版社,1979
    9 P. V. Marcal, I. D. King. Elastic-Plastic Analysis of Two-Dimensional Stress System by the Finite Element Method. Int. J. Meth. Sci. 1967, 9: 143~155
    10 C. H. Lee, S. Kobayashi. New Solutions to Rigid-Plastic Deformation Problems Using a Matrix Method. Trans. ASME. J. Engr. Ind. 1973, 95: 865~873
    11 O. C. Zienkiewicz, P. N. Godbole. A Penalty Function Approach to Problems of Plastic Flow of Metals with Large Surface Deformations. J. Strain Analysis. 1975, 10: 180~196
    12 K. Osakada, J. Nakano, K. Mori. Finite Element Method for Rigid-Plastic Analysis of Metal Forming-Formulation for Finite Deformations. Int. J. Mech. Sci. 1982, 24(8): 459
    13 P. Perzyna. Fundamental Problems in Viscoplasticity. Adv. App. Meth. 1969, 9: 243
    
    
    14 O. C. Zienkiewicz, P. N. Godbole. Flow of Plastic and Visco-Plastic Solids with Special Reference to Extrusion and Forming Processes. Int. J. Num. Meth. Engng. 1974, 8: 3~15
    15 S. I. Oh, N. M. Rebelo, S. Kobayashi. Finite-Element Formulation for the Analysis of Plastic Deformation of Rate-Sensitive Materials in Metal Forming. IUTAM Symposium, Tutzing/Germany, 1978: 273
    16 J. P. Tang, W. T. Wu, John Walters. Recent Development and Application of Finite Element Method in Metal Forming. J. Mater Process Technol. 1994, 46: 117~126
    17 J. H. Yoon, D. Y. Yang. A Three-Dimensional Rigid-Plastic Finite Element Analysis of Bevel Gear Forging by Using a Remeshing Techniques. J. Mech Sci. 1990, 32(4): 277~291
    18 J. L. Chenot, F. Bay, L. Fourrnent. Finite Element Simulation of Metal Powder Forming. Int. Num, MethEngin. 1990, 30: 1649~1674
    19 A. F. Martins Paulo, J. M. Barata Marques Manuel. Analysis of Three-Dimensional Hexagonal Closed-Die Heading by the Finite Element Flow Formulation. J. Mater Process Technol. 1993, 38: 553~566
    20 H. Kim, K. Sweeney, T. Altan. Application of Computer Aided Simulation to Investigate Metal Flow in Selected Forging Operations. J. Mater Process Technol. 1994, 46: 127~154
    21 M. C. Rodriques Jorge, A. F. Martins Paulo, J. M. Barata Marques. The PLAST3 System and its Application of an Open Die Forging Operation. J. Mater Process Technol. 1994, 47: 111~125
    22 A. G. Mamalis, D. E. Manolakos. Simulation of the Precision Forging of Bevel Gears Using Implicit and Explicit FE Techniques. J. Mater Process Technol. 1996, 57: 164~171
    23 V. Szentmihali, V. K. Lange, Y. Tronel, etc. 3-D Finite-Element Simulation of the Cold Forging of Helical Gears. J. Mate Process Technol. 1994, 43: 279~291
    24 T. Coupez, S. Nathalie, C. J. Loup. 3D Finite Element Modelling of the Forging Process with Automatic Remeshing. J. Mater Process Technol. 1991, 27: 119~133
    
    
    25 I. Pillinge, P. Hartley, C. E. N. Sturgess, etc. Finite-Element Modelling of Metal Flow in Three-Dimensional Forming. Int J. Num Meth Engin. 1988, 25: 87~97
    26 H. W. Shin, D. W. Kim, N. Kim. A Simpled Three-Dimensional Finite-Element Analysis of the Non-Axisymmetric Extrusion Processes. J. Mater Process Technol. 1993, 38: 567~587
    27 王忠金.模锻过程的三维模拟及连杆终锻成形规律的研究.长春:吉林工业大学博士论文.1995
    28 陈军.虚拟模具制造及金属成形过程三维仿真技术研究.上海:上海交通大学博士论文.1996
    29 王广春.三维摆碾过程的刚塑性有限元模拟.哈尔滨:哈尔滨工业大学博士论文,1995
    30 单德彬.机匣挤压的三维数值模拟.哈尔滨:哈尔滨工业大学博士论文.1996
    31 童隆长.用混合的欧拉—拉格朗日有限元法模拟体积塑性成形过程.塑性工程学报.1996,3:1923
    32 C. M. Sellars, J. A. Whiteman. Computer Modeling of Hot Working Processes. Mater. Sci. Tech. 1955, 1: 325~332
    33 C. M. Sellars, J. A. Whiteman. Recrystallization and Grain Growth in Hot Rolling. Mater. Sci. 1978, 13(3): 187~194
    34 H. J. McQueen, J. J. Jonas. Recent Advances in Hot Working: Fundamental Dynamic Softening Mechanics. J. Appl. Metal working. 1984, 3(3): 233~241
    35 H. J. McQueen, J. J. Jonas. Role of the Dynamic and Static Softening Mechanisms in Multistage Hot Working. J. Appl. Metal working. 1985, 3(4): 410~420
    36 H. Yada, T. Senuma. Resistance to Hot Deformation of Steel. J. Jstp. 1986, 27: 34~44
    37 Y. S. Jang, etc. Application of the Finite Element Method to Predict Microstructure Evolution in the Hot Forging of Steel. J. Mater Process Technol. 2000, 101: 85~94
    38 R. Kopp, K. Karnhausen, M. M. de Souza. Numerical Simulation Method for Designing Thermomechanical Treatment, Ⅲustrated by Bar Rolling Scand. J.
    
    Metal. 1991, 20: 351~363
    39 R. Shivpuri, P. Pauskar. Computer Aided Prediction of Properties in Forging of Microalloy Steels. Proc. 5th ICTP, 1996, 1: 281~286
    40 G. S. Shen, S. L. Semiatin, R. Shivpuri. Modeling Microstructural Development During the Forging of Waspaloy. Metallurgical and Materials Transactions A, 1995, 26A: 1795~1803
    41 W. G. Frazier, J. C. Malas. Application of Control Theory Principles to Optimization of Grain Size During Hot Extrusion. Mater. Sci. Tech. 1998, 14: 25~31
    42 A. J. Brand, K. Karhausen, R. Kopp. Microstructural Simulation of Nickel Base Alloy Inconel 718 in Production of Turbine Discs. Materials Science and Technology. 1996, 12: 963~969
    43 Z. M. Hu, J. W. Brooks, T. A. Dean. Experimental and Theoretical Analysis of Deformation and Microstructural Evolution in the Hot-Die Forging of Titanium Alloy Aerofoil Sections. J. Mater Process Technol. 1999, 88: 251~265
    44 T. Ishikawa. Modeling the Microstructural Evolution and Mechanical Properties of Forged Parts. Casting, Forging and Heat Treatment. 1995, 4: 29~35
    45 许思广,曹起镶等.金属成形中晶粒度变化的计算机模拟.清华大学学报.1994,35:61~68
    46 L. Wang, Q. Cao, Z. Liu. Numerical Simulation and Experimental Verification of Microstructure Evolution in a 3-Dimensional Hot Upsetting Progress. J. Mater Process Technol. 1996, 58(2-3): 331~336
    47 崔振山,刘才.热轧过程微观组织演变得数值预报与试验研究.机械工程学报.2000,36(7):92~95
    48 陈慧琴等.Mn18Cr18N钢热成形晶粒变化的模拟研究.金属学报.1999,35:53~56
    49 李萍,薛克敏,吕炎,谭建荣.Ti-15-3合金热反挤成形微观组织的模拟.机械工程学报.2003,39(1):133~136
    50 熊爱明.钛合金锻造过程变形—传热—微观组织演化的耦合模拟.西安:西北工业大学博士论文.2003
    
    
    51 薛善坤.叶片锻造过程的数值模拟研究.西安:西北工业大学硕士论文.2001
    52 屠世润,高越等编译.金相原理与实践.北京:机械工业出版社,1986
    53 David S. Wilkinson. Modeling the Mechanical Behavior of Heterogeneous Multi-Phase Materials. Progress in Materials Science. 2001, 46: 379~405
    54 上海市机械制造工艺研究所主编.定量金相分析,上海:上海科学技术文献出版社,1983
    55 R. I. Jaffee, N. E. Promisel. The Science, Technology and Application of Titanium. London: Pergamon Press, 1970
    56 崔振山,徐秉业等.金属热成形过程的综合数值模拟键.工程力学.2002,19(1):42~46
    57 O. Grong, H. R. Shercliff. Microstructural Modeling in Metals Processing. Progress in Materials Science. 2002, 47: 163~282
    58 Sia Nemat-Nasser, W. G. Guo, David P. Kihl. Therrnomechanical Response of AL-6XN Stainless Steel Over a Wide Range of Stain Rates and Temperatures. Journal of The Mechanics and Physics of Solids. 2001, 49: 1823~1846
    59 鲍俊瑶,徐超.TC11钛合金高温塑性本构方程研究.安徽建筑工业学院学报(自然科学版).1999,7(4):41~45
    60 聂蕾,李付国,方勇.一种基于并联关系模型的TC4合金本构方程.航空学报.2002,23(2):190~192
    61 张兴全,彭颖红,阮雪榆.Ti-5Al-2Sn-2Zr-4Mo-4Cr合金本构关系的新模型.上海交通大学学报.1999,33(2):174~177
    62 H. J. Mcqueen, J. J. Jones, J. J. Metal Forming-Interrelation Between Theory and Practice. A. L. Hoffmamer, ed. Plenum Publ. Corpn. New York, 1971
    63 H. J. Frost, M. F. Ashby. Deformation MechanismMaps. Pergamon Press, Oxford, 1982
    64 H. J. Mcqueen, et al. Hot working Characteristics of Steels in Austenitic State. J. of Mat. Processing Yech. 1995, 53: 293
    65 G. Krauss. Deformation Processing and Structure. ASM, Metal Park, Ohio, 1984: 109~230
    
    
    66 F. P. E. Dunne. Inhomogeneity of Microstructure in Superplasticity and its Effect on Ductility. Int. J. of Plasticity. 1998, 14(4-5): 413~433
    67 A. Salomonsoon. Accuracy of Material Parameter Estimation. Materials Technology, Trollh(?)ttan, Sweden, 1999, 67
    68 H. Mecking, U. F. Kocks. Kinetics of Flow and Strain-Hardening. Acta Metallurgica. 1981, 29(11): 1865~1875
    69 史廷春,陈森灿.TC4钛合金高温锻造本构模型的实验研究.锻压技术.1999.3:22~24
    70 R. Ding, Z. X. Guo, A. Wilson. Microstructural Evolution of a Ti-6Al-4V Alloy During Thermomechanical Processing. Materials Science and Engineering A327. 2002, 233~245
    71 胡山鹰,陈丙珍,何小荣,沈静珠.非线性规划问题全局优化的模拟退火法.清华大学学报.1997,37(6):5~9
    72 J. H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor, University of Michigan Press, 1975
    73 J. Lin, J. B. Yang. GA-Based Multiple Objective Optimization for Determining Viscoplastic Constitutive Equations for Superplastic Alloys. International Journal of Plasticity. 1999, 15: 1181~1196
    74 R. Schneiders. A-grid Based Algorithm for the Generation of Hexahedral Element Meshes. Engineering with Computers R. 1996, 12: 168~177
    75 王国强,马若丁等.金属摩阻材料问摩擦系数与滑动速度关系的研究.农业工程学报.1997,13(1):35~38
    76 俞汉清,陈金德.金属塑性成形原理.北京:机械工业出版社,1999:149
    77 姚若浩编.金属压力加工中的摩擦和润滑.北京:冶金工业出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700