用户名: 密码: 验证码:
油茶—农作物间作系统生理生态及经济效益评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代社会的发展进程中,人口与资源、环境之间的矛盾越来越突出。如何更好地协调农业用地与林业用地之间的关系,做到用更少的资源完成更多的事,是每个林业人的共同目标。本论文以江西省宜春市袁州区西村镇速丰林场成年油茶树(2006年定植的1年生苗)为研究对象,于2012年1、4、5、6月分别布置4组试验(试验组I:油茶单作、油茶-油菜间作、油菜单作模式,试验组II:油茶单作、油茶-大豆间作、大豆单作模式,试验组III:油茶单作、油茶-辣椒间作、辣椒单作模式,试验组IV:油茶单作、油茶-红薯间作、红薯单作模式),对每个试验组内不同种植模式的油茶生长特性、农作物光合特性、模式内小气候环境、土壤养分、土壤酶活性、土壤微生物数量以及土地生产力进行比较,采用隶属函数法对各组试验内不同模式的土壤肥力分别进行多指标综合评定,并核算了各经营模式的经济效益,主要研究结果如下:
     (l)各模式油茶树高分布范围为1.91~2.38m,油茶-油菜、油茶-大豆、油茶-辣椒、油茶-红薯间作模式油茶树高分别比单作模式降低10.33%、4.51%、5.04%和10.01%。各模式油茶树地径分布范围为5.89~6.88cm,油茶-油菜、油茶-大豆、油茶-辣椒、油茶-红薯间作模式油茶树地径分别比单作模式降低5.94%、5.52%、3.60%和9.81%。各模式油茶南北冠幅分布范围为1.76~2.80m,油茶-油菜间作模式油茶冠幅比单作模式提高7.95%,油茶-大豆、油茶-辣椒、油茶-红薯间作模式分别比单作模式降低3.33%、4.28%和2.98%。各模式油茶树东西冠幅分布范围为1.96~2.48m,油茶-油菜、油茶-大豆、油茶-辣椒、油茶-红薯间作模式油茶树东西冠幅分别比单作模式降低10.09%、4.70%、2.04%和13.31%。
     各模式的油茶根系总数在185~248根/株之间,根系在垂直方向上主要分布在0~40cm土层深度,在水平方向上主要分布在距树干0~100cm范围。油茶-油菜、油茶-大豆、油茶-辣椒和油茶-红薯间作模式的油茶根系总数分别比单作模式增加17.31%、11.56%、22.79%和19.36%。
     (2)各试验组内,间作模式降低了光照强度和空气温度,提高了空气相对湿度。间作模式内农作物净光合速率、蒸腾速率、气孔导度均有不同程度的下降,胞间二氧化碳浓度上升。
     (3)垂直方向上,土壤水分含量均随着土层深度的增加而增加;水平方向上,随着采样点离树行距离增大,土壤水分含量增大并趋于稳定。
     各试验组内,间作模式土壤含水率均低于农作物单作模式,普遍高于油茶单作模式(油茶-油菜间作模式的土壤含水率略低于油茶单作模式含水率)。
     (4)垂直方向上,土壤有机碳及营养元素含量均随着土层深度的增加而减少;水平方向上,有机碳和养分含量随离油茶树行距离增大而呈现上升趋势,至农作物种植区又有所下降。
     各试验组内,间作模式土壤中有机碳含量及营养元素含量均低于农作物单作模式,普遍低于油茶单作模式(油茶-大豆间作模式例外,其N、K元素含量高于油茶单作模式),表明间作模式中作物和油茶树间对养分存在普遍竞争。
     (5)垂直方向上,土壤酶活性均随着土层深度的增加而减少;水平方向上,随离油茶树行距离的增加各种土壤酶活性总体呈增大趋势并趋于稳定。各试验组内,油茶-农作物间作模式土壤酶活性普遍高于油茶单作模式(油茶-红薯间作模式例外,其脲酶活性低于油茶单作模式)。
     土壤细菌、真菌和放线菌数量均随着土层加深而减少。各试验组内,油茶-农作物间作模式土壤微生物数量均高于油茶单作模式,普遍高于农作物单作模式(油茶-油菜、油茶-红薯间作模式真菌数量低于油菜、红薯单作模式);油茶-农作物间作模式土壤微生物多样性指数普遍高于油茶单作模式(油茶-辣椒间作模式土壤微生物多样性低于油茶单作模式)。
     (6)各试验组内,土壤综合肥力排序:油茶单作<油茶-油菜间作<油菜单作,油茶单作<大豆单作<油茶-大豆间作,油茶-辣椒间作<油茶单作<辣椒单作,油茶-红薯间作<油茶单作<红薯单作。
     经济效益排序:红薯单作>辣椒单作>油茶-红薯间作>油茶-辣椒间作>油茶-油菜间作>油茶-大豆间作>油茶单作>大豆单作>油菜单作。
     综上所述,在需要兼顾土壤肥力效益的立地上,适宜推广油茶-大豆间作模式,油茶-大豆间作模式的综合肥力比油茶单作、大豆单作模式分别提高236.36%、34.46%。在以经济利益为主要目标的立地上,适宜推广油茶-红薯间作模式,油茶-红薯间作模式的经济效益比油茶单作模式提高90.61%。同时针对油茶-红薯间作模式水分、养分、光效应较低的实际情况,适当对油茶冗余的枝叶进行修剪,并相应追肥灌溉,可以提高产量,促进复合经营模式可持续发展。
During the process of the development of modern society, the contradiction amongpopulation, resources and environment becomes more prominent. How to coordinate therelationship between the land for agriculture and forestry, and do more things with fewerresources, is the common goal of everyone in forestry.
     This paper stated Camellia oleifera(1year seedlings planted in2006) in Sufeng Forest farm,west village town, Yuanzhou district, Yichun, Jiangxi province, as the research object. In January,April, May, June, we respectively arranged four groups of test (group I: Camellia oleiferamonoculture, Rape monoculture, Camellia oleifera-Rape intercropping, group II: Camelliaoleifera monoculture, Soybean monoculture, Camellia oleifera-Soybean intercropping, group III:Camellia oleifera monoculture, Pepper monoculture, Camellia oleifera-Pepper intercropping,group IV: Camellia oleifera monoculture, Sweetpotato monoculture, Camellia oleifera-Sweetpotato intercropping), We had done some researches in some aspects about growthcharacteristics, crop photosynthesis characteristic, mode within the microclimate environment,soil nutrient and soil enzyme activity and soil microbial quantity and land productivity ofdifferent planting patterns in each group, do multi-index comprehensive evaluation of soilfertility with Membership function method, and accounted for the business model of economicbenefit. The main results showed that:
     (l) The growth condition of Camellia oleifera in different planting patterns
     The high of Camellia trees changed from1.91to2.38m in different planting patterns, andthe high of Camellia trees in4kinds of intercropping patterns was lower than monoculturemodes, respectively reduced by10.33%,4.51%,5.04%and10.01%. The diameter of Camelliatrees changed from5.89to6.88cm in different planting patterns, and the diameter of Camelliatrees in4kinds of intercropping patterns was lower than monoculture modes, respectivelyreduced by5.94%,5.52%,3.60%and9.81%. The north-south crown breadth of Camellia treeschanged from1.76to2.80m in different planting patterns, and the north-south crown breadth ofCamellia trees in Camellia oleifera-Rapes pattern was higer than monoculture modes by7.95%,and the north-south crown breadth of Camellia trees in the other3kinds of intercropping patternswas lower than monoculture modes, respectively reduced by3.33%,4.28%and2.98%. Theeast-west crown breadth of Camellia trees changed from1.96to2.48m in different plantingpatterns, and the east-west crown breadth of Camellia trees in4kinds of intercropping patternswas lower than monoculture modes, respectively reduced by10.09%,4.70%,2.04%and13.31%.
     The total number of camellia root changed from185to248in different planting patterns,and the roots were mainly distributed in vertical0~40cm, in horizontal0~100cm. In theplanting patterns of Camellia oleifera intercropping with four kinds of crop as rape, soybean, pepper and sweet potato, the total number of camellia root was more than the crop monoculturepatterns respectively, increased by17.31%,11.56%,22.79%and19.36%.
     (2)The environmental conditions and crop photosynthesis characteristic in the differentplanting patterns
     The light intensity in different measuring points was different. Comparing with themonoculture crop patterns, the intercropping planting patterns reduced the light intensity and airtemperature, but improved the air relative humidity. Comparing with the monoculture croppatterns, the net photosynthetic rate, transpiration rate, stomatal conductance of crops in4kindsof intercropping patterns had decreased in different degree, but intercellular CO2concentrationincreased in the intercropping patterns.
     (3) The distribution of soil water content in different planting patterns
     Vertically, soil moisture contents in different planting patterns were increased with theincrease of soil depth. Horizontally, Soil moisture contents increased with the increase of thedistance from tree line, and then to maintain stability.
     Soil moisture of the intercropping patterns was lower than the crop monoculture patterns,and generally higher than the camellia monoculture pattern (Rape intercropping pattern undercamellia monoculture pattern).
     (4) The distribution of soil organic carbon and nutrient elements in different plantingpatterns
     Vertically, the contents of soil organic carbon and nutrient elements in different plantingpatterns were decreased with the increase of soil depth. Horizontally, the contents of organiccarbon and nutrient closed to camelia line were low, and they had a rising trend far from camelialine, but they would fall in the soil field near the crop root system.
     The contents of soil organic carbon and nutrient elements in the intercropping patterns werelower than the contents in the monoculture crop patterns and most of the monoculture camelliapatterns. The results suggested that there were intensive competitions between crops and camelliatrees for nutrients.
     (5) The distribution of soil enzyme activity and quality of microbial in different plantingpatterns
     Vertically, soil enzyme activity in different planting patterns was decreased with the increaseof soil depth. Horizontally, the change trend was increased with the increase of the distance fromcamellia line increase, and decreased near the crop root system. Soil enzyme activity of cropintercropping patterns was generally higher than camellia monoculture patterns (the ureaseactivity of camellia-sweetpotato intercropping pattern under the camellia monoculture pattern).
     The quantity of soil bacteria, fungi and actinomycetes in different planting patterns wasdeclined with the increase of soil deepens. The quantity of soil microbial in intercroppingpatterns was higher than camellia monoculture patterns, and generally higher than cropmonoculture patterns (the quantity of fungi in camellia-rape intercropping pattern under the Rapemonoculture pattern).
     (6) The land productivity and economic benefits in different planting patterns
     Soil comprehensive fertility qualifying: Camellia oleifera monoculture pattern     The economic benefit ranks: Sweet potato monoculture pattern>Pepper monoculturepattern>Camellia oleifera-Sweetpotato interplanting pattern>Camellia oleifera-Pepperinterplanting pattern>Camellia oleifera-Rape intercropping pattern>Camellia oleifera-Soybeaninterplanting pattern>Camellia oleifera monoculture pattern>Soybean monoculture pattern>Rape monoculture pattern.
     (7) The selection of land productivity and economic benefit based on composite pattern
     For the soil comprehensive fertility, Camellia oleifera-Soybean intercropping pattern shouldbe considered suitable. And for the economic benefit, Camellia oleifera-Pepper intercroppingpattern should be considered suitable. At the same time, according to the actual situation of lowwater, nutrient, light effect, we should take measures to clip the long branch and fertilize. In thisway, we can increase production, promote sustainable development of the compound businesspattern.
引文
1.白军红,邓伟,张玉霞,等.洪泛区天然湿地土壤有机质及氮素空间分布特征[J].环境科学,2002,23(2):77-81.
    2.白丽荣,时丽冉,徐振华,等.火炬树浸提液对几种农作物的化感作用[J].种子,2010,29(6):91-93.
    3.蔡承智,高军,陈阜.土地当量比(LER)的计算校正探讨[J].耕作与栽培,2003,5:19-23.
    4.蔡楚雄,邓雄,刘世平,等.六种芒果的叶绿素荧光日变化研究简报[J].广东农业科学,2003(2):17-19.
    5.蔡倩,杜国栋,吕德国,等.科尔沁沙地南部果-草(粮)间作模式对土壤微生物和酶的影响[J].干旱地区农业研究,2010,28(4):217-221.
    6.曹成有,陈家模,邵建飞,等.科尔沁沙地四种固沙植物群落土壤微生物生物量及酶活性的季节动态[J].生态学杂志,2011,30(2):227-233.
    7.曹明华,刘长全.红壤幼龄果园不同管理模式对土壤养分状况影响的研究[J].福建热作科技,2000,25(4):1-4.
    8.曹生奎,冯起,司建华,等.植物叶片水分利用效率研究综述[J].生态学报,2009,29(7):3882-3892.
    9.曹雄,郑淑兰.大豆高产株型和生理特征研究进展[J].山西农业科学,2003,31(1):16-19.
    10.曹永庆,任华东,林萍,等.油茶树体对氮磷钾元素年吸收和积累规律的研究[J].林业科学研究,2012,25(4):442-448.
    11.柴强,黄高宝,黄鹏.供水及间甲酚对小麦间作蚕豆土壤微生物多样性和酶活性的影响[J].应用生态学报,2006,17(9):1624-1628.
    12.柴强,黄鹏,黄高宝.间作对根基土壤微生物和酶活性的影响研究[J].草业学报,2005,14(5):105-110.
    13.车振明.微生物学实验[M].北京:科学出版社,2011.
    14.陈昌辉,王媛,唐茜,等.梨茶间作茶园生态效应及效益分析[J].西南农业学报,2011,24(4):1446-1449.
    15.陈阜,逄焕成.冬小麦/春玉米/夏玉米间套作复合群体的高产机理探讨[J].中国农业大学学报,2000,5(5):12-16.
    16.陈根云,陈娟,许大全.关于净光合速率和胞间CO2浓度关系的思考[J].植物生理学通讯,2010,4(1):64-66.
    17.陈佳瀛,宋永昌,王爱民.上海外环林带小气候效应的研究(Ⅰ)[J].生态环境,2005,14(1):67-74.
    18.陈静,叶晔.农林复合经营与林业可持续发展[J].内蒙古林业调查设计,2009,32(5):10,84-87.
    19.陈静.试述农林复合经营在林业发展中的地位与作用[J].2009,6:30-32.
    20.陈平.苏北地区林粮间作系统的土壤性状及林木时小麦他感作用研究[D].南京林业大学,2004.
    21.陈清西,廖镜思,郑国华,等.果园生草对幼龄龙眼园土壤肥力和树体生长的影响[J].福建农业大学学报,1996,25(4):429-432.
    22.陈伟,薛立.根系间的相互作用-竞争与互利[J].生态学报,2004,24(6):1243-1251.
    23.陈晓波,官会林,郭云周,等.绿肥翻压对烟地红壤微生物及土壤养分的影响[J].中国土壤与肥料,2011,(4):74-78.
    24.陈阅增.普通生物学[M].北京:高等教育出版社,1997.
    25.陈展宇,吴磊,凌凤楼,等.旱稻叶片净光合速率日变化及其与影响因子关系的研究[J].吉林农业大学学报,2008,30(3):237-240.
    26.成婧,吴发启,路培,等.玉米苜蓿间作的蓄水保土效益试验研究[J].水土保持研究,2012,19(3):54-57.
    27.褚建民.干旱区植物的水分选择性利用研究[D].中国林业科学研究院,2007.
    28.揣泽尧.盐胁迫下植物对土壤酶活性和土壤养分的影响[D].北京林业大学,2011.
    29.戴万德,赵洪杰,张富民,等.平原农区防护林的气候效应[J].中国农业气象,1994(15):39-42.
    30.戴晓琴,郭兴强,李鹏,等.平原农区幼龄杨树间作农作物的产量表现[J].生态学杂志,2006,25(12):1515-1519.
    31.戴晓琴,郭兴强,李鹏,等.平原农区幼龄杨树间作农作物的产量表现[J].生态学杂志,2006,25(12):1515-1519.
    32.邓天福,王建华,高扬帆,等.番茄化感物质对几种蔬菜幼苗生长的影响[J].贵州农业科学,2010,38(8):43-44.
    33.邓云,田松华.油茶林套种鱼腥草技术研究[J].湖南林业科技,2010,37(4):55-56.
    34.丁锐,邓小梅,奚如春,等.广东省油茶林地不同母岩红壤养分限制因子研究[J].经济林研究,2012,30(2):61-67
    35.董惠英,杨喜田,杨玉珍.农桐间作不同栽培模式作物生物量研究[J].河南农业大学学报,1999,33(4):354-356.
    36.董宛麟,张立祯,于洋,等.农林间作生态系统的资源利用研究进展[J].中国农学通报,2011,27(28):1-8.
    37.杜炳新.农林复合经营研究进展[J].河北林业科技,2008(6):42-44.
    38.段其武,刘宏茂.柚木、菠萝间种模式效益分析[J].云南林业科技,1994,66(1):52-53.
    39.樊巍,孟平,李芳东.河南平原复合农林业[M].郑州:黄河水利出版社,2001.
    40.费世民,向成华.四川盆地丘陵区坡地农林复合系统内部结构和系统综合效能的研究[J].林业科学,2000,36(3):33-39.
    41.冯保平.不同经营方式下兴安落叶松林土壤微生物动态研究[D].内蒙古农业大学,2009.
    42.甘卓亭,张掌权,陈静,等.黄土塬区苹果园土壤有机碳分布特征[J].生态学报,2010,30(8):2135-2140
    43.高祥斌,刘增文,潘开文.岷江上游典型森林生态系统土壤酶活性初步研究[J].西北林学院学报,2005,20(3):1-5.
    44.高阳,段爱旺,刘战东,等.玉米/大豆间作条件下的作物根系生长及水分吸收[J].应用生态学,2009,20(2):307-313.
    45.高阳,段爱旺,刘祖贵,等.间作种植模式对玉米和大豆干物质积累与产量组成的影响[J].中国农学通报,2009,25(2):214-221.
    46.高阳,段爱旺,邱新强,等.玉米/大豆间作条件下作物生物量积累模型[J].中国生态农业学报,2010,18(5):965-968.
    47.葛滢,常杰,陈增鸿,等.枫香净光合作用与小气候特征的关系[J].浙江林业科技,1998,18(5):1-5
    48.耿广东,王忠平,冯道友,等.玉米与姜间作对土壤微生物和酶活性的影响[J].土壤通报,2009,40(5):1104-1106.
    49.龚伟,胡庭兴,王景燕,等.川南天然常绿阔叶林人工更新后土壤碳库与肥力的变化[J].生态学报,2008,28(6):2536-2544.
    50.关松荫.土壤酶及其研究方法[M].北京:农业出版社,1986.
    51.郭振升,崔保伟.3种间作套种模式对朝天椒田间生态及产量的影响[J].湖北农业科学,2011,50(23):4825-4827.
    52.国家林业局.全国油茶产业发展规划(2009-2012年)[M].北京:中国林业出版社,2009.
    53.何斌,温远光,袁霞.广西英罗港不同红树植物群落土壤理化性质与酶活性的研究[J].林业科学,2002,38(2):21-26.
    54.何牡丹.土壤有机质及全量养分变异特征研究[D].新疆师范大学,2008.
    55.和文祥,朱铭莪.陕西土壤服酶活性与土壤肥力关系分析[J].土壤学报,1997,34(4):392-398.
    56.贺佳,安曈昕,韩学坤,等.间作群体生态生理研究进展[J].作物杂志,2011(4):7-9.
    57.贺明荣,冷寿慈,李增嘉,等.粮果间作种植模式的资源利用与管理[J].生态学杂志,1994,13(6):7-10.
    58.何振立.士壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,(2):61)69.
    59.胡婵娟,刘国华,吴雅琼.土壤微生物生物量及多样性测定方法评述[J].生态环境学报,2011,20(6-7):1161-1167.
    60.胡凤荣,王永木.农田防护林垂直效益研究[J].林业科技,1997(4):37-39.
    61.胡会峰,刘国华.森林管理在全球CO2减排中的作用[J].应用生态学报,2006,17(4):709-714.
    62.胡竞辉.梨园间作芳香植物对土壤微生物、土壤酶活性与土壤养分的影响[D].北京农学院,2010.
    63.胡举伟,朱文旭,张会慧,等.桑树/大豆间作对植物生长及根际土壤微生物数量和酶活性的影响[J].应用生态学报,2013,24(5):1423-1427.
    64.胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林土壤酶活性的季节性动态研究[J].北京林业大学学报,2001,23(5):23-26.
    65.黄宝龙,黄文丁.林农复合经营生态体系的研究[J].生态学杂志,1991,10(3):27-32.
    66.黄昌勇.土壤学[M].北京:中国农业出版社,1999.
    67.黄承才,葛滢,常杰.中亚热带东部毛竹叶片光合及呼吸的研究[J].浙江林业科技,2000,20(5):14-16.
    68.黄进勇,李新平,张娟.麦玉高效复合种植模式的研究[J].耕作与栽培,1999,4:5-6.
    69.黄庆海,赖庆旺,赖涛,等.红壤稻区玉米不同间种模式的效应研究[J].江西农业学报,1999,11(4):20-24.
    70.黄志刚,李瑞峰,曹云,等.南方红壤丘陵区杜仲人工林土壤水分动态[J].应用生态学报,2007,18(9):1937-1944.
    71.黄宗华.油茶幼林间种山毛豆的效果[J].广西林业科学,1983(4):42,44-45.
    72.季志平,苏印泉,贺亮,等.秦岭北坡几种人工林根系及土壤有机碳剖面分布特征的研究[J].西北植物学报,2006,26(10):2155-2158.
    73.贾虎森,李德全,韩亚琴.高等植物光合作用的光抑制研究进展[J].植物学通报,2000,17(3):218-224.
    74.贾治邦.解决突出问题,把住关键环节,积极稳妥地推进油茶产业又好又快发展-在全国油茶产业发展现场会上的讲话[J].湖南林业科技,2008,10:7-8.
    75.姜丹丹,周连仁,依洪涛,等.大豆、玉米不同种植方式对土壤酶活性、土壤无机氮含量的影响[J].安徽农业科学,2012,40(12):7115-7118.
    76.姜海燕.大兴安岭兴安落叶松林土壤微生物与土壤酶活性研究[D].内蒙古农业大学,2010.
    77.姜莉,陈源泉,隋鹏,等.不同间作形式对玉米根际土壤酶活性的影响[J].中国农学通报,2010,26(9):326-330.
    78.蒋玉超.论农林复合经营[J].内蒙古林业调查设计,2004,(3).
    79.金继曙,都述虎,种明才.油茶籽抗真菌活性成分的研究[J].天然产物研究与开发,1993,5(2):48-52.
    80.靳甜甜,傅伯杰,刘国华,等.不同坡位沙棘光合日变化及其主要小气候特征[J].生态学报,2011,31(7):1783-1793
    81.况小宝,张本俊,史志华.农林复合经营系统研究现状[J].江西林业科技,2003,2:28-31.
    82.兰彦平,牛俊玲.石灰岩区果园生草对果树根系生态系统的效应[J].山西农业大学学报,2000,20(3):259-261.
    83.黎健龙,唐劲驰,吴利荣,等.间作与覆盖对茶园生物多样性及茶叶产量的影响[J].广东农业科学,2010,(11):29-32.
    84.黎健龙,涂攀峰,陈娜,等.茶树与大豆间作效应分析[J].中国农业科学,2008,41(7):2040-2047.
    85.李潮海,李胜利,王群,等.不同质地土壤对玉米根系生长动态的影响[J].中国农业科学,2004,37(9):1334-1340.
    86.李传荣,许景伟,宋海燕.黄河三角洲滩地不同造林模式的土壤酶活性[J].植物生态学报,2006,30(5):802-809.
    87.李春霞,陈阜,王俊忠.不同耕作措施对土壤酶活性的影响[J].土壤通报,2007,38(3):601-603.
    88.李话,张大勇.半干旱地区春小麦根系形态特征与生长冗余的初步研究[J].应用生态学报,1999,10(1):26-30.
    89.李会科,赵政阳,张广军.种植不同牧草对渭北苹果园肥力的影响[J].西北林学院学报,2004,19(2):31-34
    90.李杰,彭方仁,黄宝龙.农林复合系统种群互作研究进展[J].世界林业研究,1999,12(5):10-14.
    91.李金花,王辉.风沙沿线新灌区农田防护林体系小气候效益观测分析[J].甘肃农业大学学报,1999(l),65-70.
    92.李俊祥,宛志沪.淮北平原杨-麦间作系统的小气候效应与土壤水分变化研究[J].应用生态学报,2002,13(4):390-394.
    93.李六林,季兰.杂种榛子不同方位叶片光合作用的日变化[J].林业科学,2006,42(12):47-53.
    94.李瑞高.油茶的分布及其适应性[J].广西植物,1981,1(1):38-41.
    95.李少昆,李少尾,刘景德,等.不同密度玉米根系在大田土壤中的分布、重量的调节及与地上部分的关系[J].玉米科学,1993,1(3):43-49.
    96.李文华,赖世登,罗菊春,等.中国农林复合经营[M].北京:科学出版社,1994.
    97.李小涵,郝明德,王朝辉,等.农田土壤有机碳的影响因素及其研究[J].干旱地区农业研究,2008,26(3):176-181.
    98.李新平,黄进勇.黄淮海平原麦玉玉三熟高效种植模式复合群体生态效应研究[J].植物生态学报,2001,25(4):476-482.
    99.李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599.
    100.李勇.试论土壤酶活性与土壤肥力[J].土壤通报,1989,33(4):190-193.
    101.李增嘉.小麦玉米间套作高产复合群体结构特征与功能研究[D].中国农业大学,1996.
    102.李正才.杨粮间作新栽培模式对小麦产量及质量影响的评价[J].林业科学研究,1998,11(6):629-634.
    103.李志建,倪恒,周爱国.额济纳旗盆地土壤过氧化氢酶活性的垂向变化研究[J].干旱区自然与环境,2004,18(1):86-89.
    104.李志贤,王建武,杨文亭,等.甘蔗/大豆间作减量施氮对甘蔗产量、品质及经济效益的影响[J].应用生态学报,2011,22(3):713-719
    105.林大仪.土壤学试验方法[M].北京:中国林业出版社,2004:105-115.
    106.刘登望,李林,王正功,等.棉花花生间作复合系统的照度、生长发育与生产力效应[J].中国农学通报,2010,26(24):270-275.
    107.刘峰,温学森.根系分泌物与根际微生物关系的研究进展[J].食品与药品,2006,8(09):37-40
    108.刘广才,杨祁峰,李隆,等.小麦/玉米间作优势及地上部与地下部因素的相对贡献[J].植物生态学报,2008,32(2):477-484
    109.刘广深,徐冬梅,徐中坚.用通径分析法研究土壤水解酶活与土壤性质的关系[J].土壤学报,2003,40(5):756-762.
    110.刘继青,郜春花.土壤微生物生态学研究技术进展[J].山西农业科学,1995,23(3):61-64.
    111.刘建新.不同农田土壤酶活性与土壤养分相关关系研究[J].土壤通报,2004,35(4):523-525.
    112.刘进余,范文良,李志欣,等.枣豆间作系统光强和土壤水分空间变化及其对大豆生长发育的影响[J].河北农业大学学报,2000,23(4):33-36.
    113.刘均霞,陆引是,远红伟,等.玉米间作大豆间作对根际土壤微生物数量和酶活性的影响[J].贵州农业科学,2007,35(2):60-64.
    114.刘晓鹰.杉木、柳杉与黄连间作的初步研究[J].生态学杂志,1991,10(4):30-34.
    115.刘兴宇,曾德慧.农林复合系统种间关系研究进展[J].生态学杂志,2007,26(9):1464-1470.
    116.刘圳,白昌军,虞道耿,等.牧草间作对桉树人工林下土壤酶活性的影响[J].安徽农业科学,2009,37(12):5723-5724.
    117.龙健,李娟,江新荣,等.贵州茂兰喀斯特森林土壤微生物活性的研究[J].土壤学报,2004,41(4):597-602.
    118.卢剑波.农林系统研究进展[J].生态学杂志,2004,23(2):127-132.
    119.卢琦,赵体顺,师永全.农用林业系统仿真的理论与方法[M].北京:中国环境科学出版社,1999.
    120.路海东,贾志宽,杨宝平,等.宁南旱区坡地不同粮草间作模式下产量和土壤水分利用效应[J].草地学报,2010,18(2):242-246.
    121.罗萍,姚艳丽,贺军军,等.幼龄胶园间作对土壤肥力的影响[J].中国农学通报,2013,29(1):7-12.
    122.罗照霞,柴强.不同灌溉方式及间作对小麦产量及边际效应的影响[J].甘肃农业大学学报,2009,44(1):69-73.
    123.马里安,马志民.论人口环境资源与可持续发展[J].江西社会科学,2000,11:129-133.
    124.马媛,廖康,邱晨,等.杏麦间作环境温湿度日变化规律研究[J].新疆农业科学,2012,49(1):80-85.
    125.孟平,张劲松,樊巍.中国复合农林业研究[M].北京:中国林业出版社,2003:87-105.
    126.南京土壤研究所.土壤微生物研究方法[M].北京:科学出版社,1985.
    127.聂呈荣,骆世明,曾任森,等.玉米化感物质异羟肟酸的研究进展[J].应用生态学报,2004,15(6):1079-1082.
    128.宁远英.科尔沁沙地生物结皮中土壤微生物、土壤酶活性的变化及其与土壤因子的关系[D].内蒙古师范大学,2010.
    129.潘福霞,鲁剑魏,刘威,等.不同种类绿肥翻压对土壤肥力的影响[J].植物营养与肥料学报,2011,17(6):1359-1364.
    130.潘瑞炽.植物生理学[M].北京:高等教育出版社,2004
    131.庞爱权.中国农林复合系统的经济评价[J].自然资源学报,1997,12(2):176-182.
    132.彭晓邦,蔡靖,姜在民,等.光能竞争对农林复合生态系统生产力的影响[J].生态学报,2009,29(1):545-551
    133.彭晓邦,蔡靖,姜在民,等.渭北黄土区农林复合系统中大豆辣椒的光合生理特性[J].生态学报,2009,29(6):3173-3179
    134.彭晓邦,仲崇高,沈平,等.玉米大豆对农林复合系统小气候的光合响应[J].生态学报,2010,30(3):710-716.
    135.彭晓邦.渭北黄土区农林复合系统生理生态特性及生产力研究[D].西北农林科技大学,2009.
    136.齐万海,柴强.不同隔根方式下间作小麦玉米的竞争力及产量响应[J].中国生态农业学报,2010,18(1):31-34.
    137.钱海兵,王祥培.油茶叶水提物抗凝血及抗血栓形成作用研究[J].安徽农业科学,2010,38(21):6-7.
    138.任丽娜,王海燕,丁国栋,等.林分密度对华北土石山区油松人工林土壤有机碳及养分特征的影响[J].干旱区地理,2012,35(3):456-463.
    139.任士福,王梅,高志奎,等.温度对银杏光系统II光抑制的影响[J].林业科学,2008,44(12):28-33
    140.申巍,杨水平,姚小华,等.施肥对油茶生长和结实特性的影响[J].林业科学研究,2008,21(2):239-242.
    141.沈国舫主编.森林培育[M].北京:中国林业出版社,2001.9.
    142.沈萍,范秀容,李广武主编.微生物学实验(第三版)[M].北京:高等教育出版社,1999:93-94.
    143.施建敏,郭起荣,杨光耀.等.毛竹光合作用对小气候特征的季节响应[J].广西植物,2007,27(6):923-928.
    144.时安东,李建伟,袁玲.轮间作系统对烤烟产量、品质和土壤养分的影[J].植物营养与肥料学报,2011,17(2):411-418.
    145.时安东,袁玲.间作制度的土壤养分变化及生态、经济效益[J].磷肥与复肥,2009,24(4):85-86.
    146.史彦江,卓热木·塔西,宋锋惠,等.枣农间作系统小气候水平分布特征研究[J].新疆农业科学,2010,47(5):888-892.
    147.史志诚主编.中国草地重要有毒植物[M].北京:中国农业出版社,1997:140-150.
    148.宋锋惠,吴正保,彦江.枣棉间作生态系统内根系和棉花产量分布及土壤养分时空变化[J].东北林业大学学报,2012,40(1):48-53.
    149.宋海燕,李传荣,许景伟,等.滨海盐碱地枣园土壤酶活性与土壤养分、微生物关系[J].林业科学,2007,43(S1):28-32.
    150.宋露露.农桐间作对秋作物光合同化及CO2导度的影响[J].泡桐与农用林业,1990,(2):68-74.
    151.宋亚娜,张福锁,包兴国,等.小麦/蚕豆,玉米/蚕豆和小麦/玉米间作对根际细菌群落结构的影响[J].生态学报,2006,26(7):2268-2274.
    152.隋鹏,陈阜,高旺盛.海河低平原区小麦玉米套种高产技术研究[J].作物杂志,2000,2:10-11.
    153.孙辉,谢嘉穗,唐亚.坡耕地等高固氮植物篱复合经营系统根系分布格局研究[J].林业科学,2005a,41(2):8-15.
    154.孙向阳.土壤学[M].北京:中国林业出版社,2010.
    155.覃娟,李剑,刘霞,等.甘蓝水萝卜间作对土壤理化性状及酶活性影响[J].北方园艺2010,(7):20-22.
    156.谭晓风,刘惠民.中国主要经济树种栽培与利用[M].北京:中国林业出版社,2007.
    157.田春杰,陈家宽,钟扬.微生物系统发育多样性及其保护生物学意义[J].应用生态学报,2003,14(4):609-612.
    158.田阳,周玉喜,云雷,等.晋西黄土区苹果-农作物间作土壤水分研究[J].水土保持研究,2013,20(2):29-32,37.
    159.田亚玲.银杏和茶树复合经营系统生理生态效应研究[D].南京林业大学,2012.
    160.万里强,李向林,苏加楷,等.长江三峡地区灌木生物量及产量估测模型[J].草业科学,2001,18(5):5-15.
    161.王长庭,龙瑞军,王启兰,等.三江源区高寒草甸不同退化演替阶段土壤有机碳和微生物量碳的变化[J].应用与环境生物学报,2008,14(2):225-230.
    162.王登峰,魏志远,阮松,等.番木瓜-柱花草间种模式对番木瓜产量及品质的影响[J].广东农业科学,2012,(20):34-36.
    163.王笛,马风云,姚秀粉,等.黄河三角洲退化湿地土壤养分、微生物与土壤酶特性及其关系分析[J].中国水土保持科学,2012,10(5):94-98.
    164.王海燕,雷相东,张会儒,等.近天然落叶松云冷杉林土壤有机碳研究[J].北京林业大学学报,2009,31(3):11-16.
    165.王汉杰.池杉-稻麦间作田中光照条件初步分析[J].南京林学院学报,1984,(1):147-156.
    166.王恒明,吴凌志,周茂山.栗茶间作对北方茶树生长及绿茶产量品质的影响[J].中国农业气象,2005,26(2):139-141.
    167.王会肖,刘昌明.作物水分利用效率内涵及研究进展[J].水科学进展,2000,11(l):99-104.
    168.王建锋.恶性杂草的危害现状及生物防治应用前景[J].中国草地,1994,(5):62-65.
    169.王菊芬,吴伯志.间套作系统中土壤水分研究进展[J].云南农业大学学报,2009,24(2):286-291.
    170.王娟,谷雪景,赵吉.羊草草原土壤酶活性对土壤肥力的指示作用[J].农业环境科学学报,2006,25(4):934-938.
    171.王军,傅伯杰,邱扬,等.黄土丘陵区土地利用与土壤水分的时空关系[J].自然资源学报,2001,41(6):113-120.
    172.王俊波,季志平,白立强,等.刺槐人工林土壤有机碳与根系生物量的关系[J].西北林学院学报,2007,22(4):54-56
    173.王俊华,尹睿,张华勇,等.长期定位施肥对农田土壤酶活性及其相关因素的影响[J].生态环境,2007, l6(1):191-196.
    174.王强.油茶表型性状相关分析[J].福建林业科技,1987,1:45-48.
    175.王庆成,程云环.土壤养分空间异质性与植物根系的觅食反应[J].应用生态学报,2004,15(6):1063-1068.
    176.王小纪,杨莉.人工林高效复合的几种模式[J].陕西林业,2004(4):36-37.
    177.王欣然,彭晓邦,蔡靖,等.杜仲叶水提液对3种作物的化感效应研究[J].西北林学院学报,2010,25(4):157-160.
    178.王意锟,方升佐,田野,等.残落物混合分解对杨树农作物复合系统土壤碳氮矿化的影响[J].水土保持学报,2012,26(2):150-154,164.
    179.王英.长期定位施肥对土壤微生物区系的影响[J].东北农业大学学报,2007,38(5):632-636.
    180.王瑛,孟亚利.麦棉套作棉花根际非根际土壤微生物和土壤养分[J].生态学报,2006,26(10):3485-3490.
    181.王瑛,周治国,陈兵林,等.麦棉套作复合根系群体对棉株氮素吸收与分配的影响[J].应用生态学报2006,17(12):2341-2346.
    182.王佑民,王忠林.黄土高原沟壑区混农林的结构及其防护效益研究[J].水土保持学报,1992,6(4):54-59.
    183.王玉娟,陈永忠,王瑞,等.覆草间种对油茶林土壤养分及生长量影响的主成分分析[J].中南林业科技大学学报,2010,6(30):43-49.
    184.王玉娟,陈永忠,王湘南,等.稻草覆盖对油茶幼林林地土壤温度及新稍的影响[J].经济林研究,2009,27(2):49-52.
    185.王月福,于振文,李尚霞,等.氮素营养水平对小麦开花后氮素同化、运输和产量的影响[J].麦类作物学报,2002,22(2):55-59.
    186.王云强,邵明安,刘志鹏.黄土高原区域尺度土壤水分空间变异性[J].水科学进展,2012,23(3):310-316.
    187.王照霞,郭贤仕,马一凡,等.青贮玉米豌豆间作对产量和水分利用效率的影响[J].甘肃农业大学学报,2005,40(4):492-497.
    188.王振军,王辉,马仲武黄土丘陵沟壑区林草间作对土壤养分的影响——以甘肃省庄浪县为例[J].甘肃农业大学学报,2007,42(4):82-86.
    189.王忠林,李会科,贺秀贤.渭北旱塬花椒地埂林土壤抗蚀抗冲性研究[J].水土保持研究,2000,7(1):33-37.
    190.吴刚,冯宗炜,秦宜哲.果粮间作生态系统功能特征研究[J].植物生态学报,1994,18(3):243-252.
    191.吴建国,韩梅,苌伟,等.祁连山中部高寒草甸土壤氮矿化及其影响因素研究[J].草业学报,2007,16(6):39-46.
    192.吴谋成.功能食品研究与应用[M].北京:化学工业出版社,2004..
    193.夏青,何丙辉,谢洲,等.紫色土农林复合经营土壤理化性状研究[J].水土保持学报,2006,20(2):86-89.
    194.向成华.林农复合经营的研究动态[J].四川林业科技,1993,(4):31-34.
    195.谢会成.栓皮栎光合生理生态的研究[D].南京林业大学,2002.
    196.谢英荷,洪坚平,卜玉山,等.枣麦间作对土壤肥力的影响[J].山西农业大学学报,2002,22(3):203-205.
    197.兴安.不同退化半荒漠土壤理化性质的研究[D].内蒙古农业大学,2008.
    198.熊文愈主编.中国农林复合经营研究与实践[M].南京:江苏科技出版社,1994,40-46.
    199.徐华勤,肖润林,宋同清,等.稻草覆盖与间作三叶草对丘陵茶园土壤微生物群落功能的影响[J].生物多样性,2008,16(2):166-174.
    200.徐华勤,肖润林,向佐湘,等.稻草覆盖、间作三叶草茶园土壤酶活性与养分的关系[J].生态学杂志,2009,28(8):1537-1543.
    201.徐强,程智慧,孟焕文,等.玉米-线辣椒套作系统中土壤养分与根际土壤微生物、酶活性的关系[J].应用生态学报,2007,18(12):2747-2754.
    202.徐瑞富,王小龙.花生连作田土壤微生物群落动态与土壤养分关系研究[J].花生学报,2003,32(3):19-24.
    203.徐有海,李勇,胡兴明.桑树红薯间作模式群体光合特性初步研究[J],湖北农业科学,2012,51(14):3026-3030.
    204.许大全.光合速率、光合效率与作物产量[J].生物学通报,1999,34(8):8-10.
    205.许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244
    206.许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    207.许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    208.薛萐,刘国彬,戴全厚,等.不同植被恢复模式对黄土丘陵区侵蚀土壤微生物量的影响[J].自然资源学报,2007,22(1):20-27.
    209.闫德仁,刘永军,冯立岭,等.农林复合经营土壤养分的变化[J].东北林业大学学报,2001,29(1):53-56.
    210.杨波,龚鹏,车玉红,等.扁桃棉花间作对棉花产量的影响[J].中国农学通报,2009,25(17):93-97.
    211.杨鲁.采伐干扰对巨按人工林土壤微生物、土壤酶活性与土壤养分的研究[D].四川农业大学,2005.
    212.杨青华,韩锦峰,贺德先.液体地膜覆盖对棉田土壤微生物和酶活性的影响[J].生态学报,2005,25(6):1312-1317.
    213.杨小录,王瀚,何九军,等.银杏叶水提物对小麦的化感作用研究[J].安徽农业科学,2010,38(23):12885-12887.
    214.杨晓梅,程积民,孟蕾,等.黄土高原森林草原区土壤有机碳库研究[J].草业科学,2010,27(2):18-23.
    215.杨修.农林复合经营在农村可持续发展中的地位和作用[J].农村生态环境,1996,12(1):37-41.
    216.叶彦辉.黄土高原农林复合系统景观边界土壤养分、微生物和酶活性的研究[D].西北农林科技大学,2007.
    217.叶优良,肖焱波,黄玉芳,等.小麦/玉米和蚕豆/玉米间作对水分利用的影响[J].中国农学通报,2008,24(3),445-449.
    218.殷士学.土壤微生物生物量及其与养分循环关系的研究进展[J].土壤学进展,1993,21(4):1-8.
    219.余晓章.农林复合模式研究与进展[J].四川林勘设计,2003,8(3):29-31.
    220.俞涛.枣农间作系统小气候效应的研究[D].新疆农业大学,2009.
    221.袁军.普通油茶营养诊断及施肥研究[D].中南林业科技大学,2010.
    222.袁雪生.枣农间作群体结构的光照及效益研究[J].河南农业大学学报,1982,(2):38-55.
    223.袁玉欣,贾渝彬,邵吉祥,等.杨粮间作系统小气候水平分布特征研究[J].中国生态农业学报,2002,10(3):21-23.
    224.袁玉欣,裴保华,王文全,等.杨粮间作条件下的作物产量与生物量[J].河北农业大学学报,1996,19(2):24-30.
    225.袁玉欣,王颖,李际泉,等.杨粮间作行距对小麦生长及产量的影响[J].中国生态农业学报,2001,9(2):88-91.
    226.岳中辉.黑土酶活性分布特征研究[D].东北农业大学,2006.
    227.云雷.晋西黄土区果农间作系统种间关系研究[D].北京林业大学,2011.
    228.云雷,毕华兴,马雯静,等.晋西黄土区果农间作土壤养分空间分布[J].农业工程学报,2010,26(1):292-298.
    229.云雷,毕华兴,任怡,等.晋西黄土区核桃花生复合土壤水分效应研究[J].2009,29(5):61-65.
    230.曾馥平,王克林,李玲,等.新建果园几种作物间种模式生态系统结构及功能研究[J].应用生态学报,2003,14(4):497-501.
    231.翟丙年,孙春梅,王俊儒,等.氮素亏缺对冬小麦根系生长发育的影响[J].作物学报,2003,29:913-918.
    232.翟进升,王明珠,张斌,等.低丘红壤南酸枣与花生复合系统种间水肥光竞争的研究-IV南酸枣与花生利用N素养分探析[J].中国生态农业学报,2006,4(2):821-824.
    233.翟进升,周静,王明珠,等.低丘红壤南酸枣与花生复合系统种间水肥光竞争的研究--III南酸枣与花生利用水分状况分析[J].中国生态农业学报,2005,13(4):91-94.
    234.张丹雁,林秀旎,陈晓庆.果林间种模式下南板蓝株高及分枝生长规律研究[J].广州中医药大学学报,2013,30(1):83-87.
    235.张恩和,黄高宝.间套种植复合群体根系时空分布特征[J].应用生态学报,2003,14(8):1301-1304.
    236.张国盛.干旱/半干旱地区乔灌木树种耐旱性及林地水分动态研究进展[J].中国沙漠,2000,20(4):363-368.
    237.张会慧,赵莉,许楠,等.间作模式下桑树与大豆叶片的光合日变化特点[J].经济林研究,2011,29(1):21-25.
    238.张劲松,孟平,宋兆民,等.我国平原农区复合农林业小气候效应研究概述[J].中国农业气象,2004,25(3):52-55.
    239.张劲松,孟平.农林复合系统水分生态特征的模拟研究[J].生态学报,2004,24(6):1172-1177.
    240.张俊娥,李玉灵,黄大庄.桑粮间作田条桑根系分布格局及其对土壤水分、养分的影响[J].水土保持学,2007,21(3):38-42.
    241.张俊英,许永利,李富平,等.植物化感作用研究进展[J].安徽农业科学,2007,35(21):6357-6358,6409.
    242.张猛,张健,刘远鹏,等.土壤管理方式对梨园土壤微生物和酶活性的影响[J].中国南方果树,2005,34(1):42-45
    243.张强,苏印泉.小偃22秸秆对作物种子的化感作用[J].西北农业学报,2010,19(8):80-83.
    244.张小全,吴可红,Dieter Murach.树木细根生产与周转研究方法评述[J].生态学报,2000,20(5):875-883.
    245.张小全,吴可红.森林细根生产和周转研究[J].林业科学,2001,37(3):126-138.
    246.张小全,徐德应.温度对杉木中龄林针叶光合生理生态的影响[J].林业科学,2002,38(3):27-33.
    247.张鸭关,吴丽芳,刘品华,等.4个紫花苜蓿品种幼苗抗旱性的模糊隶属函数分析[J].江苏农业科学,2010(6):349-352.
    248.张亚丽,沈其荣,曹翠玉.有机肥料对土壤有机磷组分及生物有效性的影响[J].南京农业大学学报,1998,21(3):59-63.
    249.张宇清,朱清科,齐实,等.梯田生物埂几种灌木根系的垂直分布特征[J].北京林业大学学报,2006,28(2):34-38.
    250.张昱,程智慧,徐强,等.玉米/蒜苗套作系统中土壤微生物和土壤酶状况分析[J].土壤通报,2007,38(6):1136-1140.
    251.张志刚,崔同华,谷艳蓉.6种多年生牧草对幼龄果园的影响[J].草原与草坪,2007,124(5):57-59.
    252.张智晖.玉米/大豆间作模式对土壤酶活性及土壤养分的影响[J].安徽农业科学,2011,39(16):9706-9707.
    253.张智明,曹承绵,周礼恺.耕作棕壤酶活性的研究[J].土壤通报,1985,16(6):281-285.
    254.章家恩,高爱霞,徐华勤,等.玉米/花生间作对土壤微生物和土壤养分状况的影响[J].应用生态学报,2009,20(7):1597-1602
    255.章铁,刘秀清,孙晓莉.复合经营模式对土壤酶活性的影响[J].经济林研究,2007,25(3):6-10.
    256.章铁,刘秀清.栗茶间作模式对茶树光合特性的影响[J].安徽农业大学学报,2007,34(2):244-247.
    257.章铁,杨斌.果农复合经营模式系统对土壤肥力的影响[J].安徽农业科学,2005,33(1):65-66.
    258.召卜华,彭少麟.农业生态系统中的化感作用[J].中国生态农业学报,2002,10(3):102-104.
    259.赵秉强,张福锁,李增嘉,等.间套作条件下作物根系数量与活性的空间分布及变化规律研究(Ⅱ)间作早春玉米根系数量与活性的空间分布及变化规律[J].作物学报,2001,27(6):974-979.
    260.赵秉强,张福锁,李增嘉,等.间作冬小麦根系数量与活性的空间分布及变化规律[J].植物营养与肥料学报.2003,9(2):214-219.
    261.赵荟,王晶.复合农林系统种间关系研究进展[J].林业建设,2011,6:33-39.
    262.赵娜,赵护兵,鱼昌为,等.旱地豆科绿肥腐解及养分释放动态研究[J].植物营养与肥料学报,2011,(5):1179-1187.
    263.赵兴征,卢剑波.农林系统研究进展[J].生态学杂志,2004,23(2):127-132.
    264.赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    265.赵英,张斌,王明珠.农林复合系统中物种间水肥光竞争机理分析与评价[J].生态学报,2006,26(6):1792-1801.
    266.赵英,张斌,赵华春,王明珠.农林复合系统中南酸枣蒸腾特征及影响因子[J].应用生态学报,2005,16(11):2035-2040.
    267.浙江省武义县百花山林场,亚热带林研究站经济林室.介绍几种油茶林地套种的优良夏季绿肥[J].福建林业科技,1974(5):96-100.
    268.甄润德,张宝深,顾立华,等.浅谈植物生化他感作用[J].植物杂志,1991,4:26-27.
    269.郑炳松,金爱武,程晓建,等.复合经营猕猴桃光合日变化的初步研究[J].浙江林业科技,2001,21(5):7-9.
    270.郑立龙,柴强.间作小麦、蚕豆的产量和竞争力对供水量和化感物质的响应[J].中国生态农业学报,2011,19(4):745-749.
    271.郑璐,王金贵,胡万金,等.辽西地区不同间种作物对杨树幼林生长量的影响浅析[J].科技信息,2009,3:362-372.
    272.中国标准出版社总编室.中国国家标准汇编[M].北京:中国标准出版社,1999.
    273.周传艳,陈训,杨泊.贵州中部喀斯特岩漠化地区不同土地利用类型下土壤养分含量[J].安徽农业科学,2008,36(34):15071-15073,15162.
    274.周礼恺.土壤酶学[M].北京:科学出版社,1989.
    275.周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性,2007,15(2):162-171.
    276.周晓兵.古尔班通古特沙漠土壤酶活性和微生物量氮对模拟氮沉降的响应[J].生态学报,2011,31(12):3340-3349.
    277.周允华,居会良,张晓杰,等.农果复合系统光热资源有效利用Ⅲ.树冠遮荫对地表温度的影响[J].中国农业气象,1997,18(2):6-9.
    278.周志宏,贲志凯,景建新.长江中下游地区冬闲桑园蔬菜间作栽培技术[J].现代农业科技,2013,2:96-99.
    279.朱培林,王玉,易文红,等.油茶林套种中药材品种及其种植技术[J].江西林业科技,2007(4):62-64.
    280.朱万泽,薛建辉,王金锡,等.台湾桤木生理生态学特性及其环境关系的研究[J].南京林业大学学报,2002,26(2):15-20.
    281.朱智强.桉树林农条带间作模式效应研究[D].华南热带农业大学,2005
    282.祝志勇.概述我国农林复合经营的历史与现状[J].江苏林业科技,2002,29(3):34-37.
    283.庄辉发,王辉,王华,等.不同荫蔽度对香草兰光合作用与产量的影响[J].江苏农业科学,2012,40(8):239-240.
    284.庄丽,陈亚宁,陈明,等.模糊隶属法在塔里木河荒漠植物抗旱性评价中的应用[J].干旱区地理2005,28(3):367-372.
    285.庄瑞林.中国油茶[M](第二版).北京:中国林业出版,2007.
    286.左继林,龚春,汪建平,等.赣油茶25个优良无性系品质评价[J].浙江林学院学报,2008,25(5):624-629.
    287.左继林,徐林初,龚春,等.GLS系列油茶无性系幼林产量结构变化[J].经济林研究,2008,26(2):6-11.
    288.Abdul K S, Kimura K A. Activities of some soil enzymes in different land use system afterdeforestation in hilly areas of west Lampung, South Sumatra, Indonesia [J].Soil Science.2000,80:91-97
    289.Acosta-Martinez V, Zobeck T M, Gill T E, et al. Enzyme activities and microbial communitystructure in semiarid agricultural soils [J]. Biology and Fertility of Soils,2003,3:216-227
    290.Alkorta I, Aizpurua A, Riga P, et al. Soil enzyme activities as biological indicators of soilhealth [J]. Rev Environ Health,2003,18(1):65-73.
    291.Allen S C, Jose S, Nair P K R, et al. Safety-net role of tree roots: evidence from a pecan(Carya illinoensis K.Koch)-cotton (Gossypium hirsutum L.) alley cropping system in thesouthern United States [J]. Forest Ecology and Management,2004,192(2-3):395-407.
    292.Attiwill P M, Adams M A. Nutrient cycling in forests (Tansley Review No.50)[J]. NewPhytologist,1993,124:561-582.;
    293.Badiane N N Y, Chotte J L, Pate E, et a1. Use of soil enzyme activities to monitor soilquality in natural and improved follows in semiarid tropical regions [J]. Applied SoilEcology,2001,18(3):229-238
    294.Board J E, Modali H. Dry matter accumulation predictors for optimal yield in soybean[J].Crop Science,2005,45(5):1790-1799.
    295.Buresh R J, Tian G. Soil improvement by trees in sub-Saharan Africa [J]. AgroforestrySystems,1997,38(1/3):51-76.
    296.Burns R G, Dick R P (eds.).Enzymes in the Environment: Ecology Acivity and Application[M]. Marcel Dekker.Inc.NewYork:2001.
    297.Chander K, Goyal S, Nandal D P, et al. Soil organicmatter, microbial biomass and enzymeactivities in a tropical agroforestry system[J]. Biology and Fertility of Soils,1998,27(2):168-172.
    298.Chen L D, Gong J, Fu B J. Effect of land use conversion on soil organic carbon sequestrationin the loess hill area, loess plat-eau of China [J]. Ecological Research,2007,22:641-648.
    299.Devi N B, Yadava P S. Seasonal dynamics in soil micriobial biomass C, N and P in amixed-oak forest ecosystem of Manipur, Northeast India [J]. Applied Soil Ecology,2006,31(3):220-227.
    300.Dias M C, Bruggemann W. Differential inhibition of photosynthesis under drought stress inFlaveria species with different degrees of development of the C4syndrome [J].Photosynthetica,2007,45(1):75-84
    301.Easta J, Rose C W, Cameron D M, et al. The effect of tree spacing on evaporation from anagroforestry experiment [J]. Agriculture and Forest Meteorology, l988,42(4):355-368.
    302.Eastham J, Rose C W, Cameron D M, et al. Tree/pasture interactions at a range of treedensities in an agroforestry experiment (Ⅱ): Water uptake in relation to rooting patterns [J].Australian Journal of Agricultural Research,1990,41:697-707.
    303.Egli D B. Cultivar maturity and response of soybean to shade stress during seed filling [J].Field Crops Res,1997,52:1-8.
    304.Falik O, Reides P, Gersani M, et al. Self/non-self discrimination in roots [J]. Journal ofEcology,2003,91:525-531.
    305.Farquhar G D, Sharkeyr T D. Stomatal conductance and photosynthesis [J]. Annual Reviewof Plant Physiology,1980,313-317.
    306.Franks P J, Farquhar G D. A relationship between humidity response, growth form andphotosynthetic operating point in C3plants [J]. Plant Cell Envir,1999,1347-1349.
    307.Friday J B, Fownes J H. Competition for light between hedgerows and maize in an alleycropping system in Hawaii, USA [J]. Agroforestry Systems,2002,55(5):125-137.
    308.Garrett H E G. Agroforestry practice and policy in theUnited States of America [J].ForestryEcology and Management,1997,91(1):5-15.
    309.Huang W. Influence of different taxodium ascendens stands on the open anges and systemperformance in Jiangsu Province, China [J]. Agroforestry Systems,1997,37(3):241-252.
    310.Jackson R B, Canadell J R, Mooney H A, et al. A global analysis of root distribution forterrestrial biomass [J]. Oecologia,1996,108(3):389-411.
    311.Jose S, Gillespie A R, Pallardy S G. Interspecific interactions in temperate agroforestry [J].Agroforestry Systems,2004,61(1-3):237-255.
    312.Jose S, Gillespie A R, Seifert J R, et al. Defining competition vectors in a temperate atley cropping system in the Midwestern USA:2.Competition for water[J]. Agroforestry Systems,2000,48(1):41-59.
    313.Kang B T. Alley cropping-soil productivity and nutrient recycling [J]. Forest Ecology andManagement,1997,91(1):75-82.
    314.Kang S Z, Liang Z S, Hu W, et al. Water use efficiency of controlled alternate irrigation onroots divided maize plants [J]. Agric Water Manage,2001,38:69-76.
    315.Kelly R B, Burke I C.Heterogeneity of soil organic matter following death of individualplants in short grass steppe.Ecology,1997,78(4):1256-1261.
    316.King K F S. The history of agroforestry. Agroforestry Systems inTropics [J].KluwerAcademic Publishers,1989,8:3-11.
    317.Li L, Sun J, Zhang F, et al. Root distribution and interactions between intercropped species[J]. Oecologia,2006,147:280-290.
    318.Li X D, Fu H, Li X D, et al. Effects of land-use regimes on carbon sequestration in the LoessPlateau, northern China [J]. New Zealand Journal of Agricultural Research,2008,51(1):45-52.
    319.Liu L, Song C Y, Yan Z G, et al. Characterizing the release of different composition ofdissolved organic matter in soil under acid rain leaching using three-dimensionalexcitation-emission matrix spectroscopy [J]. Chemosphere,2009,77:15-21.
    320.Magaurran A E. Ecological Diversity and Its Measurement [M]. New Jersey: PrincetonUniversity Press,1988.
    321.Makumba W, Janssen B, Oenema O, et al.The long-term effects of a gliricidia-maizeintercropping system in Southern Malawi, on gliricidia and maize yields, and soil properties[J]. Agriculture Ecosystems and Environment,2006,116:85-92.
    322.Mead R, Willey RW. The concept of Land Equivalent Ratio and advantages in yields fromintercropping [J]. Experimental Agriculture,1980,16:217-228.
    323.Moreno G, Obrador J J, García A. Impact of evergreen oaks on soil fertility and cropproduction in intercropped dehesas [J]. Agriculture, Ecosystems and Environment,2007,119(3-4):270-280.
    324.Newman S M, Bennett K, Wu Y. Performance of maize, beans and ginger as intercrop s inPaulownia plantations in China[J]. Agroforestry Systems,1998,39:23-30.
    325.Ortas I, Lal R. Soil Texture and Forest Species Condition the Effect of Afforestation on SoilQuality Parameters [J]. Soil Science,2012,177(4):241-250.
    326.Osman M, Emminhgam W H, Sharrow S H. Growth and yield of sorghum or cowpea in anagrisilviculture system in semiarid India [J]. Agroforestry Systems,1998,42:91-105.
    327.Pank A K. Water table and soil moisture distribution below some agroforestry tree species [J].Indial Journal of Forestry,1998,21(20):119-123.
    328.Paul K I, Polglase P J, Nyakuengama J G, Khanna P K. Change in soil carbon followingafforestation[J]. Forest Ecology and Management,2002,168(1/3):241-257.
    329.Raschke K, Resemann A. The midday depression of CO2assimilation in leaves of Arbutusundeo L: diurnal changes in photosynthetic capacity related to changes in temperature andhumidity [J]. Planta,1986,168:546-558.
    330.Reddy M S and Willey R W. Growth and resource use studies in an intercrop of pearl millet/groundnut [J]. Field Crops Res.1981,4:13-24.
    331.Rice E L. Allelo pathy (2nd Ed)[M]. Academic Press. New York,1984.
    332.Richards R A, Rebetzke G J, Condon A G, et al. Breeding opportunities for increasing theefficiency of water use and crop yield in temperate cereals. Crop science,2002,42:111-121.
    333.Rowe E C, Hairiah K, Giller K E, et al. Testing the safety-net role of hedgerow tree roots by15N placement at different soil depths [J]. Agroforestry Systems,1999,43(1-3):81-93.
    334.Salvucci M E, Crafts-Brandner S J. Inhibition of photosynthesis by heat stress: the activationstate of rubisco as a limiting factor in photosynthesis [J]. Physiologia Plantarum,2004,120(2):179-186.
    335.Schimel D S. Terrestrial ecosystems and the carbon cycle [J]. Global change biology,1995,1(1):77-91.
    336.See M H, Laitamm H, Pikk J. The influence of nutritional conditions on forest soilmicroflora [J]. Baltic Forestry,1998,4(1):2-7.
    337.Shi P L, Zhong Z C, Li X G. A study on root system of alder and cypress mixed plantation.Acta Ecologica Sinica,1996,16(6):623-631.
    338.Shulte S. Agroforestry and soil conservation: adoption and profitability in Salvador[J].Agroforestry Today,1997,9(4):16-17.
    339.Solomon D, Lehmann J, Kinyangi J, et al. Long-term impacts of anthropogenic perturbationson dynamics and speciation of organic carbon in tropical forest and subtropical grasslandecosystems[J]. Global Change Biology,2007,13:511-530.
    340.Susan W, Sander B. The impact of soil organism composition and activated carbon ongrass-legume competition [J]. Plant Soil,2009,314:1-9.
    341.Ta T C, Faris M P. Species variation in the fixation and transfer of nitrogen from legumes toassociate grasses [J]. Plant and Soil,1987,98:265-274.
    342.Veronica A M, Leo C, David S R, et al. Enzyme activities as affected by soil properties andland use in a tropical watershed [J]. Applied Soil Ecology,2007,35:35-45.
    343.Waite S, Hutchings M J. Plastic energy allocation patterns in Plantago coronopus [J].Oikos,1982,38:333-342.
    344.Wang Z Q, Wu G S, Wang J B. Application of competition index in assessing intraspecificand interspecific spatial relations between Fraxinus mandshurica and Larix gmelinii [J].Chinese Journal of Applied Ecology,2000,11(5):641-645.
    345.Wanvestraut R H, Jose S, Nair P K R, et al. Competition for water in a pecan (Caryaillinoensis K.Koach)-cotton(Gossypium hirsutum L.) alley cropping system in the southernUnited States [J]. Agrofestry Systems,2004,60:167-179.
    346.Weiner J. Allocation, plasticity and allometry in plants [J]. Perspectives in Plant Ecology,Evolution and Systematics,2004,6(4):207-215.
    347.Willey R W, Rao M R. A competitive ratio for quantifying competition between intercrops[J]. Experimental Agriculture,1980,16(2):117-125.
    348.Willey R W. Intercrop-its importance and research needs, part1: Competition and yieldadvantages [J]. Field Crop Research,1979.32:1-10.
    349.Yin R, He Q. The spatial and temporal effects of Paulownia intercropping: the case ofnorthern China [J].Agroforestry Systems,1997,31(1):91-109.
    350.Yin R, Hyde W F. Trees as an agriculture sustaining activity: the case ofnorthern China [J].Agroforestry Systems,2000,50(2):179-194.
    351.Young N. Agroforestry for soil management, CAB International in association withinternational center for research in Agroforestry [M].1997,90-97
    352.Zhang D Y, Wang X H, Chen Y, Xu D Q. Determinant of photosynthetic capacity in riceleaves under ambient air conditions [J]. Photosynthetica,2005,43:273-276
    353.Zhang F S, Li L.Using competitive and facilitative interactions in intercropping systemsenhances crop productivity and nutrient-use efficiency[J].Plant and soil,2003,248:305-312.
    354.Zhang Z H. Growth and resource allocation of Canna indicaand Schoenoplectus validus asaffected by interspecific competition and nutrient availability [J]. Hydrobiologia,2007,589:235-248.
    355.ZinkHan F C, Mercer D E. An assessment of agroforestry systems in the southern USA[J].Agroforestry Systems,1997,35:303-321.
    356.Zuo Y M, Zhang F S, Li X L, et al. Studies on the improvement in iron nutrition of peanutby intercroppingwith maize on a calcareous soil [J].Plant Soil,2000,220(12):13-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700