用户名: 密码: 验证码:
浙江省海涂土壤资源利用动态监测及其系统的设计与建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
浙江海涂资源十分丰富,海涂资源的开发利用历史悠久,并取得了巨大社会经济效益。建国以后,浙江省曾对海涂土壤资源进行了三次全面调查,最后一次为80年代。近十多年来,浙江省海涂土壤资源已发生了巨大变化,过去的调查成果难以满足当前海涂土壤资源开发利用管理与规划的需要,有必要对其进行一次全面的监测,并运用信息技术实现海涂土壤资源的现代化管理。
     海涂土壤资源具有显著的时空动态性,因而实时定量获取海涂土壤资源的状态及其变化信息,对认识与理解海涂生态过程有重要作用,也是科学、生态地综合管理与开发利用海涂土壤资源的第一手基础信息。遥感以其多波段、多时相、多空间分辨率、多层次的卫星观测系统,能够动态、准确、快速、大面积、多尺度获取丰富的地球资源与环境信息。它已成为动态监测海涂土壤资源利用最先进的技术手段。地理信息系统具有高效的空间数据储存、管理、分析功能,可完成海涂土壤资源信息的修改、更新、快速查询、检索、复杂的空间分析与预测等多种任务,并能与自然地理、社会经济等其它信息相结合,提供综合信息与复杂的决策服务。与传统方法相比,利用遥感技术进行长期的海涂土壤资源动态监测,运用GIS对所获信息进行管理与应用,可节省大量经费,提高动态监测效率,保障信息的时效性。
     本文以多时相遥感图像、土壤普查、地形地貌等资料为数据源,建立浙江省海涂土壤资源利用动态监测系统,其主要目标是为海涂土壤资源类型的划分、清查统计、质量评价、利用规划和经营管理等提供科学资料与决策依据,开展全面的技术服务实现海涂土壤资源的动态监测和管理;利用WebGIS技术,实现上述数据在Internet上的共享,方便各相关部门或者个人获取信息,利于部门间的信息交流和宏观问题的研究,为有效管理、保护、开发海涂土壤资源提供科学的决策依据。该系统的研制与应用不但能极大推动浙江省海涂土壤开发利
Tidal flat resources was very rich at zhejiang province, it was developed and utilized for a long time. Great social and economic benefit were gained. But because of lack of scientific direction, irrational development and utilization had contributed to a series of resource environmental problems for many years. At present, integrated management of the tidal flat resources need instantly be strengthen, so that the sustainable development at the coastal zone would be realized.After 1949, soil resources of tidal mud flat were surveyed for three times at Zhejiang Province, the latest at the 1980s. For recent more than 10 years, the soil resources of tidal mud flat had changed greatly, the result from the past investigation couldn't satisfy the management and layout of the soil resources of tidal mud flat. Now the total monitoring was needed for the new time. The IT was applied to realize the modern management of soil resources. The mode of management and utilization of the soil resources were discussed in the present economic situation, the rule and the trend of development of the coastal soil resources would be made clear, the important direction of development should be made clear.Soil resources of tidal mud flat appeared differently as the time and spatial, quantificational information about state of soil resources of tidal mud flat and its change were acquired at actual time, it was important to understand the ecological process of the tidal mud flat, it was the basic information applied to scientific, ecological, integrated management and utilization of the soil resources of tidal mud flat. With the multi-spectral, multi-date, multi-spatial resolution, multi-grade system for earth resources satellite, remote sensing was applied to acquire dynamically and rapidly the multi-scale information of earth resources and environment at large area region, so it came into being the
    nonreplaceable and important technique applied to change detection of the soil resources of tidal mud flat. GIS can provide the many efficient functions for spatial data, such as deposit, analysis, management etc., it can complete many mission relating to soil resources information of tidal mud flat such as modification, update, rapid querying, search, complex spatial analysis and predication. Additionally, it can integrate soil resources information with the geographical and social information in order to provide the synthetic information and complex decision services. Comparing by the traditional technique, soil resources of tidal mud flat and its change were monitored by remote sensing for long-term, the acquired information was managed and applied by GIS, the outlay would be saved largely, efficiency of change detection was improved, time property of information was insured.Depending on many kinds of data source such as remote sensing images, soil survey, relief and terrain, the coastal soil resource use change detection system in Zhejiang Province was set up, so that it served to classification of the coastal soil resource, survey and statistic, quality assessment, scientific data and decision basis for utilization planning an management. It provide all-round technical service in order to change detection and dynamic management of the coastal soil resource; by the use of the WebGIS techniques, all the data were shared on the Internet; all involve departments and individuals would acquire information conveniently; it was instrumental in communication and macro-problem study, so that the scientific decision-making basis for the effective management, protection development of the coastal soil resources. The research and application of the system promote not only the enterprise of the development and utilization of the coastal soil resource at Zhejiang Province, but also the High and new technology such as GIS of application in utilization and integrated management of the coastal soil resources, it was most important to the sustainable development of the community, economy and ecology at coastal area.Some problems about the coastal soil resource use change detection system were researched , some conclusions were obtained as follows.(1 )Study and application in improving classification precision of the land use change detection by remote sensingThree respects of improving the classification precision were studied, including image radiation correction, classification by zoning, improves the classification method.Five methods of RRN, i.e. image regression(IR), pseudo-invariant features(PIF), dark set-bright set normalization(DB), no-change set radiometric normalization(NC), and histogram matching(HM), were applied to 1993 and 2001 Landsat TM/ETM+ image of experimental area for evaluating their performance in relation to land cover detection. The results showed that DB worked best among the five methods at the study area.
    The spectral character information of remote sensing image was taken as the zoned element, the landscape was zoned with system clustering method in the coastal region of Zhejiang province. The result reflected comprehensively the regional difference of the natural environment and the human influence. In conclusion, the method was effective, objective, exercisable and fast.The result from comparing SVM with the traditional methods of classification, show that the optimum method of classification didn't not exist. Therefore the method of multi-classification was introduced, area were classified with the method, high accuracy results were obtained, the minimum kappa is 80%, the maximum kappa is 97.5%.(2) Coastline change monitoring with remote sensing at Zhejiang ProvinceA kind of method for visual interpretation was introduced, that is, coast historical mark of natural, humane, geography were excavated from remote sensing data, develop law knowledge of coast changes were combined with historical materials, can position coastline of different historical periods effectively. The technology was used to finish investigation of coastline by remote sensing at five main segments of polder in Zhejiang Province. The position of ancient shoreline of different historical period, had reflected more completely the historical appearance over the past 1600 years of Zhejiang Province. In more than 1,000 years, coastline changed greatly, and still in developing constantly. From the angle of time, the changes of the coastline in Zhejiang in ancient times were greater than in modern times. According to geographical position, the range and speed of coastline changes presented the trend diminishing gradually from the north to the south. After the 1990s, the high of polder dropped to location nearby low tide of neap tide location already, therefore reclamation area was suitable for developing aquatic products, not suitable for developing the plantation and industry, cause the reserved agricultural land to reduce gradually. It was obvious that area enclosed was limited, the fundamental state policies to control the land use should be carried out strictly at the reclamation area, such as economical and rational land use, control population, etc..(3) Spatial and temporal change and landscape change of the coastal soil resource at enclosed and reclaimed area in Zhejiang ProvinceAt the enclosed and reclaimed area in Zhejiang Province, the basic developingmode of several type soil were main as follows: intertidal beach muddy soif------aquicmuddy saline soil------desalting sandy polder-----paddy field on desalting sandy polder.The coastal soil of development and utilization especially changed great in early 40 years With utilized from short time to long time, distance to coastline from close to far, there four soil resources of utilization modes as follows: ? The utilization mode of intertidal beach muddy soil, in the initial stage, the area enclosed and cultivated for less than 10 years, intertidal beach muddy soil was the main soil type in the reclamation area,
    it was used mainly as the cultivating pool, reservoir and dry farmland, percentage of area of the cultivating pool was the largest among them. From 1993 to 2001, part of the unused land changed into the cultivating pool, part of the cultivating pool changed into dry farmland. ?The utilization mode of aquic muddy saline soil, aquic muddy saline soil distributed mainly at the area enclosed and cultivated for 10~20 years, it was used mainly as the cultivating pool and dry farmland, the area of the dry farmland was larger between them. From 1993 to 2001, part of the dry farmland changed into the cultivating pool. ? The utilization mode of desalting sandy polder, desalting sandy polder distributed mainly at the area enclosed and cultivated for more than 20 years, it was used mainly as the dry farmland, secondly as building land. From 1993 to 2001, part of the dry farmland changed into the building land, part of the dry farmland at the segment of Hangzhou changed into the garden plot. ?The utilization mode ofpaddy field on desalting sandy polder, paddy field on desalting sandy polder distributed mainly at the area enclosed and cultivated for more than 50 years, it was used mainly as the paddy field, secondly as building land. From 1993 to 2001, part of the paddy field changed into the building land.According to landscape change at every segment from 1993 to 2001, the landscape, especially the cultivated landscape at the area enclosed reclaimed, with urbanization and aggravating industrialization, the trend of the cultivated landscapes would be broken heavily, it is unfavorable to the scale and intensive land management, unfavorable to agricultural modernization technology to be used, high-efficient agriculture would be restricted to develop seriously at present. Therefore, the planning of the soil resources use should be strengthened in order to strengthen the scale and intensive land management.(4) Coastal soil resource use change detection system was designed and set up On the basis of meeting the data demand in resources of coastal soil monitored dynamically, combining the characteristic and demand of the spe database, regarding SQL Server 2000 as the database management system platform, regarding ArcSDE for SQL Server as special data engine , the database of the coastal soil resource use change detection system of Zhejiang Province was designed and set up. On this basis , using WebGIS technology, data statistical report form technology of the network, flash dynamic website's designing technique synthetically, regarding ArclMS4.0 as WebGIS platform, regarding Microsoft Reporting Services as network data statistical report form platform , coastal soil resource use change detection system was set up at Zhejiang Province, it realized the coastal soil resources monitoring dynamically and management at provincial scale.coastal soil resource use change detection system at Zhejiang Province were studied, the innovation or new development were made as follows:
引文
1.巴逢辰,赵羿.中国海涂土壤资源[J].土壤通报,1997,28(2):49~51.
    2.柏延臣,王劲峰著.遥感信息的不确定性研究——分类与尺度效应模型研究[J].地质出版社,2003,P47~53.
    3.边后琴.基于支持向量的径向基函数神经网络的训练算法[J].武汉科技大学硕士学位论文,2003.P1~12.
    4.边肇其,张学工,等.模式识别[M].北京:清华大学出版社,2002.98~115.
    5.蔡煜东,李伟,许伟杰.遥感土地覆盖类型识别的自组织神经树模型[J].环境遥感,1995,10(2):133~136
    6.常军.基于RS和GIS的黄河三角洲海岸线动态变化监测与模拟预测研究[J].山东师范大学硕士研究生学位论文,2001,28~35.
    7.陈冬林,李勤爽.知识型遥感图像光谱特征融合探讨[J].遥感信息,2001(2):6~8
    8.陈吉余.中国海岸发育过程和演变规律[J].上海科学技术出版社,1989.
    9.陈鹏,高建华,朱大奎,等.海岸生态交错带景观空间格局及其受开发建设的影响分析——以海南万泉河口博鳌地区为例[J].自然资源学报,2002,17(4):56~60.
    10.陈文波,肖骂宁,李秀珍.景观指数分类、应用及构建研究[J].应用生态学报,2002,13(1):121~125.
    11.程昌秀,严泰来.GIS与RS集成的高分辨率遥感影像分类技术在地类识别中的应用[J].中国农业大学学报,2001,6(3):50~54.
    12.戴尔阜,傅泽强.县域农业生态景观规划与设计——以北京市密云县为例[J].地理学与国土研究,2002,18(1):59~62.
    13.邓吉秋,鲍光淑.基于GIS的层次分析法的应用[J].中南工业大学学报,2003,34(1):1~4.
    14.丁东,李日辉.中国沿海湿地研究[J].海洋地质与第四纪地质,2003,23(1):109~112.
    15.杜华强,范文义.Matlab自组织神经网络在遥感图像分类中的应用[J].东北林业大学学报,2003,31(4):51~53.
    16.方勇.证据推理应用于多源信息融合分析[J].遥感学报,2000,4(2):106~111.
    17.费鲜芸,高祥伟.土地利用/土地覆盖遥感分类研究综述[J].山东农业大学学报:自然科学版,2002,33(3):391~394.
    18.冯春,陈建平.土地利用/土地覆盖研究中遥感图像分类精度的提高方法[J].地理与地理 信息科学,2003,19(3):26~28,
    19.傅庆林,王建红.GIS在浙江省海涂农业资源管理中的应用[J].浙江农业科学,1999(1):33~35.
    20.高彦华,汪宏清.遥感技术在土壤侵蚀动态监测中的应用[J].中国水土保持,2004,(1):33~34.
    21.龚健雅.当代地理信息系统进展综述[J].测绘与空间地理信息.2004,(1):5~11.
    22.龚子同,陈鸿昭,骆国保.人为作用对土壤环境质量的影响及对策[J].土壤与环境,2000,9(1):7~10.
    23.关元秀,刘高焕,王劲锋等.基于GIS的黄河三角洲盐碱地改良分区[J].地理学报,2001,56(2):198~205.
    24.郭伟,李书恒.海岸带网络地理信息系统的研究探讨[J].江西师范大学学报:自然科学版,2004,28(3):266~270.
    25.杭州大学地理系.浙江省农业区划图集[M].测绘出版社.1989,58~60.
    26.胡孟春,马荣华.黑河流域生态功能区划遥感制图方法[J].干旱区资源与环境,2003,17(1):49~53.
    27.黄建文,鞠洪波.山区林地多季相TM影像综合分类研究[J].福建林学院学报,2004,24(2):136~139.
    28.黄增,于开宁.秦皇岛市海岸线侵淤变化规律研究[J].河北地质学院学报,1996,19(2):136~143.
    29.霍东民,孙家炳,刘高焕,等.3S技术在黄河三角洲土壤盐份分析样点采集中的应用[J].遥感信息,2001(2):35~37.
    30.姜青香,刘慧平,孔令彦.纹理分析方法在TM图像信息提取中的应用[J].遥感信息,2003(4):24~27
    31.姜义,李建芬,康慧,等.渤海湾西岸近百年来海岸线变迁遥感分析[J].国土资源遥感,2003(4):54~58.
    32.金建君,恽才兴,巩彩兰.海岸带综合管理的核心目的及有关技术的应用[J].海洋湖沼通报,2002,1,26~32.
    33.李福林,庞家珍,姜明星.黄河三角洲海岸线变化及其环境地质效应[J].海洋地质与第四纪地质,2000,20(4):17~21.
    34.李厚强,王宜主,刘政凯.一种适用于多类别遥感图象分类的新方法——复合神经网络分类方法[J].遥感学报,1997,1(4):257~260.
    35.李克煌,钟兆站.论中国生态环境脆弱带[J].河南大学学报(自然科学版),1995,25(4):57~64
    36.李培军,李争晓.三种地统计学图像纹理用于遥感图像分类的比较[J].地理与地理信息科学,2003,19(4):89~92.
    37.李胜法,陆健健.东海大陆架鱼类多样性的现状与分析[A].第五届全国生物多样性保护与持续利用研讨会——生物多样性与我国东部沿海社会经济发展论文摘要集,2002,56.
    38.李书娟,曾辉.遥感技术在景观生态学研究中的应用[J].遥感学报.2002,6(3),234~240.
    39.李志强,陈子燊.砂质岸线变化研究进展[J].海洋通报,2003,22(4):76~84.
    40.林剑,鲍光淑,陈绍求,等.GIS数据融入遥感图像理解的模型初探[J].物探化探计算技术,2002,62~67.
    41.林剑,鲍光淑,林强.基于模糊分析的多光谱遥感图像的纹理特征[J].中南大学学报:自然科学版.2004,35(2):281~284.
    42.林宁,章任群.基于WebGIS技术的海洋资源环境信息共享研究[J].海洋信息,2004(3):1~3.
    43.刘英,赵荣钦.土地利用/覆盖变化研究的现状与趋势[J].河北师范大学学报:自然科学版,2004,28(3):310~315.
    44.刘正军,王长耀,延昊,等.基于FuzzyARTMAP神经网络的高分辨率图象土地覆盖分类及其评价[J].中国图象图形学报,2003,8(A2):151~155.
    45.陆健健.东黄海滨岸湿地生物多样性—结构功能和影响[A].第五届全国生物多样性保护与持续利用研讨会——生物多样性与我国东部沿海社会经济发展论文摘要集,2002,14.
    46.吕小燕,王志坚,娄渊胜等.基于WebGIS的防汛信息系统[J].计算机与现代化,2004(4):77~79.
    47.吕一河,傅伯杰.生态学中尺度及尺度转换方法[J].生态学报,2001,21(12):2096~2105
    48.骆剑承,王钦敏,周成虎,等.基于自适应共振模型的遥感影像分类方法研究[J].测绘学报,2002,31(2):145~151.
    49.骆剑承,杨艳.遥感地学智能图解模型支持下的土地覆盖/土地利用分类[J].自然资源学报,2001,16(2):179~183.
    50.骆剑承,周成虎,梁怡,等.支撑向量机及其遥感影像空间特征提取和分类的应用研究[J].遥感学报,2002,6(1):50~57.
    51.骆玉霞.在GIS支持下利用TM影像进行盐渍化程度等级分类研究[A].中国农业大学土壤学专业硕士学位论文.1999.p52~60.
    52.梅长林,周家良.实用统计方法[M].科学出版社,2002.p116~23.
    53.需庆华,傅伯杰,景观格局与土壤养分流动[J].水土保持学报,2000,14(3):116~121.
    54.倪玲,舒宁.遥感图像理解专家系统中面向对象的知识表示[J].武汉测绘科技大学学报.1997,22(1):32~34,46.
    55.潘耀忠,陈志军,聂娟,等.基于多源遥感的土地利用动态变化信息综合监测方法研究[J].地球科学进展,2002,17(2):182~188.
    56.彭建,王仰鳞.我国沿海滩涂的研究[J].北京大学学报:自然科学版,2000,36(6):832~839.
    57.彭建,王仰麟.我国沿海滩涂景观生态初步研究[J].地理研究,2000,19(3):249~256.
    58.秦其明,陆荣建.分形与神经网络方法在卫星数字图像分类中的应用[J].北京大学学报:自然科学版,2000,36(6):858~864.
    59.邱少强,王惠敏,闫玉华.基于神经网络与遗传算法的纹理图像分割[J].武汉理工大学学报,2004,26(3):86~87.
    60.史培军,宫鹏,李晓兵等.土地利用/覆盖变化研究的方法与实践[J].科学出版社,2000,55~58.
    61.史舟,吴宏海.空间分析技术和图论树算法在农业区划中的应用[J].中国图像图形学报,2000,5(3):244~248.
    62.孙丹峰,汲长远.自组织网络在遥感土地覆盖分类中的应用研究[J].遥感学报,1999,3(2):139~143.
    63.孙丹峰,李红.遥感影像融合与分类在城市边缘带扩展监测中应用研究[J].中国农业大学学报,2002,7(1):65~70.
    64.王红,宫鹏,刘高焕.黄河三角洲土地利用/土地覆盖变化研究现状与展望[J].自然资源学报,2004,19(1):110~118
    65.王建武,杨燕琼.应用卫星遥感影像分析粤西沿海围垦动态变化[J].华南农业大学学报,2000,21(1):1~4.
    66.王人潮、黄敬峰.水稻遥感估产[M].北京:中国农业出版社,2002.110~126.
    67.王三明,蒋军成,姜慧.基于人工神经网络理论的系统安全评价[J].工业安全与防尘.2001,27(2):27~30.
    68.王晓丹.基于模糊聚类及神经网络的纹理分割方法研究[A].西北工业大学博士学位论文,2000.P5~6.
    69.王野乔.遥感及多源地理数据分类中的人工神经网络模型[J].地理科学,1997,17(2):105~112.
    70.王铮,吴健平.城市土地利用演变信息的数据挖掘:以上海市为例[J].地理研究,2002,21(6):675~681.
    71.王祖喜,李德华.基于向量模糊模式识别的纹理图像分割方法[J].华中理工大学学报, 1999,27(12):8~10.
    72.温泉.沿海滩涂湿地生物多样性保护与管理对策[A].第五届全国生物多样性保护与持续利用研讨会——生物多样性与我国东部沿海社会经济发展论文摘要集,2002,p15.
    73.邬建国.景观生态学——格局、过程、尺度和等级[M].北京:高等教育出版社,2000.80~92.
    74.邬建国.景双生态学——格局、过程、尺度与等级[M].北京:高等教育出版社,2000.
    75.邬伦,刘瑜,张晶,等.地理信息系统——原理、方法和应用[M].2001.北京:科学出版社.P78~80.
    76.吴顺辉,蒋成爱,戴军.WebGIS在广东省土壤资源信息系统的应用[J].华南农业大学学报,2002,23(2):15~17.
    77.夏东兴,王文海,武桂秋,等.中国海岸侵蚀述要[J].地理学报,1993,48(5):468~475.
    78.夏建涛.基于机器学习的高维多光谱数据分类[J].西北工业大学博士学位论文,2002.p4~7.
    79.肖笃宁,胡远满,李秀珍.环勃海三角洲湿地的景观生态学研究[J].北京:科学出版社,2001.
    80.肖笃宁,李秀珍,等.景观生态学[M].北京:科学出版社,2003.52~60.
    81.肖笃宁.景观生态学理论、方法及应用[M].北京:中国科学出版社,1991.92~99,186~196.
    82.肖平,李德仁.基于人工神经元网络技术的土地利用覆盖变化探测[J].武汉大学学报信息科学版,2002,27(6):586~590.
    83.谢宏全,陈秋计.WebGIS在矿区土地复垦规划中的应用研究[J].河北理工学院学报,2004,26(1):161~164.
    84.徐承祥,俞勇强.浙江省滩涂围垦发展综述[J].浙江水利科技,2003,1:8~11.
    85.颜梅春,张友静,鲍艳松.基于灰度共生矩阵法的IKONOS影像中竹林信息提取[J].遥感信息,2004(2):31~34.
    86.杨存建,周成虎.基于知识的遥感类方法的探讨[J].地理学与国土研究,2001,17(1):72~77.
    87.杨金中,李志中,赵玉灵.杭州湾南北两岸岸线变迁遥感动态调查[J].国土资源遥感,2002,51(2):23~28.
    88.杨劲松,彭乃志,陈德明,等.江苏省沿海滩涂资源特征及其优化配置[J].土壤通报,2001,32(4):143~147.
    89.杨凯等.遥感图像处理的原理与方法[M].北京:测绘出版社.1988.
    90.杨肖琪,林敏基.海洋/海岸带环境与灾害遥感监测[J].集美大学学报:自然科学版, 1997,2(1):13~19.
    91.遥感技术在海洋环境与资源调查中的开发研究专题报告[A].遥感技术在海洋环境与资源调查中的开发研究汇编,国家海洋局科技司,1987.
    92.叶庆华,刘高焕,田国良.黄河三角洲土地利用时空复合变化图谱分析[J].中国科学:D辑,2004,34(5):461~474.
    93.于秀兰,钱国蕙,周建林,等.多光谱遥感图像BP网分类器学习样本选取法的研究[J].红外与毫米波学报,1999,18(6):450~455.
    94.恽才兴.海岸带卫星遥感的应用与效益[J].中国航天,1992,5:7~9.
    95.张力.河口湾型海涂垦区农业用地结构演变特点——兼论与开敞型海涂垦区之异同[J].经济地理,1995,15(3):80~86.
    96.张利华.我国海涂资源的开发利用及发展前景[J].科学对社会的影响,1994,(1):56~69.
    97.张我华,吴昌灿,金荑.海滩侵蚀的数值分析模型[J].海洋工程,2002,20(2):24~31.
    98.赵寒冰,李加林.多维信息在改善沿海地区图像分类精度中的应用方法[J].海洋地质与第四纪地质,2004,24(2):125~129.
    99.赵建华,陈沈良.数字海岸与海岸带综合管理[J].海洋通报,2003,22(1):56~70.
    100.彭建,王仰麟.我国沿海滩涂景观生态初步研究[J].地理研究,2000,19(3):249~256
    101.赵英时.遥感应用分析原理与方法[M].北京:科学出版社.2003.
    102.浙江省海岸带资源综合调查专业报告(之五)地质地貌[M].浙江省海岸带资源综合调查队.1985,p160~175.
    103.浙江省海岸带资源综合调查专业报告(之一)气候[M].浙江省海岸带资源综合调查队.1985,71~85.
    104.浙江省海岸带资源综合调查专业报告——土壤,1985,浙江省海岸带资源综合调查.
    105.浙江省海岸和海涂资源综合调查领导小组办公室,浙江省海岸带和海涂资源综合调查报告,海洋出版社,1988.
    106.浙江林业自然资源(湿地卷),浙江省林业局编,中国农业技术科学出版社,2002,256~260.
    107.浙江水利网,http://www.zjwater.com/document.asp?docID=1655,浙江省沿海千里标准海塘建设情况,2004.
    108.浙江围垦局,浙江省地理信息中心,浙江省滩涂资源与围垦管理信息系统建设研究成果报告,2004,4.
    109.政协全国委员会经济委员会、人口资源环境委员会专题调研组.沿海滩涂开发利用是篇大文章,中国土地,2000,9:3~5.
    110.周斌,王繁,王人潮.运用分类树进行土壤类型自动制图的研究[J].水土保持学报.2004,18(2):140-143,147.
    111.周斌,杨柏林.运用多时相直接分类法对土地利用进行遥感动态监测的研究[J].自然资源学报,2001,16(3):263~268.
    112.周斌.针对土地覆盖变化的多时相遥感探测方法[J].矿物学报,2000,20(2):165~171
    113.周长宝.海岸带土壤微波遥感初探[J].热带海洋,1990,9(4):68~72.
    114.周良勇,刘健.加拿大海岸带调查工作[J].海洋地质动态,2003,19(1):1~4.
    115.周玲,卢静.关于我国耕地保护问题的思考[J].农村经济,2004,(2):30~32.
    116.朱小鸽.珠江口海岸线变化的遥感监测[J].海洋环境科学,2002,21(2):19~22.
    117.左仲谋.浙江省的围涂建设的历史、现状和展望[A].浙江省海岸带资源综合调查论文集,1986,446~487.
    118.《辞海》,上海辞书出版社,1989,1061.
    119.《海洋大辞典》,辽宁人民出版社出版,1998,85,217.
    120.《中国海岸带和海涂资源综合调查—土地利用现状调查报告》,土地利用现状调查专业编写组,1988.
    121. Arbia G R, Benedetti G Espa. Effects of the MAUP on image classification [J]. Geographical System, 1996, 3: 123~141.
    122. Barr Stuart, Barnsley Michael. Reducing structural clutter in land cover classifications of high spatial resolution remotely-sensed images for urban land use mapping [J]. Computers & Geosciences, 2000, 26(4): 433~449.
    123. Boles Stephen H, Xiao Xiangming Liu, Jiyuan Zhang, et. al.. Land cover characterization of Temperate East Asia using multi~temporal VEGETATION sensor data [J]. Remote Sensing of Environment, 2004, 90(4): 477~489.
    124. Brown de Colstoun, Eric C, Story Michael H, et. al.. National Park vegetation mapping using multitemporal Landsat 7 data and a decision tree classifier [J]. Remote Sensing of Environment, 2003, 85(3): 316~327.
    125. Caselles V, Garcia M J L. An alternative simple approach to estimate atmospheric correction in multitemporal studies [J]. International Journal of Remote Sensing, 1989, 10: 1127~1134.
    126. Chang SI, Ho ES. A two~stage neural network approach for process variance change detection and classification [J]. International Journal of Production Research, 1999, 37 (7): 1581~1599
    127.Christine A Coughanowr,Magunas N Ngoile,Olof Linden.包括岛国在内的东非的海岸带管理:问题和应对行动述评[J].Ambio人类环境杂志,1995,24(7):448~457.
    128. Congalton R. G., Mary Balogh, et al. mapping and monitoring agricultureal crops and other land cover in the lower Colorado River Basin [J]. Photogrammetric Engineering & Remote Sensing, 1998, 64(11): 1107~1113.
    129. Congalton R G. A review of assessing the accuracy of classifications of remotely sensed data [J]. Remote sensing of environment, 1991, 37,3 5~46.
    130. Cortijo F J et al. On the combinstion of non~parametris nearest neighbor classifiation ad contextual correction[A]. Pattern Recognition and Image Analysis, Proceedings of the VI Spanish symposium on Pattern Recognition and Image Analysis held in Cordoba, Spsin, on 3-7 April, 1992, edited by Calvo A and Medina R, 1995, 503-510.
    131.d'Angelo M, Enne G, Madrau S, Percich L, et al.. Mitigating land degradation in Mediterranean agro-silvo-pastoral systems: a GIS-based approach [J]. Catena, 2000, 40( 1):37-49.
    132. Eckhardt D. W, J. P Verdin, G. R Lyford. Automated update of an irrigated lands GIS using SPOT HRV imagery [J]. Photogrammetric Engineering & Remote Sensing, 1990, 56(11):1515-1522.
    133. Elvidge C. D, Yuan D, Weerackoon R. D, Lunneta R. S. . Relative radiometric normalization of Landsat Multispectral Scanner(MSS) data using an automatic scattergram controlled regression [J]. Photogrammetric Engineering & Remote Sensing, 1995, 61(10): 1255-1260.
    134. ERDAS Field Guide[M]. ERDAS, inc, 168-169.
    135. Fahsi Ahmed, Tsegaye T. , Tadesse W. , Coleman T. . Incorporation of digital elevation models with Landsat~TM data to improve land cover classification accuracy [J]. Forest Ecology and Management, 2000, 128(1-2): 57-64.
    136. Fernandes Richard, Fraser Robert, Latifovic Rasim, Cihlar Josef, et. Al. . Approaches to fractional land cover and continuous field mapping: A comparative assessment over the BOREAS study region [J]. Remote Sensing of Environment, 2004, 89(2): 234-251.
    137. Foody G M, Cox D P. Sub-pixel land cover composition estmation using a linear mixture model and fuxxy membership functions [J]. International Journal of Remote Sensing, 1994,(15): 145-161.
    138. Foody Giles M.. Estimation of sub-pixel land cover composition in the presence of untrained classes [J]. Computers & Geosciences, 2000,26(4): 469-478.
    139. Franklin S. E, P. T. Giles. Radiometric processing of aerial and satellite remote sensing imagery [J]. Computers and Geosciences, 1995, 21 (3):413-423.
    140. Gincinto G and ROli F. Ensembles of neural network for soft classification of remote sensing images [M]. Proceeding of the European Symposium on Inteligent Techniques, 1997, 166-170.
    141.Gorte B. Change detection by classification of a multi-temporal image [M]. Integrated Spatial Databases: Digital Images and GIS Lecture Notes in Computer Science, 1999, 1737:105-121.
    142. Guindon Bert, Zhang Ying, Dillabaugh Craig. Landsat urban mapping based on a combined
     spectral-spatial methodology [J]. Remote Sensing of Environment, 2004, 92(2): 218~232.
    143. Hall F. G, Strebel D. E, Nickeson J. E and Geotz. S. J. Radiometric rectification: toward a common radiometric response among multidatede, multisensor images [J]. Remote Sensing Environment, 1991, 35: 11~27.
    144. Han Kyung~Soo, Champeaux Jean~Louis, Roujean Jean-Louis. A land cover classification product over France at 1 km resolution using SPOT4/VEGETATION data [J]. Remote Sensing of Environment, 2004, 92(1): 52~66.
    145. Hashiba H., Kameda K., Uesugi S., Tanaka S.. Landuse Change Analysis of Tama River Basin with Different Spatial Resolution Sensor Data by Landsat/MSS and TM [J]. Advances in Space Research, 2000, 26(7): 1069~1073.
    146. Henebry G. M, H. Su. Using landscape trajectories to assess the effects of radiometric rectification [J]. International Journal of Remote Sensing, 1993, 12(7): 1471~1491.
    147. http://directory.eoportal.org/info_LACOASTLAndcoverchangesinCOASTalzones. html
    148. http://www.csc.noaa.gov/crs/lca/ccap.html
    149. http://www.nrscc.gov.cn/2j/kjcg/mj.asp?ID=3
    150. J. C. Bezdek. Guzzy mathematics in pattern classification [A]. Ph.D. dissertation, Cornell Univ., Itheca, NY, 1973.
    151. Janssen L. L. F., Van Der Wel F. J. M.. Accuracy assessment of satellite derived land cover data: A review [J]. Photogrammetric Engineering & Remote Sensing, 1994, 60(40): 419~426.
    152. Jenson, J. R.. Urban/Suberban land use analysis [M]. In: Manual of Remote Sensing, 2nd ed. American Society of Photogrammetry, 1983, 2:1571~1666.
    153.Jord., LE.更易于从新的地理数据中提取信息的专家分类系统[J].遥感信息,2000(1):49~50,11.
    154. Kanellopoulos I, Varfis A, Wilkinson G G and Megier J. Land cover discrimination in SPOT HRV imagery using an artificial neural network: a 20 class experiment [J]. International Journal of Remote Sensing, 1992(13): 917~924.
    155. Kettig R L and Landgrebe D A. Classification of muitispectral image data by extraction and classification of homogeneous obiects [J]. IEEE Transactions on Geosience Electronics, GE~4, 1976, (1): 19~26.
    156.Lavalle P D等.海滩和岸线数据时空连续模拟[J].海洋地质动态,2002,18(7):17~22.
    157. Lo C. P, X. Yang.. Some practical considerations of relative radiometric normalization of multidate Landsat MSS data for land use change[A]. Proceedings of ASPRS/RTI 1998 Annual Convention, Tampa, Florida, 1998, 1184~1193.
    158.Loudjani P et al.Lacoast项目:欧洲海岸带土地覆盖变化调查,可持续发展中遥感应用会议论文集,1999,Balkema,The Netherlands.
    159.Loudjani P.Lacoast项目:制图与统计分析报告,1998,SAI,JRC.
    160. Mas J. F. Mapping land use/cover in a tropical coastal area using satellite sensor data [A]. GIS and artificial neural networks Estuarine, Coastal and Shelf Science Volume, 2004, 59(2): 219~230.
    161. Perakis K, Kyrimis K, Kungolos A. Monitoring land cover change detection with remote sensing methods in magnesia prefecture in Greece [J]. Fresenius Environmental Bulletin, 2000, 9 (9~10): 659~666.
    162.Perdigao V.,Annoni A..更新CORINE土地覆盖数据库的方法与技术指南[M].1997,EUR 17288 EN.
    163. Rees W. G., Williams M., Vitebsky P.. Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge [J]. Remote Sensing of Environment, 2003, 85(4): 441~452.
    164. Rembold Felix, Carnicelli Stefano, Nori Michele, Ferrari Giovanni A. Use of aerial photographs, Landsat TM imagery and multidisciplinary field survey for land-cover change analysis in the lakes region (Ethiopia) [J]. International Journal of Applied Earth Observation and Geoinformation, 2000, 2(3~4): 181~189.
    165. Rignot E, Chellappa R. Segmentation of polarimetric synthetis aperture radar data IEEE Transactions on Image Processing, 1992, (1): 281~300.
    166. Roli F, Giacinto G and Vernazza G. Comparison and combination of statistical and neural network algorithms for remote sensing image classification[M]. In: Neurocomputaion in Remote Sensing Data Analysis, Kanellopoulos, Wilkinson, Roli and Austin(eds), Springer, 1997, 117~124.
    167. Salvaggio C. Radiometric scene normalization utilizing statistically invariant features[A]. Proc. Workshop Atmospheric Correction of Landsat Imagery, Defense Landsat Program Office, Torrance, CA, 1993: 155~159.
    168. Schott J. R, Salvaggio, Cand Volchok W. Radiometric scene normalization using pseudoinvariant features [J]. Remote Sensing of Environment, 1988, 26: 1~6.
    169. Shrimali S. S., Aggarwal S. P., Samra J. S.. Prioritizing erosion-prone areas in hills using remote sensing and GIS—a case study of the S ukhna Lake catchment, Northern India [J]. International Journal of Applied Earth Observation and Geoinformation, 2001, 3(1): 54~60.
    170. Shupe Scott M., Marsh Stuart E.. Cover-and density-based vegetation classifications of the Sonoran Desert using Landsat TM and ERS-1 SAR imagery [J]. Remote Sensing of Environment, 2004, 93(1~2): 131~149.
    171. SONG C, Woodcock C. E, Seto K. C, et al. Classification and change detection using Landsat TM data: when and how to correct atmospheric effects [J]. Remote Sensing of

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700