用户名: 密码: 验证码:
保护地土壤中AM真菌群落结构与功能的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为重要环境与功能菌物,丛枝菌根(arbuscular mycorrhizas, AM)真菌通过与植物根系建立具有特定形态结构和功能的互惠共生体,对促进农、林、牧业生产、维持和提高生物多样性、生态系统生产力、环境安全性和可持续发展做出了巨大贡献。在自然条件下,AM真菌是以其独特的群落结构特征和功能,直接和间接发挥着各种生理、生化和生态作用。保护地栽培中,AM真菌修复连作退化土壤和生物防治土传病害潜力巨大。土壤中的生物往往是以一定群落结构形式而存在和发挥作用的。因此,从群落结构的角度研究其群落结构特征与功能会更有实际意义。然而,对保护地AM真菌群落结构及其生理生态功能的了解目前还十分有限。本研究采用传统形态学方法和分子技术,探索北京大兴、山东昌乐和山东莱阳保护地不同连作年限(5,10,15和20年)土壤和非保护地自然农田土壤中AM真菌群落结构特征,以非保护地自然土壤中AM真菌群落结构特征为依据,设计不同的AM真菌群落组合,初步探索不同AM真菌群落组合对保护地植物健康、土壤质量、保护地生态系统的生产力的贡献,以其为进一步研发专一的AM真菌群落结构制剂及其在保护地无公害蔬菜生产中的应用提供理论依据和技术支持。主要研究结果如下:
     1.我国北方保护地土壤具有独特的AM真菌群落结构特征,其水平结构特征表现在各样地之间AM真菌群落构成差异明显:球囊霉属(Glomus)是各样地的优势属。幼套球囊霉(G. etunicatum)是北京大兴和山东昌乐样地连作5年的土壤中共同优势种。近明球囊霉(G. claroideum)是山东昌乐和莱阳样地连作5年和10年的土壤中共同优势种,浅窝无梗囊霉(Acaulospora. lacunosa)是北京大兴样地连作10年的土壤中的优势种。3个样地连作15和20年的土壤中的优势种并不明显。3个样地4个连作年限共有的菌种为近明球囊霉(G. claroideum); 3个样地连作5年之间相似性系数在0.67到0.84,而3个样地连作20年之间的相似性系数在0.29到0.33之间。垂直结构特征表现为:随着土壤深度的增加,3个样地(北京大兴、山东昌乐和莱阳)的AM真菌最大孢子密度、种丰度和多样性指数均出现在0-10 cm土层,且随土壤剖面深度增加呈现递减的趋势;时间结构特征表现为:6月和10月孢子密度、丰度、Shannon指数最高,8月和12月孢子密度最低。
     2.PCR-DGGE图谱分析表明,山东昌乐保护地不同连作年限的西瓜土壤AM真菌群落结构组成及变化明显。共获得28条DNA序列,保护地土壤中AM真菌种的丰度和多样性指数较低,随着连作年限的增加,种的丰度减少。Shannon指数随种植年限增加呈现先下降后趋于缓和的变化。典范对应分析(CCA)结果显示CCA的第1排序轴和第2排序轴的物种与环境关系的累积率达67.6%,说明土壤性质对AM真菌群落组成具有重要的影响。土壤速效磷含量和种植年限是影响AM真菌群落组成的重要因素。
     3.接种AM真菌群落盆栽试验结果表明,AM真菌群落显著增加了2-5 mm,1-2 mm, 1-0.5 mm,0.5-0.25 mm土壤水稳性团聚体结构数量,降低了土壤电导率;提高了细菌和放线菌的数量,而真菌的数量显著降低,提高了脲酶、蔗糖酶和多酚氧化酶的活性;AM真菌群落能明显改善黄瓜的生长,增加株高、干重、最大叶面积,提高了黄瓜叶片的叶绿素相对含量、可溶性糖含量、根系活力,增强了对逆境的抵抗能力。这种效应显著高于单接种AM真菌处理和对照。与其他各AM真菌群落相比,以AM真菌群落组合F(Glomus etunicatum+G. mosseae+Gigaspora margarita+Acaulospora lcunosa)与G(Gaggregatum+G.etunicatum+G.mosseae+G.versiforme+Gi.margarita+A.lacunosa)对黄瓜生长和土壤质量的贡献更大。
     作者在国内外首次系统研究了保护地连作土壤中AM真菌群落结构与功能,证实了AM真菌群落具有强大的生物修复退化土壤的功能。为今后进一步研发AM真菌群落组合制剂奠定了基础。
As an important environmental and functional fungi, arbuscular mycorrhizal (AM) fungi widely distribute in terrestrial ecosystems. They make great contributions in sustainable agriculture and forestry, and play a vital role in maintaining and enhancing biological diversity, and ecosystem productivity. Under natural conditions, AM fungi play various of physiological, biochemical and ecological roles directly and indirectly according to its unique community structure and function. AM fungi have huge potential for both soil bioremediation and biological control of soil borne diseases. Soil is a heterogeneous system including many microorganism strains, so it is more significant to study the composition effectiveness of multiple strains from the perspective of community. However, we know little about AM fungal community structure and Physiological functions in commercial greenhouse at present. In this paper, the community structure of arbuscular mycorrhizal fungi in commercial greenhouse soil at three locations in China (Daxing in Beijing, Changle and Laiyang in Shandong) was investigated using both morphological identification and denaturing gradient gel electrophoresis. Based on AM fungal community structure analysis in farmland soil, we designed different AM fungal community composition. The contribution to plant health, the soil quality, the ecosystems productivity in protected cultivation field caused by AM fungal community was examined.as few studies were carried out to determine the effects of AM fungal community on plant growth and soil quality. It will be helpful for providing an important theoretical basis and reference value for the environmental restoration and exploitation and application of AM fungal agents with high efficiency in the soil of commercial greenhouse. The main results showed that:
     1. Horizontal structure showed that: Glomus was a dominant genus in the sampling sites, G.etunicatum was the dominant species in 5-year replanting soil of Daxing and Changle, G.claroideum was the dominant species in 5-year and 10-year replanting soil of Changle and Laiyang, A.lacunosa was the dominant species in 10-year replanting soil of Daxing, the dominant species in 15-year and 20-year replanting soil was not obvious. G.claroideum was present in replanting soil at all sites. The Sorenson's similarity coefficients of AM fungal community composition ranged from 0.67 to 0.84 in 5-year replanting soil, and 0.29 to 0.33 in 10-year replanting soil. Vertical structure showed that: the spore abundance, species richness and Shannon index were highest in the topsoils (0-10 cm), and decreased with soil depth in all soils investigated. Time structure showed that: the spore density, species richness and Shannon index were greatest in June and October. Species richness and Shannon index were lower in August and December.
     2. PCR-DGGE analytical results suggested that Shannon indice was first declined and then tending to mitigate. Species richness and Shannon index were lower in the soil of commercial greenhouse, species richness decreased with the increasing of replanting years The canonical correspondence analysis (CCA) showed that the two first axes, indicators of closely relationship between the soil properties and AM fungal community, explained 67.6% of the total variance. Available P and replanting years were main factors contributing to the variance of the AM fungal community composition.
     3 The greenhouse experiments showed that water-stable aggregate fractions in 2-5,1-2,1-0.5 and 0.5-0.25 mm were generally improved in the tested degraded soil when treated with AM fungal communities, and soil salt ion concentration and soil EC were decreased as well. No significant changes were found in soil pH. Inoculation with AM fungal communities increased the number of bacteria and actinomycetes, but reduced the number of fungi. AM fungal communities apparently increased plant growth and dry mass, the soluble sugar content, Chlorophyll content and root activity of cucumber plants when compared to non-mycorrhizal or single-inoculation treatments. Among all inoculation treatments, AM fungal community F (Glomus etunicatum + G. mosseae + Gigaspora margarita + Acaulospora lacunose) and AM fungal community G (G. aggregatum + G. etunicatum + G. mosseae + G. versiforme + Gi. margarita+A. lacunose) showed greater contribution to the improvement of soil quality and plant growth, indicating that inoculation with AM fungal community had more beneficial effects than with single or double species.
     We studyed the community structure and function of arbuscular mycorrhizal fungi in the soil of commercial greenhouse at home and abroad for the first time, proved that AM fungal community had a function of soil bioremediation. This paper provided an important theoretical basis and reference value for the exploitation and application of AM fungal agents in the soil of commercial greenhouse.
引文
[1]刘润进,陈应龙.菌根学[M].北京:科学出版社,2007.1-447.
    [2]Smith S E, Gianinazzi-Pearson V. Physiological interactions between symbionts in Vesicular-arbuscular mycorrhizal plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1988,39: 221-244.
    [3]郝树广.群落生态学[M].现代生态学.北京:科学出版社,2002,209-272.
    [4]Rosendahl S. Communities, populations and individuals of arbuscular mycorrhizal fungi[J]. New Phytologist,2008,178(2):253-266.
    [5]Courty P E, Buee M, Diedhiou A G, Frey-Klett P, Tacon F L, Rineau F, Turpault M P, Uroz S, Garbaye J.The role of ectomycorrhizal communities in forest ecosystem processes:new perspectives and emerging concepts[J]. Soil Biology and Biochemistry,2010,42:679-698.
    [6]Cicatelli A, Lingua G, Todeschini V, Biondi S, Torrigiani P, Castiglione S. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression[J]. Annals of Botany,2010,106(5):791-802.
    [7]Diedhiou A G, Dupouey J L, Buee M, Dambrine E, Laut L, Garbaye J. The functional structure of ectomycorrhizal communities in an oak forest in central France witnesses ancient Gallo-Roman farming practices [J]. Soil Biology and Biochemistry,2010,42:860-862.
    [8]Baldrian P. Ectomycorrhizal fungi and their enzymes in soils:is there enough evidence for their role as facultative soil saprotrophs? [J]. Oecologia,2009,161(4):657-660.
    [9]郭绍霞,张玉刚,李敏,刘润进.我国洛阳与菏泽牡丹主栽园区AM真菌多样性研究[J].生物多样性,2007,15(4):425-431
    [10]Zhu X C, Song F B, Xu H W. Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis[J]. Plant and Soil,2010,331:129-137.
    [11]Kempel A, Schmidt A K, Brandl R, Schadler M. Support from the underground: Induced plant resistance depends on arbuscular mycorrhizal fungi[J]. Functional Ecology,2010,24:293-300.
    [12]Wang F Y, Lin X G, Yin R, Wu L H. Effects of arbuscular mycorrhizal inoculation on the growth of Elsholtzia splendens and Zea mays and the activities of phosphatase and urease in a multi-metal-contaminated soil under sterilized conditions[J]. Applied Soil Ecology,2006,31: 110-119.
    [13]Wu Q S, Xia R X, Zou Y N. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress[J]. European Journal of Soil Biology.2008,44(1): 122-128
    [14]毕银丽,吴王燕,刘银平.丛枝菌根在煤矸石山土地复垦中的应用[J].生态学报,2007,27(9):3738-3743
    [15]Gerdemann J W, Nicolson Y J. Spore of mycorrhizal Endogone species extracted from soil by wet sieving and decantation[J]. Transactions of British Mycological Society,1963,46:235-244.
    [16]Gilmore A E. Phytomycetous mycorrhizal organisms collected by open-pot culture methods[J]. Hilgardia,1968,39:87-105.
    [17]Phillips J M. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Transactions of the British Mycological Society, 1970,55:158-160.
    [18]SchiiBler, A, Schwarzott, D, Walker, C. Anew fungal phylum, the Glomermycota: phylogeny and evolution[J]. Mycological Research,2001,105:1413-1421.
    [19]Santos-Gonza'lez J C, Finlay R D, Tehler A. Seasonal dynamics of arbuscular mycorrhizal fungal communities in roots in a seminatural grassland[J]. Applied and Environment Microbiology,2007, 73(17):5613-5623.
    [20]Sonjak S, Beguiristain T, Leyval C, Regvar M. Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments[J]. Plant and Soil,2009,314:25-34.
    [21]刘润进,焦惠,李岩,李敏,朱新产.丛枝菌根真菌物种多样性研究进展[J].应用生态学报2009,20(9):2301-2307
    [22]杨青,黄艺.基于SCI文献分析我国菌根学研究现状和发展方向[J].微生物学通报,2009,36(3):439-445.
    [23]黄志,邹志荣,黄焕焕,贺超兴,张志斌,王怀松,李建明.甜瓜抗旱性相关基因MeP5CS的克隆、序列分析及表达[J].园艺学报,2010,37(8):1279-1286
    [24]Morton J B, Benny G L. Revised classification of arbuscular mycorrhizal fungi (Zygomycetes):A new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae with an emendation of Glomaceae[J]. Mycotaxon,1990,37: 471-491
    [25]Borstler B, Renker C, Kahmen A, Buscot F. Species composition of arbuscular mycorrhizal fungi in two mountain meadows with differing management types and levels of plant biodiversity[J]. Biology and Fertility of Soils,2006,42:286-298.
    [26]Wang Y Y, Vestberg M, Walker C, Hurme T, Zhang X P, Lindstrom K. Diversity and infectivity of arbuscular mycorrhizal fungi in agricultural soils of the Sichuan Province of mainland China[J]. Mycorrhiza,2008,18:59-68.
    [27]Singh S, Anita P, Bhaskar C, Lok M S P. Diversity of arbuscular mycorrhizal fungi associated with the rhizosphere of tea growing in'natural'and'cultivated'ecosites[J]. Biology and Fertility of Soils, 2008,44(3):491-500.
    [28]Muleta D, Assefa F, Nemomissa S, Granhall U. Distribution of arbuscular mycorrhizal fungi spores in soils of small holder agroforestry and monocultural coffee systems in southwestern Ethiopia[J]. Biology and Fertility of Soils,2008,44:653-659.
    [29]Alguacil M M, Lumini E, Roldan A, Salinas-Garcia J R, Bonfante P, Bianciotto V. The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops[J]. Ecological Applications,2008,18(2):527-536.
    [30]Wagg C, Pautler M, Massicotte H B, Peterson R L. The co-occurrence of ectomycorrhizal, arbuscular mycorrhizal, and dark septate fungi in seedlings of four members of the Pinaceae[J]. Mycorrhiza,2008, 18:103-110.
    [31]Lugo M A, Ferrero M, Menoyo E, Estevez M C, Sineriz F, Anton A. Arbuscular mycorrhizal fungi and rhizospheric bacteria diversity along an altitudinal gradient in South American Puna grassland[J]. Microbial Ecology,2008,55(4):705-713.
    [32]Wolfe B E, Mummey D L, Rillig M C, Klironomos J N. Small scale spatial heterogeneity of arbuscular mycorrhizal fungal abundance and community composition in a wetland plant community[J]. Mycorrhiza,2007,17:175-183.
    [33]唐明,黄艳辉,盛敏,张峰峰,肖文发.内蒙古盐碱土中AM真菌的多样性与分布[J].土壤学报,2007,44(6):1104-1110.
    [34]Oliveira R S, Vosatka M, Dodd J C, Castro P M. Studies on the diversity of arbuscular mycorrhizal fungi and the efficacy of two native isolates in a highly alkaline anthropogenic sediment[J]. Mycorrhiza,2005,16:23-31.
    [35]Shi Z Y, Chen Y L, Feng G, Liu R J, Christie P, Li X L. Arbuscular mycorrhizal fungi associated with the Meliaceae on Hainan island, China [J]. Mycorrhiza,2006,16:81-87.
    [36]Whitcomb S, Stutz J C. Assessing diversity of arbuscular mycorrhizal fungi in a local community: Role of sampling effort and spatial heterogeneity [J]. Mycorrhiza,2007,17:429-437.
    [37]Appoloni S, Lekberg Y, Tercek M T, Zabinski C A, Redecker D. Molecular community analysis of arbuscular mycorrhizal fungi in roots of geothermal soils in Yellowstone National Park (USA)[J]. Microbial Ecology,2008,56:649-659.
    [38]Chen Y, Yuan J G, Yang Z Y, Xin G R, Fan L. Associations between arbuscular mycorrhizal fungi and Rhynchrely rumrepens in abandoned quarries in southern China[J]. Plant and Soil,2008,304: 257-266.
    [39]王发园,刘润进,林先贵,周健民.几种生态环境中AM真菌多样性比较研究[J].生态学报,2003,23(12):2666-2671
    [40]Maki T, Nomachi M, Yoshida S, Ezawa T. Plant symbiotic microorganisms in acid sulfate soil: Significance in the growth of pioneer plants[J]. Plant and Soil,2008,310:55-65.
    [41]Abdel-Azeem A M, Abdel-Moneim T S, Ibrahim M E, Hassan M A A, Saleh M Y. Effects of long term heavy metal contamination on diversity of terricolous fungi and nematodes in Egypt-A case study[J]. Water, Air, and Soil Pollution,2007,186:233-254.
    [42]Moreira M, Nogueira M A, Tsai S M, Gomes-da-Costa S M, Cardoso E J. Sporulation and diversity of arbuscular mycorrhizal fungi in Brazil Pine in the field and in the greenhouse[J]. Mycorrhiza,2007, 17(6):519-526.
    [43]Tchabi A, Coyne D, Hountondji F, Lawouin L, Wiemken A, Oehl F. Arbuscular mycorrhizal fungal communities in sub-Saharan savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone[J]. Mycorrhiza,2008,18(4):181-195.
    [44]张英,郭良栋,刘润进.都江堰地区丛枝菌根真菌多样性与生态研究[J].植物生态学报,2003,27(4):537-544
    [45]薛会英,张永青,彭岳林.藏北草原主要植物AM真菌的初步研究[J].山地学报,2007,25(3): 351-358.
    [46]Wu B, Hogetsu T, Isobe K, Ishii R. Community structure of arbuscular mycorrhizal fungi in a primary successional volcanic desert on the southeast slope of Mount Fuji[J]. Mycorrhiza,2007,17(6): 495-506.
    [47]Perez C A, Frangi J L. Grassland biomass dynamics along an altitudinal gradient in the Pampa[J]. Journal of Range Management,2000,53(5):518-528.
    [48]贺学礼,赵丽莉,杨宏宇.黄土高原柠条锦鸡儿AM真菌多样性及空间分布[J].生态学报,2006,26(11):3835-3840.
    [49]孙振钧,王冲.群落生态学[M].北京:化学工业出版社,2007.113-176.
    [50]蔡晓布,彭岳林,冯固,钱成.西藏高原草地植物AM真菌多样性及其环境影响因子研究[J].土壤学报,2005,42(4):642-651.
    [51]Husband R, Herre E A, Young J P W. Temporal variation in the arbuscular mycorrhizal communities colonising seedlings in a tropical forest[J]. FEMS Microbial Ecology,2002,42(1):131-136.
    [52]吴强盛,夏仁学,郭文武.柑橘砧木和砧穗组合对丛枝菌根发育的影响[J].土壤,2005,37(1):95-99.
    [53]Bohrer K E, Friese C F, Amon J P. Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats[J]. Mycorrhiza,2004,14(5):329-337.
    [54]Santos J C, Finlay R D, Tehler A. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilization gradient[J]. New Phytologist,2006,172(1):159-168.
    [55]Fuchs B, Haselwandter K. Red list plants:colonization by arbuscular mycorrhizal fungi and dark septate endophytes[J]. Mycorrhiza,2004,14(4):277-281.
    [56]Rosendahl S, Stukenbrock E H. Community structure of arbuscular mycorrhizal fungi in undisturbed vegetation revealed by analyses of LSU rDNA sequences[J]. Molecular Ecology,2004,13(10): 3179-3186.
    [57]Yamato M, Ikeda S, Iwase K. Community of arbuscular mycorrhizal fungi in a coastal vegetation on Okinawa island and effect of the isolated fungi on growth of sorghum under salt-treated conditions[J]. Mycorrhiza,2008,18(5):241-249.
    [58]Da Silva G A,Trufem S F, Saqqin Junior O J, Maia L C. Arbuscular mycorrhizal fungi in a semiarid copper mining area in Brazil[J]. Mycorrhiza,2005,15(1):47-53.
    [59]Muthukumar T, Udaiyan K. Arbuscular mycorrhizas in cycads of southern India[J]. Mycorrhiza,2002, 12(4):213-217.
    [60]肖艳萍,李涛,费洪运,赵之伟.云南金顶铅锌矿区丛枝菌根真菌多样性的研究[J].菌物学报,2008,27(5):652-662.
    [61]Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P. Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantean growing in a polluted soil in Northern Italy[J]. Environmental Microbiology,2006,8(6):971-983.
    [62]Su Y Y, Guo L D. Arbuscular mycorrhizal fungi in non-grazed restored and over-grazed grassland in the Inner Mongolia steppe[J]. Mycorrhiza,2007,17(8):689-693.
    [63]陈志超,石兆勇,田长彦,冯固.古尔班通古特沙漠南缘短命植物根际AM真菌群落特征研究[J].菌物学报,2008,27(5):663-672.
    [64]Vogelsang K M, Reynolds H L, Bever J D. Mycorrhizal fungal identity and richness determine the diversity and productivity of a tall grass prairie system[J]. New Phytologist,2006,172(3):554-562.
    [65]Bever J D, Smith S E, Smith F A. Host-specificity of AM fungal population growth rates can generate feedback on plant growth. Diversity and integration in mycorrhizas. Proceeding of the 3rd International Conference on Mycorrhizas (ICO3), Adelaide, Australia,8-13 July 2001. Plant and Soil, 2002,244(1-2):281-290.
    [66]DeBellis T, Vidden P. Diversity of the small subunit ribosomal RNA gene of the arbuscular mycorrhizal fungi colonizing Clintonia borealis from a mixed-wood boreal forest[J]. FEMS Microbiology Ecology,2006,58(2):225-235.
    [67]Bai J F, Lin X G, Yin R, Zhang H Y, Wang J H,Chen X M, Luo Y M. The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils[J]. Applied Soil Ecology,2008,38(2):137-145.
    [68]刘文科,冯固,李晓林.AM真菌接种对甘薯产量和品质的影响[J].中国生态农业学报,2006,14(4):106-108.
    [69]杜善周,毕银丽,吴王燕,刘慧辉,杨永峰.丛枝菌根对矿区环境修复的生态效应[J].农业工程学报,2008,24(4):113-116.
    [70]钟凯,王淼焱,刘润进.AM真菌生活史、遗传特性与纯培养的生物学基础[J].菌物学报,2009,28(2):310-314.
    [71]Liu R J, Wang F Y. Selection of appropriate host plants used in trap culture of arbuscular mycorrhizal fungi[J]. Mycorrhiza,2003,13(3):123-127.
    [72]冀春花,张淑彬,盖京苹,白灯莎,李晓林,冯固.西北干旱区AM真菌多样性研究生物多样性[J].生物多样性,2007,15(1):77-83.
    [73]Batten K M, Scow K M, Davies K F, Harrison S P. Two invasive plants alter soil microbial community composition in serpentine grasslands [J]. Biological Invasions,2006,8(2):217-230.
    [74]Sykorova'Z, Wiemken A, Redecker D. Co-occurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities[J]. Applied Environmental Microbiology,2007,73(17):5426-5434.
    [75]姚青,王连润,陈美标,胡又厘,朱红惠,王燕.不同草种对土著AM真菌的生长和群落结构的影响[J].草业学报,2008,17(2):33-38.
    [76]Daniel L, Mummey, Matthias C R. The invasive plant species Centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field[J]. Plant and Soil,2006,288(1-2):81-90.
    [77]Lekberg Y, Koide R T, Rohr J R, Aldrich-Wolfe L, Morton J B. Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities[J]. Journal of Ecology, 2007,95(1):95-105.
    [78]Oehl F, Sieverding E, Ineichen K, Ris E A, Boller T, Wiemken A. Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems[J]. New Phytologist,2005,165(1):273-283.
    [79]Wang M Y, Hu L B, Wang W H, Liu S T, Li M, Liu R J. Influence of long-term fixed fertilization on diversity of arbuscular mycorrhizal fungi[J]. Pedosphere,2009,19(5):663-672.
    [80]Hildebrandt U, Ouziad F, Marner F J, Bothe H. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores[J]. FEMS Microbiology Letters,2006,254(2):258-267.
    [81]Duponnois R, Plenchette C. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species[J]. Mycorrhiza,2003,13(2):85-91.
    [82]Barea J M, Azco'n R, Azco'n-Aguilar C. Mycorrhizal fungi and plant growth promoting rhizobacteria[M]. In:Varma A, Abbott L, Werner D, Hampp R, eds. Plant surface microbiology. Springer Berlin Heidelberg,2004,351-371.
    [83]Bethlenfalvay G J, Andrade G, Azcon-Aguilar C. Plant and soil responses to mycorrhizal fungi and rhizobacteria in nodulated or nitrate fertilized peas (Pisum sativuin L.)[J]. Biology Fertility of Soils, 1997,24(2):164-168.
    [84]张旭红,朱永官,王幼珊,林爱军,陈保冬,张美庆.不同施肥处理对丛枝菌根真菌生态分布的影响[J].生态学报,2006,26(9):3081-3087.
    [85]Jumpponen A, Trowbridge J, Mandyam K, Johnson L. Nitrogen enrichment causes minimal changes in arbuscular mycorrhizal colonisation but shifts community composition-evidence from rDNA data[J]. Biology and Fertility of Soils,2005,41(4):217-224.
    [86]Kahiluoto H, Ketoja E, Vestberg M, Saarela I. Promotion of AM utilization through reduced P fertilization 2. Field studies. Plant and Soil,2001,231(1):65-79.
    [87]Douds D D, Galvez L, Franke Snyder M, Reider C, Drinkwater L E. Effect of compost addition and crop rotation point upon VAM fungi[J]. Agriculture, Ecosystems and Environment,1997,65(3): 257-266.
    [88]Simpson D, Daft M J. Interactions between water stress and different mycorrhizal inoculation plant growth and mycorrhizal development in maize and sorghum[J]. Plant and Soil,1990,121(2):179-186.
    [89]Ortega-Larrocea M P, Siebe C, Estrada A, Webster R. Mycorrhizal inoculum potential of arbuscular mycorrhizal fungi in soils irrigated with wastewater for various lengths of time, as affected by heavy metals and available P[J]. Applied Soil Ecology,2007,37(1-2):129-138.
    [90]Muok B O, Matsumura A, Ishii T. The effect of intercropping Sclerocarya birrea (A. Rich.) Hochst., millet and corn in the presence of arbuscular mycorrhizal fungi[J]. African Journal of Biotechnology, 2009,8(5):807-812.
    [91]Vestberg M, Saari K, Kukkonen S, Hurme T. Mycotrophy of crops in rotation and soil amendment with peat influence the abundance and effectiveness of indigenous arbuscular mycorrhizal fungi in field soil[J]. Mycorrhiza,2005,15(6):447-458.
    [92]Mathimaran N, Ruh R, Jama B, Frossard E, Jansa J. Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol[J]. Agriculture, Ecosystems and Environment, 2007,119(1-2):22-32.
    [93]Oehl F, Sieverding E, Ineichen K, Mader P, Boller T, Wiemken A. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe[J]. Applied and Environmental Microbiology,2003,69(5):2816-2824.
    [94]Kittiworawat S, Youpensuk S, Rerkasem B. Diversity of arbuscular mycorrhizal fungi in mimosa invisa and effect of the soil ph on the symbiosis[J]. Chiang Mai J.2010,37(3):517-527.
    [95]Jansa J, Mqzafar A, Banke S, McDonald B A, Frossard E. Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis[J]. Mycological Research,2002,106(6):670-681.
    [96]许秀强,李敏,刘润进.农药污染土壤中AM真菌多样性初步调查[J].青岛农业大学学报.(自然科学版),2009,26(1):1-3.
    [97]O,Connor P J, Smith S E, Smith F A. Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland[J]. New Phytologist,2002,154(1):209-218.
    [98]Assaf T A, Turk M A, Hameed K M. Impact of olive pomace wastes and fungicide treatment on indigenous arbuscular mycorrhizal fungi associated with chickpea (Cicer arietinum L.) under field conditions[J]. Australian Journal of Crop Science,2009,3(1):6-12.
    [99]车玉伶,王慧,胡洪营,梁威,郭玉凤.微生物群落结构和多样性解析技术研究进展[J].生态环境,2005,14(1):127-133.
    [100]Trouvelot S, Van Tuinen D, Hijri M, Gianinazzi-Pearson V. Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hybridization[J]. Mycorrhiza,1999, 8:203-206.
    [101]Mummey D L, Rillig M C. Evaluation of LSU rRNA-gene PCR primers for analysis of arbuscular mycorrhizal fungal communities via terminal restriction fragment length polymorphism analysis[J]. Journal of Microbiological Methods,2007,70(1):200-204.
    [102]Schechter S P, Bruns T D. Serpentine and non-serpentine ecotypes of Collinsia sparsiflora associate with distinct arbuscular mycorrhizal fungal assemblages[J]. Molecular Ecology,2008,17(13): 3198-3210.
    [103]Geue H, Hock B. Determination of Acaulospora longula and Glomus subgroup in plant roots from grassland using new primers against the large subunit ribosomal DNA[J]. Mycological Research,2004, 108(Pt 1):76-83.
    [104]Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mouqel C, Van Tuinen D. Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots[J]. New Phytologist,2007,176(1):197-210.
    [105]Renker C, Heinrichs J, Kaldorf M, Buscot F. Combining nested PCR and restriction digest of the internal transcribed spacer region to characterize arbuscular mycorrhizal fungi on roots from the field[J]. Mycorrhiza,2003,13(4):191-198.
    [106]吴凤芝,赵凤艳,谷思玉.保护地黄瓜连作对土壤生物化学性质的影响[J].农业系统科学与综合研究2002,18(1):20-22
    [107]童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,1991,18(2):159-162.
    [108]Bronick C J, Lai R. Soil structure and management: A review[J]. Geoderma,2005,124(1-2):3-22.
    [109]蔡晓布,盖京苹,钱成,冯固.西藏高原天然长芒草地丛枝菌根真菌接种效应[J].应用生态学报,2006,17(11):2121-2126.
    [110]毕银丽,吴福勇,武玉坤.丛枝菌根在煤矿区生态重建中的应用[J].生态学报,2005,25(8):2068-2073.
    [111]van der Heijden M G, Bardgett R D, van Straalen N M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems[J]. Ecology Letters,2008,11 (3):296-310.
    [112]Bell C W, Acosta-Martinez V, McIntyre N E, Cox S, Tissue D T, Zak J C. Linking microbial community structure and function to seasonal differences in soil moisture and temperature in a Chihuahuan desert grassland[J]. Microbial Ecology,2009,58(4):827-842.
    [113]Acosta-Martinez V, Burow G, Zobeck T M, Allen V G. Soil microbial communities and function in alternative systems to continuous cotton[J]. Soil Science Society of America Journal.2010,74(4): 1181-1192.
    [114]Jia G M, Zhang P D, Wang G, Cao J, Han J C, Hung Y P. Relationship between microbial community and soil properties during natural succession of abandoned agricultural land[J]. Pedosphere,2010, 20(3):352-360.
    [115]李岩,焦惠,徐丽娟,赵洪海,刘润进.AM真菌群落结构与功能研究进展[J].生态学报,2010,30(4):1089-1096.
    [116]贺学礼,侯晓飞.荒漠植物根围AM真菌的时空分布[J].植物生态学报,2008,32(6):1373-1377.
    [117]范庆锋,张玉龙,陈重.保护地蔬菜栽培对土壤盐分积累及pH值的影响[J].水土保持学报,2009,23(1):103-106.
    [118]Oehl F, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T and Wiemken A. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi[J]. Oecologia,2004,138(4):574-583.
    [119]Schalamuk S, Velazquez S, Chidichimo H and Cabello M. Fungal spore diversity of arbuscular mycorrhizal fungi associated with spring wheat: effects of tillage[J]. Mycologia,2006,98(1):16-22.
    [120]Schenck N C, Perez Y. Manual for the identification of VA mycorrhizal fungi,2nd edn. pp.1988, 1-233. Synergistic Publications, Gainesville, Florida.
    [121]王淼焱,刁志凯,梁美霞,刘润进.农业生态系统中的AM真菌多样性[J].生态学报,2005,25(10):2744-2749.
    [122]盖京苹,冯固,李晓林.我国北方农田土壤中AM真菌的多样性[J].生物多样性.2004,12(4):435-440.
    [123]Johnson, N C, Pfleger, F L. VA mycorrhizae and cultural stresses[M]. In:Bethlenfalvay, G.J., Linderman, R.G. (Eds.), Mycorrhizae in Sustainable Agriculture. American Society of Agronomy, Madison, Wisconsin,1992,71-100.
    [124]del Val C, Barea, J M, Azcon-Aguilar, C. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils[J]. Applied and Environmental Microbiology,1999,65:718-723.
    [125]Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D. Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland[J]. Mycorrhiza,2001, 10(4):169-174.
    [126]Lovera, M and Cuenca, G. Diversidad de hongos micorrl'zicos arbusculares HMA y potencial micorrl'zico del suelo de una sabana natural y una sabana perturbada de La Gran Sabana Venezuela. Interciencia,2007,322:1-8.
    [127]Cuenca G and Lovera M. Seasonal variation and distribution at different soil depths of arbuscular mycorrhizal fungi spores in a tropical sclerophyllous shrubland[J]. Botany,2010,88(1):54-64.
    [128]Kabir Z, O'Halloran I P, Widden P and Hamel C. Vertical distribution of arbuscular mycorrhizal fungi under corn (Zea mays L.) in no-till and conventional tillage systems[J]. Mycorrhiza,1998,8(1): 53-55.
    [129]He X L, Mouratory S, Steinberger Y. Spatial distribution and colonization of arbuscular mycorrhizal fungi under the canopies of desert halophytes[J]. Arid Land Research and Management,2002,16(2): 149-160.
    [130]Carvalho L M, Cacados I, Martiris-Loucao M A. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of Tagus estuary (Portugal)[J]. Mycorrhiza,2001,11(6):303-309.
    [131]Escudero V, Mendoza R. Seasonal variation of arbuscular mycorrhizal fungi in temperate grasslands along a wide hydrologic gradient[J]. Mycorrhiza,2005,15(4):291-299.
    [132]Oehl F, Sieverding E, Ineichen K, Mader P, Wiemken A and Boller T. Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms[J]. Agriculture, Ecosystems and Environment,2009,134(3-4):257-268.
    [133]Rodriguez-Echeverria S, Gera Hol W H, Freitas H, Eason W R and Cook R. Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) link: Spore abundance and root colonization in six locations of the European coast[J]. European Journal of Soil Biology,2008,44(1):30-36.
    [134]Fontenla S, Godoy R, Rosso P, Havrylenko M. Root associations in Austrocedrus forests and seasonal dynamics of arbuscular mycorrhizas[J]. Mycorrhiza,1998,8(1):29-33.
    [135]Boddington C L, Dodd J C. The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol[J]. Plant and Soil,2000, 218(1-2):137-144.
    [136]Ma W K, Siciliano S D, Germida J J. A PCR-DGGE method for deteeting arbuscular mycorrhizal fungi in cultivated soils[J]. Soil Biology and Biochemistry,2005,37:1589-1597.
    [137]Roesti D, Gaur R, Johri B N, Imfeld G, Sharma S, Kawaljeet K, Aragno M. Plant growth stage, fertiliser management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields[J]. Soil Biology and Biochemistry,2006,38(5):1111-1120.
    [138]刘永俊,郑红,何雷,安黎哲,冯虎元.柠条根系中丛枝菌根真菌的季节性变化及影响因素[J].应用生态学报,2009,20(5):1085-1091.
    [139]Zhang H Q, Tang M, Chen H, Tian Z Q, Xue Y Q, Feng Y. Communities of arbuscular mycorrhizal fungi and bacteria in the rhizosphere of Caragana korshinkii and Hippophae rhamnoides in Zhifanggou watershed. Plant and soil,2010,326(1-2):415-424.
    [140]Yeates C, Gilling MR. Davison AD, Altavilla N, Veal DA. Methods for microbial DNA extraction from soil for PCR amplification. Biological Procedures Online,1998,1:40-47. (http://www. biologicalprocedures.com/bpo/arts/1/6/m6.htm)
    [141]Schwarzott D, Schuβler A. A simple and reliable method for ssuRNA gene DNA extraction, amplification and cloning from single AM fungal spore[J]. Mycorrhiza,2001,10:203-207
    [142]Helgason T, Daniell T J, Husband R, Fitter A H, Yong J P W. Ploughing the word- wide-web Nature, 1998,384:431-437.
    [143]Cornejo P, Azco'n-Aguilar C, Barea J M, Ferrel N. Temporal temperature gradient gel electrophoresis (TTGE) as a tool for the characterization of arbuscular mycorrhizal fungi[J]. FEMS Microbiology Letters,2004,241:265-270.
    [144]Opik M, Moora M, Liira J, Koljalg U, Zobel M, Sen R. Divergent arbuscular mycorrhizal communities colonize roots of Pulsatilla spp. in boreal Scots pine forest and grassland soils[J]. New Phytologist,2003,160:581-593.
    [145]张海燕,贺江舟,徐彪,龚明福,张利莉.新疆南疆不同连作年限棉田土壤微生物群落结构的变化[J].2010,37(5):689-695.
    [146]Kowalehuk G A, Gerards S, Wbldendorp J W. Deteetion and characterization of fungal infeetions of Ammophila arenaria(majrram grass)roots by denaturing gradient gel electrophoresis of specifically amplified 18Sr DNA[J]. Applied and Environmental Microbiology,1997,63:3858-3865.
    [147]Kowalehuk G A, deSouza F A, Vanveen J A. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes[J]. Molecular ecology,2002,11: 571-581.
    [149]王学奎.植物生理生化实验原理和技术[M].北京:高等教育出版社,2006.1-298.
    [150]李阜棣,喻子牛,何绍江.农业微生物学实验技术[M].北京:中国农业出版社,1996.178-181.
    [151]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986,274-338.
    [152]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999,1-638.
    [153]严昶升.土壤肥力研究方法[M].北京:农业出版社,1988,1-420.
    [154]马云华,王秀峰,魏珉,亓延凤,李天来.黄瓜连作土壤酚酸类物质积累对土壤微生物和酶活性的影响[J].应用生态学报,2005,16(11):2149-2153.
    [155]龙健,黄昌勇,滕应,姚槐应.红壤矿区复垦土壤的微生物生态特征及其稳定性恢复研究Ⅱ.对 土壤微生物生态特征和群落结构的影响[J].应用生态学报,2004,5(2):237-240.
    [156]于贤昌,蒋先明.摘顶对黄瓜主要生理特性的影响[J].园艺学报,1995,22(1):53-56.
    [157]Honeycutt C W. Nitrogen mineralization from soil organic matter and crop residues:Field validation of laboratory predictions[J]. Soil Science Society of America Journal,1999,63:134-141.
    [158]袁巧霞,朱端卫,武雅娟.温度、水分和施氮量对温室土壤pH及电导率的耦合作用[J].应用生态学报,2009,20(5):1112-1117.
    [159]余海英,李廷轩.辽宁设施栽培土壤盐分累积变化规律研究[J].水土保持学报,2005,19(4):80-83.
    [160]彭思利,申鸿,郭涛.接种丛枝菌根真菌对土壤水稳性团聚体特征的影响[J].植物营养与肥料学报.2010,16(3):695-700
    [161]van der Heijden M G A, Streitwolf-Engel R, Riedl R. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland[J]. New Phytologist,2006, 172(4):739-752.
    [162]Zimmermann S, Frey B. Soil respiration and microbial properties in an acid forest soil:Effects of woodash[J]. Soil Biology and Biochemistry,2002,34 (11):1727-1737.
    [163]孟亚利,王立国,周志国,王瑛,卞海云,陈兵林.套作棉根际与非根际土壤酶活性和养分的变化[J].应用生态学报,2005,1(11):2076-2080.
    [164]马云华,魏珉,王秀峰.日光温室连作黄瓜根区微生物区系及酶活性的变化[J].应用生态学报,2004,15(6):1005-1008.
    [165]胡元森,刘亚峰,吴坤,窦会娟,贾新成.黄瓜连作土壤微生物区系变化研究[J].土壤通报,2006,37(1):126-129.
    [166]王晓英,王冬梅,陈保冬,黄益宗,王幼珊.丛枝菌根真菌群落对白三叶草生长的影响[J].生态学报,2010,30 (6):1456-1462.
    [167]Gustafson D J, Casper B B. Differential host plant performance as a function of soil arbuscular mycorrhizal fungal communities:experimentally manipulating co-occurring Glomus species[J]. Plant Ecology,2006,183(2):257-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700