用户名: 密码: 验证码:
ZnS和ZnO纳米材料的制备及其光致发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米ZnS和ZnO是宽禁带半导体材料,由于具有量子限域效应、尺寸效应和优越的荧光特性等优点而吸引了众多研究者的目光。因此,在近十几年里,ZnS和ZnO纳米材料已经在光催化、传感器、透明电极、荧光探针、二极管、太阳能电池和激光器等领域的研究中显示出了巨大的发展潜力。通过在ZnS和ZnO基质中掺杂不同离子可以调节这些宽禁带纳米半导体材料的电学、光学和磁学特性,从而使它们得到更广泛的应用。由于发光特性是纳米半导体材料的一个重要特性,对ZnS和ZnO及其掺杂型纳米粒子发光特性进行研究不仅有科研方面的意义,而且在实际应用方面也有潜在的价值。因此,本论文针对ZnS和ZnO及其掺杂型纳米粒子的制备和光谱性能展开研究,主要的研究内容和结果如下:
     (1)分别采用沉淀法和固相法合成了不同粒径的ZnS纳米粒子,X射线衍射分析,透射和扫描电镜测试表明所有样品均为闪锌矿结构,平均粒径分别约为6.40nm和9.48nm。与沉淀法相比,固相法制备的ZnS纳米粒子的结晶度更好,发光强度更强。
     (2)采用沉淀法制备了ZnS:Mg2+纳米粒子,实验结果表明:在Znl-xMgxS(0≤x≤0.55)纳米粒子中,随着Mg2+浓度由0mol%增加到55mol%时,虽然样品的发光强度随Mg2+浓度的增加而降低,但其带隙由3.70eV增加至3.98eV,这说明Mg2+的掺杂能调节ZnS纳米粒子的带隙宽度。
     (3)采用低温固相法制备了ZnS:O2-纳米粒子,研究了O2-的掺杂浓度、反应条件和退火条件对样品荧光特性的影响,讨论了ZnS:O2-纳米粒子的荧光发射机理,研究结果表明:与ZnS纳米粒子相比,O2-掺杂后的样品室温下蓝色发光强度相对增强,这表明掺杂后的样品具有良好的光学性质。当初始原料中Zn和O的摩尔比为10:5.3时,样品的发射强度最强,其强度为未掺杂ZnS样品的9倍。研究反应条件对ZnS:O2-(Zn/O=10:5.3)样品荧光特性影响时,发现反应时间由1h延长至5h和反应温度由120℃升高至160℃时,样品的粒径由7.93nm增大到19.10nm,最佳反应时间和反应温度分别为3h和130℃。同时,通过研究退火条件的影响时,发现:退火能使ZnS:O2-(Zn/O=10:5.3)样品粒径和发光强度增加,最佳退火条件为:空气中退火时,最佳退火时间和退火温度分别为0.5h和100℃;而在真空中退火时,最佳退火时间和退火温度则分别为3h和150℃。
     (4)采用固相法制备了卤素掺杂的ZnS纳米粒子,光谱测试结果表明:卤素离子的掺杂,能提高样品的发光强度,最佳的反应摩尔比分别为:F/Zn=0.3,Cl/Zn=0.35,Br/Zn=0.4,I/Zn=0.45。同时,研究表面活性剂(聚乙烯醇,PVA)对样品荧光性能影响时,发现:PVA能有效减少卤素掺杂的ZnS纳米粒子的表面悬挂键,提高样品的发光强度。
     (5)分别采用溶胶-凝胶法和低温固相法合成了ZnO纳米粒子,测试结果表明所有样品均为六角纤锌矿结构,平均粒径分别为17.42nm和20.28nm。与溶胶-凝胶法相比,固相法制备的ZnO纳米粒子的结晶度好,发光强度较强。通过探讨反应条件对溶胶-凝胶法制备的ZnO纳米粒子的晶体结构和发光性能的影响,发现:当反应温度为60℃,反应时间由6h增加至10h时,ZnO纳米粒子的粒径由16.0nm增大到30.2nm,反应时间为7h的样品的发光强度最强;当反应时间为7h,反应温度由50℃增加到90℃时,ZnO纳米粒子的粒径由17.3nm增大到32.2nm,反应温度为60℃的样品的发光强度最强。不同退火条件对样品性能影响的研究结果表明:退火处理能改善样品的结晶度,增大粒径,提高发光强度。最佳退火温度和退火时间分别为100℃和0.5h。另外,在该退火条件下,真空退火样品的荧光强度高于空气退火的样品,这是由于真空退火能更有效的使样品表面吸附的氧原子发生脱附反应。
     (6)采用低温固相法制备ZnO:S2-纳米粒子和ZnS/ZnO:S2-纳米异质结材料,研究发现:当S2-的掺杂量低于S2-在ZnO中的固溶度时,产物为ZnO:S2-纳米粒子;当S2-的掺杂量高于ZnS和ZnO的固溶度时,除了生成ZnO:S2-纳米粒子外,还存在ZnS纳米颗粒,形成ZnS/ZnO:S2-纳米异质结。荧光光谱表明:ZnO:S2-纳米粒子的发光强度高于ZnO样品的,但是却低于ZnS/ZnO:S2-纳米异质结材料的荧光强度,而且ZnS/ZnO:S2-纳米异质结的发光强度约为ZnO样品的25倍。其原因是:对ZnO:S2-纳米粒子而言,S2-掺杂能有效提高样品的辐射复合发光几率,增强样品的荧光强度,而ZnS/ZnO:S2-纳米异质结材料中,表面层的ZnS纳米粒子能起到修饰ZnO:S2-纳米粒子表面的作用,从而降低表面缺陷态浓度,提高样品的荧光强度。
     (7)采用低温固相法制备了ZnO:Mg2+纳米粒子,研究结果表明:Mg2+的掺杂能引起锌空位,镁间隙等新缺陷的产生,使样品的辐射跃迁增强,导致样品的荧光强度增强。
As wide band-gap semiconductor materials, zinc sulfide (ZnS) and Zinc oxide (ZnO) nanoparticles have attracted considerable interest because of their quantum confinement effects, size effects, and superior luminescence characteristics. In the last two decades, ZnS and ZnO nanoparticles have been found broad applications in many different technological areas, including photo-catalysis, sensors, transparent electrodes, fluorescent probes, light-emitting diodes, solar cells, and lasers. Moreover, the electrical, optical, and magnetic properties of the wide band-gap nano-semiconductors can be conveniently adjusted by impurity doping for different applications. One of the important properties of ZnS and ZnO nanoparticles is the luminescence property. The investigation on the luminescent properties of ZnX (X=S and O) and ZnX:M (M is the doping ion) is significative for both scientific research and practical applications. So, the preparation and photoluminescence properties of ZnS and ZnO nano-luminescence materials were studied in this thesis.
     In this thesis, the following work has been finished:
     (1) ZnS nanoparticles were successfully prepared using a facile chemical solution method and solid state reaction method at low temperature, respectively. The size, the crystal structure and luminescent properties of ZnS nanoparticles were characterized by X-ray diffraction (XRD), transmission electronic microscope (TEM) and scanning electron microscopy (SEM). The result showed that the product had a cubic crystal structure and the average crystallite size was6.40and9.48nm, respectively. As compared with chemical solution method, ZnS nanoparticles, which were obtained by solid state reaction method, had better crystallinity and higher emission intensity.
     (2) Zn1-xMgxS nanoparticles were synthesized using a chemical solution method. The result showed that the energy band gap of the Zn1-xMgxS nanoparticles increased from3.70eV at x=0to3.98eV at x=0.55, which indicated that Mg2+-doped can adjust the energy band gap of the Zn1-xMgxS nanoparticles. However, the PL intensity of the Zn1-xMgxS nanoparticles was found to decrease with x due to an increase in the number of non-radiative deep traps.
     (3) ZnS:O2-nanoparticles were synthesized using a solid state reaction method at low temperature. The effect of O2-contents, reaction condition and anneal condition on the PL properties of samples was studied in detail. The result showed that O2-doping remarkably increased the luminescence intensity of ZnS nanoparticles, and a maximum emission was reached when Zn/O=10:5.3in the starting materials. The emission intensity of the ZnS:O2-(Zn/O=10:5.3) nanoparticles was about9times as high as that of the undoped ZnS sample. The average diameter of ZnS:O2-(Zn/O=10:5.3) nanoparticles increased from7.93to19.10nm with the increase of reaction time (from1to5h) and temperature (from120to160℃). A maximum emission of the ZnS:O2-(Zn/O=10:5.3) nanoparticles was observed when the reaction time and temperature were3h and130℃, respectively. The result also indicated that after annealing all samples showed larger radius and stronger visible emission for ZnS:O2-(Zn/O=10:5.3) nanoparticles. In this work, the optimal anneal temperature and anneal time were found to be100℃and0.5h for air annealed, and150℃and3h for vacuum annealed, respectively.
     (4) ZnS:X'(X=F, Cl, Br and I) nanoparticles was prepared by solid state reaction method and researched their PL properties. The result showed that after doping with halogen ion, all samples showed stronger visible emission for ZnS:X-(X=F, Cl, Br and I) nanoparticles, and the optimal molar ratio of X/Zn was found to be0.3,0.35,0.4and0.45for F, Cl, Br and I, respectively. It was also observed that PVA can decrease the number of the surface dangling bonds and then resulted in an increase in PL intensity of ZnS:X-(X=F, Cl, Br and I) nanoparticles.
     (5) ZnO nanoparticles were successfully prepared using sol-gel method and solid state reaction method at low temperature, respectively. The result showed that the product had a hexagonal wurtzite crystal structure and the average crystallite size was17.42and20.28nm, respectively. As compared with sol-gel method, ZnO nanoparticles, which were obtained by solid state reaction method, had better crystallinity and higher emission intensity. The effects of the reaction time and temperature on the microstructures and photoluminescence properties of ZnO nanoparticles were studied in detail. The result indicated that with the reaction time increasing (from6to10h), the diameter of ZnO nanoparticles was increased from16.0to30.2nm and the maximum intensity of emission was obtained while the reaction time was7h, under the same reaction temperature60℃. And under the same reaction time7h, with the reaction temperature increasing (from50to90℃), the diameter of ZnO nanoparticles was augmented from17.3to32.2nm and the maximum emission was attained when the reaction temperature was60℃. The effects of annealing conditions on the crystallinity, diameter, and PL properties of ZnO nanoparticles prepared by sol-gel method were investigated. All annealed ZnO nanoparticles showed stronger UV-visible emission and crystallinity than the as-grown ZnO nanoparticles. In this work, the optimal anneal temperature and anneal time were found to be100C and0.5h, respectively. Under the optimal anneal conditions, the vacuum annealed ZnO nanoparticles showed stronger emission intensity than the air annealed ZnO nanoparticles.
     (6) ZnO:S2-nanoparticles and ZnS/ZnO:S2-nanoheterostructure were obtained by solid state reaction method. The result showed that when S2-content was less than the solid solubility of ZnS and ZnO, S2-replaced O2-and formed ZnO1-xSx nanoparticles, and when S2-content was higher than the solid solubility of ZnS and ZnO, some parts of S2-had replaced O2-and form ZnO1-y-Sy (y is the maximum of the solid solubility between ZnS and ZnO) nanoparticles, others could not incorporate into ZnO1-+ySy nanoparticles and would react with Zn2+formed ZnS, which resulted in forming ZnS/ZnO1-ySy, nanoheterostructure. It can be seen that the emission intensity of samples follows the order ZnS/ZnO:S2->ZnO:S2->ZnO. And the photoluminescence intensity of ZnS/ZnO:S2-nanoheterostructure is much stronger than ZnO nanoparticles by25times. This may suggest that S2-dopants increase the number of radiative recombination sites in ZnO:S2-nanoparticles, but when ZnO:S2-nanoparticles were caped by ZnS nanoparticles, hackly surface was modified to some extent, which can decrease the number of the surface dangling bonds and then resulted in an increase in PL intensity.
     (7) Mg2+--doped ZnO nanoparticles were prepared by solid state reaction method. The result showed that doped with Mg2+can induce defect states in the ZnO nanocrystals such as VZn (zinc vacancy) and Mgi (interstitial magnesium), which resulted in enhance radiative recombination and PL intensity.
引文
[1]R. Kubo, A. Kawabata, S. Kobayashi. Electronic Properties of Small Particles [J]. Annual Review of Materials Science,1984,14:49-66.
    [2]W. P. HalPerin. Quantum size effects in metal particles [J]. Reviews of Modern Physics,1986,58:533~606.
    [3]张立德.纳米材料研究的进展与我国的对策[J],科技导报,2000,10:33-34.
    [4]Kenneth J. Klabunde, Jane Stark, Olga Koper, et al. Nanocrystals as Stoichiometric Reagents with Unique Surface Chemistry [J]. Journal of Physical Chemistry,1996,100:12142~12153.
    [5]A. Benglein. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chemical Reviews,1989, 89:1861~1873.
    [6]L. E. Brus. Electron-electron and electron-hole interactions in small semiconductor crystallites:The size dependence of the lowest excited electronic state [J]. Journal Chemical Physics,1984,80:4403~4409.
    [7]P. Ball, L. Garwin. Science at the atomic scale [J]. Nature,1992,355:761~765.
    [8]D. L. Feldhein, C. D. Keating. Self-assembly of single electron transistors and related devices [J]. Chemical Society Reviews,1998,27:1~12.
    [9]俞建群,贾殿赠,郑敏峰,等.纳米氧化镍、氧化锌的合成新方法[J].无机化学学报,1999,15(1):95-98.
    [10]Muneer M. Ba-Abbad, Abdul Amir H. Kadhum, Abu Bakar Mohamad, et al. The effect of process parameters on the size of ZnO nanoparticles synthesized via the sol-gel technique [J]. Journal of Alloys and Compounds,2013,550:63~70.
    [11]M. M. Biggs, O. M. Ntwaeaborwa, J. J. Terblans, et al. Characterization and luminescent properties of SiO2:ZnS:Mn2+ and ZnS:Mn2+ nanophosphors synthesized by a sol-gel method [J]. Physica B:Condensed Matter,2009,404: 4470~4475.
    [12]梁兵,孙小军.ZnS纳米粒子的微乳液合成研究[J].当代化工,2006,35:169~172.
    [13]Yong Han, E. Todd Voiles, L. Scott Chumbley, et al. Synthesis and Characterization of Zinc Sulfide/Gallium Phosphide Nanocomposite Powders [J]. Journal of American Ceramic Society,1994,77(12):3153~3160.
    [14]E. G. Posner. Colloidal zinc oxide [M].1995, US24359.
    [15]郭岚,谢冰,焉爱平,等.微波合成网状结构纳米氧化锌[J].南昌大学学报 (理科版),2011,35:64~66.
    [16]袁吉仁,李要球,邓新华.纳米ZnO的光吸收特性[J].南昌大学学报(工科版),2006,28:329~331.
    [17]孙聆东,付雪峰,钱程,等.水热法合成Cd/ZnO核壳结构纳米微粒[J].高等学校化学学报,2001,22(6):879-882.
    [18]T. Pellegrino, S. Kudera, T. Liedl, et al. On the development of colloidal nanoparticles towards multifunctional structures and their possible use for biological applications [J]. Small,2005,1:48~63.
    [19]M. Moussaoui, R. Saoudi, I. V. Lesnichiy, et al. Optical measurements of ZnS nanoparticles aqueous solution [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2011,112:1792~1795.
    [20]K. Roy Choudhury, Y. Sahoo, T. Y. Ohulchanskyy, et al. Efficient photoconductive devices at infrared wavelengths using quantum dot-polymer nanocomposites [J]. Applied Physics Letters,2005,87:073110~073113.
    [21]Haiyan Song, Young-Min Leem, Byoung-Gyu Kim, et al. SiO2-coated ZnS submicrospheres with enhanced thermal stability and photoluminescence [J]. Materials Science and Engineering B,2007,143:70~75.
    [22]H. C. Ong, R. P. H. Chang. Optical constants of wurtzite ZnS thin films determined by spectroscopic ellipsometry [J]. Applied Physics Letters,2001, 79(22):3612~3614.
    [23]T. Vossmeyer, L. Katsikas, M. Giersig, et al. CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift [J]. Journal of Physical Chemistry,1994,98:7665~7673.
    [24]A. P. Alivisatos. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals [J]. Journal of Physical Chemistry,1996,100:13226~13239.
    [25]D. Dinsmore, D. S. Hsu, H. F. Gray, et al. Mn-doped ZnS nanoparticles as efficient low-voltage cathodoluminescent phosphors [J]. Applied Physics Letters, 1999,75(6):802~804.
    [26]X. J. Zheng, Y. Q. Chen, T. Zhang, et al. Photoconductive semiconductor switch based on ZnS nanobelts film [J]. Sensors and Actuators B,2010,147(2): 442~446.
    [27]Jie Dai, Zhengjing Jiang, Wenge Li, et al. Solvothermal preparation of inorganic-organic hybrid compound of [(ZnS)2(en)。and its application in photocatalytic degradation [J]. Materials Letters,2002,55(6):383~387.
    [28]Hengbo Yin, Yuji Wada, Takayuki Kitamura, et al. Photoreductive Dehalogenation of Halogenated Benzene Derivatives Using ZnS or CdS Nanocrystallites as Photocatalysts [J]. Environ Science and Technology,2001, 35(1):227~231.
    [29]Xiaoling Wang, S. O. Pehkonen, Ajay K. Ray. Removal of Aqueous Cr(VI) by a Combination of Photocatalytic Reduction and Coprecipitation [J]. Industrial and Engineering Chemistry Research,2004,43(7):1665~1672.
    [30]李莹滢,董祥,程传伟,等.水热法制备ZnS/Ag复合纳米线及其光催化性能研究[J].稀有金属材料与工程,2010,39:1380~1384.
    [31]张晓松,李岚,黄青松,等.核/壳结构ZnS:Mn/ZnS量子点光发射增强研究[J].电子·激光,2011,22(1):1-4.
    [32]C.S. Pathak, M. K. Mandal. Enhanced photoluminence properties of Mn2+ doped ZnS nanoparticles [J], Chalcogenide Letters,2011,8:147~153.
    [33]王余姜,陈谋智,孙书农,等.掺饵硫化锌交流电致发光薄膜的表面结构[J].半导体光电,1999,20:108~110.
    [34]黄风华,彭亦如.ZnS量子点的合成及荧光特性[J].合成化学,2004,12:529~531.
    [35]R. Saravanan, S. Saravanakumar, S. Lavanya. Growth and local structure analysis of ZnS nanoparticles [J]. Physica B:Condensed Matter,2010,405(17): 3700~3703.
    [36]Ondrej Kozak, Petr Praus, Kamila Koci, et al. Preparation and characterization of ZnS nanoparticles deposited on montmorillonite [J]. Journal of Colloid and Interface Science,2010,352:244~251.
    [37]Heng Zhi Zeng, Ke Qiang Qiu, Yuan Yuan Du, et al. A new way to synthesize ZnS nanoparticles [J]. Chinese Chemical Letters,2007,18(4):483~486.
    [38]Shin-ichiro Yanagiya, Yuji Iseki, Takamasa Kaito, et al. Growth of ZnS nano-crystallites in gel and their characterization [J]. Materials Chemistry and Physics,2007,105(2):250~252.
    [39]Hao-Ying Lu, Sheng-Yuan Chu, Soon-Seng Tan. The characteristics of low-temperature-synthesized ZnS and ZnO anoparticles [J]. Journal of Crystal Growth,2004,269:385~391.
    [40]Baoyu Liu, Long Hu, Chengchun Tang, Lu Liu, et al. Self-assembled highly symmetrical ZnS nanostructures and their cathodoluminescence [J]. Journal of Luminescence,2011,131:1095~1099.
    [41]Liping Wang, Shungang Huang, Yujie Sun. Low-temperature synthesis of hexagonal transition metal ion doped ZnS nanoparticles by a simple colloidal method [J]. Applied Surface Science,2013,270:178~183.
    [42]Lingdong Sun, Chunhua Yan, Changhui Liu, et al. Study of the optical properties of Eu3+-doped ZnS nanocrystals [J]. Journal of Alloys and Compounds,1998,275: 234~237.
    [43]张晓松,开桂云,李岚,等.ZnS:Er量子点材料制备及其受激发光特性研究[J].光电子·激光,2006,17:1487~1491.
    [44]Huaming Yang, Chenghuan Huang, Xiaohui Su, et al. Microwave-assisted synthesis and luminescent properties of pure and doped ZnS nanoparticles [J]. Journal of Alloys and Compounds,2005,402:274~277.
    [45]Tzu-Piao Tang. Photoluminescence of ZnS:Tb phosphors fritted with different fluxes [J]. Ceramics International,2007,33:1251~1254.
    [46]J. P. Kim, M. R. Davidson, M. Puga-Lambers, et al. Oxygen codoping of ZnS:Tb, F electroluminescent thin film [J]. Journal of Luminescence,2004,109(2): 75~83.
    [47]Tzu-Piao Tang, Mu-Rong Yang, Ko-Shao Chen. Effect of LiCl flux on the red ZnS:Sm phosphors in reductive atmosphere [J]. Ceramics International,2000,26: 341~346.
    [48]Xiaohui Wang, Dong Li, Yanzhu Guo, et al. Preparation of lanthanide doped CdS, ZnS quantum dots in natural polysaccharide template and their optical properties [J]. Optical Materials,2012,34(4):646~651.
    [49]J. Lee, V. C. Sundar, J. R. Heine, et al. Full color emission from II-VI semiconductor quantum dot-polymer composites [J]. Advanced Materials,2000, 12:1102~1105.
    [50]Hamid Reza Rajabi, Omid Khani, Mojtaba Shamsipur, et al. High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation [J]. Journal of Hazardous Materials,2013,250:370~378.
    [51]Andrea Klausch, HolgerAlthues, ChristianSchrage, et al. Preparation of luminescent ZnS:Cu nanoparticles for the functionalization of transparent acrylate polymers [J]. Journal of Luminescence,2010,130:692~697.
    [52]Ping Yang, Mengkai Lii, Dong Xu, et al. Luminescence characteristics of ZnS nanoparticles co-doped with Ni2+ and Mn2+[J]. Optical Materials,2003,24: 497~502.
    [53]D. Amaranatha Reddy, G. Murali, B. Poornaprakash, et al. Effect of annealing temperature on optical and magnetic properties of Cr doped ZnS nanoparticles [J]. Solid State Communications,2012,152:596~602.
    [54]Sangdan Kim, Taekyung Lim, Mi Jung, et al. Bright blue emission from Te-doped ZnS nanowires [J]. Journal of Luminescence,2010,130:2153~2156.
    [55]Pramod H. Borse, W. Vogel, S.K. Kulkarni. Effect of pH on photoluminescence enhancement in Pb-doped ZnS nanoparticles [J]. Journal of Colloid and Interface Science,2006,293:437~442.
    [56]Muhammad Javed Iqbal, Shahid Iqbal. Synthesis of stable and highly luminescent beryllium and magnesium doped ZnS quantum dots suitable for design of photonic and sensor material [J]. Journal of Luminescence,2013,134:739~746.
    [57]K. Manzoor, S. R. Vadera, N. Kumar, et al. Synthesis and photoluminescent properties of ZnS nanocrystals doped with copper and halogen [J]. Materials Chemistry and Physics,2003,82:718~725.
    [58]M. Shirata, K. Shimizu, T. Koike, et al. Effect of Ir3+ Incorporation on the Luminescent Properties of ZnS:Cl Phosphors [J]. Journal of the Electrochemical Society,2011,158:H318~H321.
    [59]K. Akimoto, H. Okuyama, M. Ikeda, et al. Isoelectronic oxygen in II-VI semiconductors [J]. Applied Physics Letters,1992,60(1):91~93.
    [60]C. Corrado, J. K. Cooper, M. Hawker, et al. Synthesis and characterization of organically soluble Cu-doped ZnS nanocrystals with Br Co-activator [J]. Journal of Physical Chemistry C,2011,115:14559~14570.
    [61]Yang Li, Sheng Zhou, Zhong Chen, et al. Luminescence properties of Br-doped ZnS nanoparticles synthesized by a low temperature solid-state reaction method [J]. Ceramics International,2013,39:5521-5525.
    [62]Khan A. Alim, Vladimir A. Fonoberov, Alexander A. Balandin. Origin of the optical phonon frequency shifts in ZnO quantum dots [J]. Applied Physics Letters, 2005,86:053103~053105.
    [63]S. Desgreniers. High-Density Phases of ZnO: Structural and Compressive Parameters [J]. Physical Review B,1998,58(21):14102~14105.
    [64]J. E. Jafe, A. C. Hess. Hartree-Fock study of phase changes in ZnO at high pressure [J]. Physical Review B,1993,48:7903~7909.
    [65]陈运详.ZnO薄膜的性能和应用[J].压电与声光,1991,13:63~66.
    [66]S. Barik, A. K. Srivastava, P. Misra, et al. Alumina capped ZnO quantum dots multilayer grown by pulsed laser deposition [J]. Solid State Communications, 2003,127:463~467.
    [67]Zeshan Hu, Gerko Oskam, Peter C. Searson. Influence of the reactant concentrations on the synthesis of ZnO nanoparticles [J]. Journal of Colloid and Interface Science,2005,188:313~316.
    [68]B. G Alexey, V. Kavokin. Giant exciton-light coupling in ZnO quantum dots [J]. Applied Physics Letters,2002,81:748~750.
    [69]Aarnoud L. Roest, John J. Kelly, Daniel Vanmaekelbergh. Coulomb blockade of electron transport in a ZnO quantum-dot solid [J]. Applied Physics Letters,2003, 83:5530~5532.
    [70]Hsiu-Fen Lin, Shih-Chieh Liao, Sung-Wei Hung. The dcthermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst [J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,174:82~87.
    [71]M. D. Driessen, T. M. Miller, V. H. Grassian. Photocatalytic oxidation of trichloroethylene on zinc oxide: characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy [J]. Journal of Molecular Catalysis A:Chemical,1998,131:149~156.
    [72]Duy-Thach PhanAuthor Vitae, Gwiy-Sang Chung. Effects of defects in Ga-doped ZnO nanorods formed by a hydrothermal method on CO sensing properties [J]. Sensors and Actuators B:Chemical, http://dx.doi.org/10.1016/j.snb.2012.10.080.
    [73]Xi Liu, Pei Lin, Xiaoqin Yan, et al. Enzyme-coated single ZnO nanowire FET biosensor for detection of uric acid [J]. Sensors and Actuators B:Chemical,2013, 176:22~27.
    [74]Mei Chen, Zhihua Wang, Dongmei Han, et al. High-sensitivity NO2 gas sensors based on flower-like and tube-like ZnO nanomaterials [J]. Sensors and Actuators B:Chemical,2011,157:565~574.
    [75]O. Lupan, V. V. Ursaki, G. Chai, et al. Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature [J]. Sensors and Actuators B:Chemical,2010,144:56~66.
    [76]C. Soci, A. Zhang, B. Xiang, et al. ZnO nanowire UV photodetectors with high internal gain [J]. Nano Letters,2007,7:1003~1009.
    [77]D. II Suh, S. Y. Lee, J. H. Hyung, et al. Multiple ZnO Nanowires Field-Effect Transistors [J]. Journal of Physical Chemistry C,2008,112(4):1276~1281.
    [78]M. C. Jeong, B. Y. Oh, M. H. Ham. ZnO-Nanowire-Inserted GN/ZnO Heterojunction light- emitting diodes [J]. Small,2007,3(4):568~572.
    [79]Chiang-Ting Chen, Fang-Chi Hsu, Yun-Ming Sung, et al. Effects of metal-free conjugated oligomer as a surface modifier in hybrid polymer/ZnO solar cells [J]. Solar Energy Materials and Solar Cells,2012,107:69~74.
    [80]V.-M. Guerin, J. Rathousky, Th. Pauporte. Electrochemical design of ZnO hierarchical structures for dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells,2012,102:8~14.
    [81]Lanlan Lu, Renjie Li, Ke Fan, et al. Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles [J]. Solar Energy,2010,84:844~853.
    [82]S. Senthilkumar, R. Hariharan, A. Suganthi, et al. Synergistic photodynamic action of ZnO nanomaterials encapsulated meso-tetra (4-sulfonatophenyl) porphyrin [J]. Powder Technology,2013,237:497~505.
    [83]R. Razali, A. Khorsand Zak, W.H. Abd. Majid, et al. Solvothermal synthesis of microsphere ZnO nanostructures in DEA media [J]. Ceramics International,2011, 37:3657~3663.
    [84]Wei Xie, Yuanzhi Li, Wenqin Shi, et al. Novel effect of significant enhancement of gas-phase photocatalytic efficiency for nano ZnO [J]. Chemical Engineering Journal,2012,213:218~224.
    [85]Davood Raoufi. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method [J]. Renewable Energy,2013,50:932~937.
    [86]M. A. Gondal, Q. A. Drmosh, Z. H. Yamani, et al. Synthesis of ZnO2 nanoparticles by laser ablation in liquid and their annealing transformation into ZnO nanoparticles [J]. Applied Surface Science,2009,256(1):298~304.
    [87]Pranab Biswas, Souvik Kundu, P. Banerji, et al. Super rapid response of humidity sensor based on MOCVD grown ZnO nanotips array [J]. Sensors and Actuators B: Chemical,2013,178:331~338.
    [88]T. Ates, C. Tatar, F. Yakuphanoglu. Preparation of semiconductor ZnO powders by sol-gel method: Humidity sensors [J]. Sensors and Actuators A: Physical, 2013,190:153~160.
    [89]Kuo-Feng Lin, Hsin-Ming Cheng, Hsu-Cheng Hsu, et al. Band gap variation of size-controlled ZnO quantum dots synthesized by sol-gel method [J]. Chemical Physics Letters,2005,409:208-211.
    [90]R. S. Ajimsha, G. Anoop, Arun Aravind, et al. Luminescence from Surfactant-Free ZnO Quantum Dots Prepared by Laser Ablation in Liquid [J]. Electrochemical and Solid-State Letters,2008,11(2):K14~K17.
    [91]B. Djurisc Aleksandra, Yu Hang Leung. Optical properties of ZnO nanostructures [J]. Small,2006,2(8):944~961.
    [92]S. A. Studenikin, Cocivera Michael. Time-resolved luminescence and photoconductivity of polycrystalline ZnO films [J]. Journal of Applied Physics, 2002,91(8):5060~5065.
    [93]J. Nayak, S. Kimura, S. Nozaki. Enhancement of the visible luminescence from the ZnO nanocrystals by Li and Al co-doping [J]. Journal of Luminescence,2009, 129(1):12~16.
    [94]J. W. Chiou, H. M. Tsai, C. W. Pao, et al. Mg-induced increase of band gap in Zn1-xMgxO nanorods revealed by X-ray absorption and emission spectroscopy [J]. Journal of Applied Physics,2008,104(1):013709-013712.
    [95]A. Ohtomo, M, Kawasaki, T. Koida, et al. MgxZn1-xO as a II-VI wide gap semiconductor alloy [J]. Applied Physics Letters,1998,72:2466~2469.
    [96]S. Suwanboon, P. Amornpitoksuk. Preparation of Mg-doped ZnO nanoparticles by mechanical milling and their optical properties [J]. Procedia Engineering, 2012,32:821~826.
    [97]T. Makino, Y. Segawa, M. Kawasaki, et al. Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films [J]. Applied Physics Letters,2001, 78:1237~1230.
    [98]A. Parra-Palomino, O. Perales-Perez, R. Singhal, et al. Struetural, Optical and magnetic characterization of monodisperse Fe-doped ZnO nanocrystals [J]. Journal of Applied Physics,2008,103(7):07D121~07D123.
    [99]Santa Chawla, Sharda, K. Jayanthi. Fabrication of ZnO:Mn nanoparticles with organic shell in a highly alkaline aqueous environment [J]. Applied Surface Science,2011,257:2935~2939.
    [100]于宙,李洋,龙雪,等.Mn掺杂ZnO稀磁半导体材料的制备和磁性研究[J].物理学报,2008,57(7):4539~4544.
    [101]Yingzi Peng, Dexuan Huo, Haiping He, et al. Characterization of ZnO:Co particles prepared by hydrothermal method for room temperature magnetism [J]. Journal of Magnetism and Magnetic Materials,2012,324:690~694.
    [102]M. El-Hilo, A. A. Dakhel, A. Y. Ali-Mohamed. Room temperature ferromagnetism in nanocrystalline Ni-doped ZnO synthesized by co-precipitation [J]. Journal of Magnetism and Magnetic Materials,2009,321:2279~2283.
    [103]Bharti Choudhary, Santa Chawla, K. Jayanthi, et al. Synthesis and surface modification of ZnO:Cu nanoparticles by silica and PMMA [J].Current Applied Physics,2010,10(3):807~812.
    [104]Imran Khan, Shakeel Khan, Razia Nongjai, et al. Structural and optical properties of gel-combustion synthesized Zr doped ZnO nanoparticles [J]. Optical Materials, 2013,35(6):1189~1193.
    [105]Yu-Chih Tseng, Yow-Jon Lin, Hsing-Cheng Chang, et al. Effects of Ti content on the optical and structural properties of the Ti-doped ZnO nanoparticles [J]. Journal of Luminescence,2012,132:491~494.
    [106]Ahmed A. Ibrahim, G N. Dar, Shabi Abbas Zaidi, et al. Growth and properties of Ag-doped ZnO nanoflowers for highly sensitive phenyl hydrazine chemical sensor application [J]. Talanta,2012,93:257~263.
    [107]Xiying Ma, Zui Wang. The optical properties of rare earth Gd doped ZnO nanocrystals [J]. Materials Science in Semiconductor Processing,2012,15: 227~231.
    [108]Javed Iqbal, Xiaofang Liu, Huichao Zhu, et al. Raman and highly ultraviolet red-shifted near band-edge properties of LaCe-co-doped ZnO nanoparticles [J]. Acta Materialia,2009,57(16):4790~4796.
    [109]Honglin Li, Zhong Zhang, Jinzhao Huang, et al. Optical and structural analysis of rare earth and Li co-doped ZnO nanoparticles [J]. Journal of Alloys and Compounds,2013,550:526~530.
    [110]Takahiro Tsuji, Yoshikazu Terai, Muhammad hakim bin Kamarudin, et al. Photoluminescence properties of Sm-doped ZnO grown by sputtering-assisted metalorganic chemical vapor deposition [J]. Journal of Non-Crystalline Solids, 2012,358(17):2443~2445.
    [111]J. H. Zheng, J. L. Song, Q. Jiang, et al. Enhanced UV emission of Y-doped ZnO nanoparticles [J]. Applied Surface Science,2012,258(18):6735~6738.
    [112]Sumetha Suwanboon, Pongsaton Amornpitoksuk, Apinya Sukolrat, et al. Optical and photocatalytic properties of La-doped ZnO nanoparticles prepared via precipitation and mechanical milling method [J]. Ceramics International,2013, 39(3):2811~2819.
    [113]Tiekun Jia, Weimin Wang, Fei Long, et al. Synthesis, characterization and luminescence properties of Y-doped and Tb-doped ZnO nanocrystals [J]. Materials Science and Engineering:B,2009,162:179~184.
    [114]A. Sharma, S. Dhar, B. P. Singh, T. Kundu. Influence of Tb incorporation on the structural and the optical properties of ZnO nanoparticles [J]. Solid State Communications,2011,151:1885~1888.
    [115]R. Nedelec, R. Vianden, ISOLDE Collaboration. Temperature dependent PAC studies with the rare earth Lu in ZnO [J]. Optical Materials,2006,28:723~726.
    [116]Surender Kumar, P. D. Sahare. Nd-doped ZnO as a multifunctional nanomaterial [J]. Journal of Rare Earths,2012,30:761~768.
    [117]J. M. Lin, Y. Z. Zhang, Z. Z. Ye, et al. Nb-doped ZnO transparent conducting films fabricated by pulsed laser deposition [J]. Applied Surface Science,2009, 255:6460~6463.
    [118]Mingya Zhong, Guiye Shan, Yajun Li, et al. Synthesis and luminescence properties of Eu3+-doped ZnO nanocrystals by a hydrothermal process [J]. Materials Chemistry and Physics,2007,106:305~309.
    [119]S. K. Lathika Devi, K. Sudarsana Kumar, A. Balakrishnan. Rapid synthesis of pure and narrowly distributed Eu doped ZnO nanoparticles by solution combustion method [J]. Materials Letters,2011,65:35~37.
    [120]Xianbing Ming, Fei Lu, Ziwu Ji, et al. Annealing effect and photo luminescence properties in Tm+-implanted ZnO crystalm [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 2012,274:172~176.
    [121]E. Rita, E. Alves, U. Wahl, et al. Optical doping of ZnO with Tm by ion implantation [J]. Physica B:Condensed Matter,2003,340:235~239.
    [122]Sadia Ameen, M. Shaheer Akhtar, Hyung-Kee Seo, et al. Influence of Sn doping on ZnO nanostructures from nanoparticles to spindle shape and their photoelectrochemical properties for dye sensitized solar cells [J]. Chemical Engineering Journal,2012,187:351~356.
    [123]Lei Qian, Zhen Liu, Yan Mo, et al. Large scale preparation of urchin like Li doped ZnO using simple radio frequency chemical vapor synthesis [J]. http://dx.doi.org/10.1016/j.matlet.2013.02.105.
    [124]B. L. Zhu, D. W. Zeng, J. Wu, et al. Synthesis and gas-sensitivity of In-doped ZnO nanoparticles [J]. Journal of Materials Science: Materials in Electronics, 2003,14(8):521~526.
    [125]H. Wei, M. Li, Z. C. Ye, et al. Novel Ga-doped ZnO nanocrystal ink:Synthesis and characterization [J]. Materials Letters,2011,65(3):427~429.
    [126]Ramin Yousefi, Farid Jamali-Sheini. Effect of chlorine ion concentration on morphology and optical properties of Cl-doped ZnO nanostructures [J]. Ceramics International,2012,38:5821~5825.
    [127]Lijuan Luo, Wei Tao, Xiaoyan Hu, et al. Mesoporous F-doped ZnO prism arrays with significantly enhanced photovoltaic performance for dye-sensitized solar cells [J]. Journal of Power Sources,2011,196:10518-10525.
    [128]Y.-Z. Yoo, Zheng-Wu Jin, T. Chikyow, et al. S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method [J]. Applied Physics Letters, 2002,81:3798~3800.
    [129]B. Y. Geng, G. Z. Wang, Z. Jiang, et al. Synthesis and optical properties of S-doped ZnO nanowires [J]. Applied Physics Letters,2003,82:4791~4793.
    [130]Guozhen Shen, Jung Hee Cho, Jin Kyoung Yoo, et al. Synthesis and Optical Properties of S-Doped ZnO Nanostructures: Nanonails and Nanowires [J]. Journal of Physical Chemistry B,2005,109:5491~5496.
    [131]Zhen Zhou, K. Kato, T. Komaki, et al. Effects of hydrogen doping through ion implantation on the electrical conductivity of ZnO [J]. International Journal of Hydrogen Energy,2004,29:323~327.
    [132]Zhenwei Tao, Xibin Yu, Xiaoyan Fei, et al. Synthesis and optical properties of halogen-doped ZnO phosphor [J]. Materials Letters,2008,62:3018~3020.
    [133]Xia Fan, Ming-Liang Zhang, Ismathullakhan Shafiq, et al. ZnS/ZnO Heterojunction Nanoribbons [J]. Advanced Materials,2009,21:2393~2396.
    [134]Ming-Yen Lu, Jinhui Song, Ming-Pei Lu, et al. ZnO/ZnS Heterojunction and ZnS Nanowire Arrays for Electricity Generation [J]. ACS Nano,2009,3(2):357~362.
    [135]Jian Yan, Xiaosheng Fang, Lide Zhang, et al. Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures [J]. Nano Letters,2008, 8:2794~2799.
    [136]Feijiu Wang, Jie Liu, Zhengjun Wang, et al. Interfacial Heterostructure Phenomena of Highly Luminescent ZnS/ZnO Quantum Dots [J]. Journal of the Electrochemical Society,2011,158(1):H30-H34.
    [137]G. Wary, T. Kachary, A. Rahman. Electrical and Optical Properties of (n) ZnO/(p)CdTe Heterojunction and Its Performance as a Photovoltaic Converter [J]. International Journal of Thermophysics,2006,27(1):332~346.
    [138]O. Gomez-Daza, Jose Campos, Aaron Sanchez, et al. Mechanism of Formation of Highly Photosensitive CdSe/ZnO Composite Coatings Obtained by Sintering CdSe/ZnCl2 Screen Printed Layers [J]. Journal of the Electrochemical Society, 2001,148:G33O~G335.
    [139]Masanobu Izaki, Ko-taro Mizuno, Tsutomu Shinagawa, et al. Photochemical Construction of Photovoltaic Device Composed of p-Copper (I) Oxide and n-Zinc Oxide [J]. Journal of the Electrochemical Society,2006,153:C668~C672.
    [140]Tadatsugu Minami, Toshihiro Miyata, Kazuhiko Ihara, et al. Effect of ZnO film deposition methods on the photovoltaic properties of ZnO-Cu2O heterojunction devices [J]. Thin Solid Films,2006,494:47~52.
    [1]Haiyan Song, Young-Min Leem, Byoung-Gyu Kim, et al. SiO2-coated ZnS submicrospheres with enhanced thermal stability and photoluminescence [J]. Materials Science and Engineering:B,2007,143:70~75.
    [2]R. Sakthi Sudar Saravanan, D. Pukazhselvan, C. K. Mahadevan. Investigation on the synthesis and quantum confinement effects of pure and Mn2+ added Zn(1-x)CdxS nanocrystals [J]. Journal of Alloys and Compounds,2011,509: 4065~4072.
    [3]M. Marandi, G Hajisalem, N. Taghavinia, et al. Fast two-step microwave-activated synthesis of Mn doped ZnS nanocrystals:Comparison of the luminescence and doping process with thermochemical approach [J]. Journal of Luminescence,2011,131 (4):721-726.
    [4]T. P. Tang, W. L. Wang, S. F. Wang. The luminescence characteristics of ZnSxSe1-x phosphor powder [J]. Journal of Alloys and Compounds,2009,488: 250~253.
    [5]M. Molaei. Synthesis of ZnS:Ni nanocrystals (NCs) using a thermochemical approach and investigation of the photoluminescence properties [J]. Journal of Luminescence,2013,136:38~41.
    [6]Ryo Inoue, Masahiko Kitagawa, Takayoshi Nishigki, et al. Growth and Luminescence of ZnxMg1-xS:Mn Ternary Compound Crystal Films [J]. Joural of Crystal Growth,1999,199:1196~1204.
    [7]T. Taguchi, C. Onodera, Y. Yamada, et al. Band Offsets in CdZnS/ZnS Strained-Layer Quantum Well and Its Application to UV Laser Diode [J]. Japanese Journal of Applied Physics,1993,32:L1308-L1311.
    [8]Junping Li, Yao Xu, Yong Liu, et al. Synthesis of hydrophilic ZnS nanocrystals and their application in photocatalytic degradation of dye pollutants [J]. China Particuology,2004,2:266~269.
    [9]Heinrich Ehrlich, Tatyana Shcherba, Marina Zhilenko, et al. Peculiarities of formation and luminescence of ZnS nanoparticles modified with amino acids [J]. Materials Letters,2011,65:107~109.
    [10]Andrea Klausch, Holger Althues, Christian Schrage, et al. Preparation of luminescent ZnS:Cu nanoparticles for the functionalization of transparent acrylate polymers [J]. Journal of Luminescence,2010,130:692~697.
    [11]Ondrej Kozak, Petr Praus, Kamila Koci, et al. Preparation and characterization of ZnS nanoparticles deposited on montmorillonite [J]. Journal of Colloid and Interface Science,2010,352:244~251.
    [12]A. N. Georgobiani, R. G Maev, Y. V. Ozerov, et al. Inves- tigation of deep centres of chlorine-doped zinc sulfide crystals [J]. Physica Status Solidi A,1976,38: 77~83.
    [13]S. T. Tan, B. J. Chen, X. W. Sun, et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition [J]. Journal of Applied Physics,2005,98:013505~013509.
    [14]J. S. Lewis, M. R. Davidson, P. H. Holloway. Control of point defects and space charge in electroluminescent ZnS:Mn thin films [J]. Journal of Applied Physics 2002,92:6646~6657.
    [15]William G. Becker, Allen J. Bard. Photoluminescence and photoinduced oxygen adsorption of colloidal zinc sulfide dispersions [J]. Journal of Physical Chemistry, 1983,87:4888~4893.
    [16]L. Brus. Electronic wave functions in semiconductor clusters:Experiment and theory [J]. Journal of Physical Chemistry,1986,90:2555~2560.
    [17]R. Ghosh, B. Mallik, S. Fujihara, et al. Photoluminescence and photoconductance in annealed ZnO thin films [J]. Chemical Physics Letters,2005,403:415~419.
    [18]Shrabani Panigrahi, Ashok Bera, Durga Basak. Ordered dispersion of ZnO quantum dots in SiO2 matrix and its strong emission properties [J]. Journal of Colloid and Interface Science,2011,353:30~38.
    [19]H. Z. Wu, D. J. Qiu, Y. J. Cai, et al. Optical studies of ZnO quantum dots grown on Si(001) [J]. Journal of Crystal Growth,2005,245:50~55.
    [20]H. Zhou, H. Alves, D. M. Hofmann, et al. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure [J]. Applied Physics Letters,2002,80:210~212.
    [21]Gustavo M. Dalpian, James R. Chelikowsky. Self-Purification in Semiconductor Nanocrystals [J]. Physical Review Letters,2006,96:226802~226805.
    [22]Q. Fang, J. Y. Zhang, Z. M. Wang, et al. Characterisation of HfO2 deposited by photo-induced chemical vapour deposition [J]. Thin Solid Films,2003,427: 391~396.
    [23]J. H. Hong, T. H. Moon, J. M. Myoung. Microstructure and characteristics of the HfO2 dielectric layers grown by metalorganic molecular beam epitaxy [J]. Microelectronic Engineering,2004,75:263~268.
    [24]R. Inoue, M. Kitagawa, T. Nishigaki, et al. Optical band gap of ZnxMg1-xS thin films with composition x between 0.14 and 1.0 [J]. Journal of Crystal Growth, 1998,184:1076-1080.
    [25]R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A, 1976,32:751~767.
    [26]Ranjani Viswanatha, Sameer Sapra, Subhra Sen Gupta, et al. Synthesis and Characterization of Mn-Doped ZnO Nanocrystals [J]. Journal of Physical Chemistry B,2004,108:6303~6310.
    [27]Hideaki Kimijima, Masahiko Kitagawa, Ryou Inoue, et al. Deposition and characterization of ZnxMg1-xS thin films on amorphous substrates [J]. Applied Surface Science,1997,113:432~435.
    [28]M. Ghosh, A. K. Raychaudhuri. Optical Properties of Mg-Substituted ZnO Nanoparticles Obtained by Solution Growth [J]. IEEE Transactions On Nanotechnology,2011,10:555~559.
    [29]F. K. Shan, G. X. Liu, W. J. Lee, et al. Stokes shift, blue shift and red shift of ZnO-based thin films deposited by pulsed-laser deposition [J]. Journal of Crystal Growth,2006,291:328~333.
    [30]Ogah E. Ogah, Guillaume Zoppi, Ian Forbes, et al. Thin films of tin sulphide for use in thin film solar cell devices [J]. Thin Solid Films,2009,517:2485-2488.
    [31]E. A. Dalchiele, P. Giorgi, R. E. Marotti, et al. Electrodeposition of ZnO thin films on n-Si(100) [J]. Solar Energy Materials and Solar Cells,2001,70: 245~254.
    [32]Jang-Hyuk Hong, Tae-Hyoung Moon, Jae-Min Myoung. Microstructure and characteristics of the HfO2 dielectric layers grown by metalorganic molecular beam epitaxy [J]. Microelectronic Engineering,2004,75:263~268.
    [33]Yadong Li, Yi Ding, Yue Zhang, et al. Photophysical properties of ZnS quantum dots [J]. Journal of Physics and Chemistry of Solids,1999,60:13~15.
    [34]L. W. Lu, I. K. Sou, W. K. Ge. Influence of Mg content on molecular-beam-epitaxy-grown ZnMgS ultraviolet photodetectors [J]. Journal of Crystal Growth,2004,265:28~33.
    [35]K. Akimoto, H. Okuyama, M. Ikeda, et al. Isoelectronic oxygen in II-VI semiconductors [J]. Applied Physics Letters,1992,60:91~93.
    [36]W. K. Choi, T. Y. Ong, L. S. Tan, et al. Infrared and x-ray photoelectron spectroscopy studies of as-prepared and furnace-annealed radio-frequency sputtered amorphous silicon carbide films [J]. Journal of Applied Physics,1998, 83:4968~4973.
    [37]Soumitra Kar, Subhadra Chaudhuri. Controlled Synthesis and Photoluminescence Properties of ZnS Nanowires and Nanoribbons [J]. Journal of Physical Chemistry B,2005,109:3298-3302.
    [38]Shunri Oda, Hiroshi Kukimoto. A new emission band in self-activated ZnS [J]. Journal of Luminescence,1979,18:829-832.
    [39]N. Chestnoy, T. D. Harris, R. Hull, et al. Luminescence and photophysics of cadmium sulfide semiconductor clusters: the nature of the emitting electronic state [J]. Journal of Chemical Physics,1986,90:3393~3399.
    [40]Jun Liu, Junfeng Ma, Ye Liu, et al. Synthesis of ZnS nanoparticles via hydrothermal process assisted by microemulsion technique [J]. Journal of Alloys and Compounds,2009,486:L40~L43.
    [41]A. Van Dijken, J. Makkinje, A. Meijerink. The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles [J]. Journal of Luminescence,2001,92 (4):323~328.
    [42]G H. Bogush, C. F. Zukoski IV. Uniform silica particle precipitation:An aggregative growth model [J]. Journal of Colloid and Interface Science,1991, 142:19~34.
    [43]Y. D. Jiang. Philosophical [M]. Thesis:Georgia Institute of Technology,1999.
    [44]A. Bera, D. Basak. Correlation between the microstructure and the origin of the green luminescence in ZnO: A case study on the thin films and nanowires [J]. Chemical Physics Letters,2009,476:262~266.
    [45]Kwang Joo Kim, Young Ran Park. Large and abrupt optical band gap variation in In-doped ZnO [J]. Applied Physics Letters,2001,78:475~477.
    [1]Khan A. Alim, Vladimir A. Fonoberov, Alexander A. Balandin. Origin of the optical phonon frequency shifts in ZnO quantum dots [J]. Applied Physics Letters, 2005,86:053103~053105.
    [2]Aarnoud L. Roest, John J. Kelly, Daniel Vanmaekelbergh. Coulomb blockade of electron transport in a ZnO quantum-dot solid [J]. Applied Physics Letters,2003, 83:5530~5532.
    [3]X. W. Sun, H. S. Kwok. Optical properties of epitaxially grown zinc oxide films on sapphire by pulsed laser deposition [J]. Journal of Applied Physics,1999,86: 408~411.
    [4]Sunglae Cho, Jing Ma, Yunki Kim, et al. Photoluminescence and ultraviolet lasing of polycrystalline ZnO thin films prepared by the oxidation of the metallic Zn [J]. Applied Physics Letters,1999,75:2761~2763.
    [5]K. Vanheusden, C. H. Seager, W. L. Warren, et al. Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis [J]. Journal of Luminescence,1997,75:11~16.
    [6]M. Singhai, V. Chhabra, P. Kang, et al. Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosolot microemulsion [J]. Materials Research Bulletin,1997,32:239~247.
    [7]B. G. Alexey, V. Kavokin. Giant exciton-light coupling in ZnO quantum dots [J]. Applied Physics Letters,2002,81:748~750.
    [8]A. L. Roest, J. J. Kelly, D. Vanmaekelbergh. Coulomb blockade of electron transport in a ZnO quantum-dot solid [J]. Applied Physics Letters,2003,83(26): 5530~5532.
    [9]Debasis Bera, Lei Qian, Subir Sabui, et al. Photoluminescence of ZnO quantum dots produced by a sol-gel process [J]. Optical Materials,2008,30(8): 1233~1239.
    [10]Seema Rani, Poonam Suri, P. K. Shishodia, et al. Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells [J]. Solar Energy Materials and Solar Cells,2008,92(12):1639~1645.
    [11]Shuji Sakohara, Lane D. Tickanen, Marc A. Anderson. Luminescence properties of thin zinc oxide membranes prepared by the sol-gel technique: change in visible luminescence during firing [J]. Journal of Physical Chemistry,1992,96(26): 11086~11091.
    [12]R. S. Ajimsha, G. Anoop, Arun Aravind, et al. Luminescence from Surfactant-Free ZnO Quantum Dots Prepared by Laser Ablation in Liquid Nanostructured Materials, Carbon Nanotubes, and Fullerenes [J]. Electrochemical and Solid-State Letters,2008,11(2):K14~K17.
    [13]Ying-Song Fu, Xi-Wen Du, Sergei A. Kulinich, et al. Stable Aqueous Dispersion of ZnO Quantum Dots with Strong Blue Emission via Simple Solution Route [J]. Journal of the American Chemical Society,2007,129(51):16029~16033.
    [14]Hao-Ying Lu, Sheng-Yuan Chu, Soon-Seng Tan. The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles [J]. Journal of Crystal Growth,2004,269(2):385~391.
    [15]Yuan-Qing Li, Yang Yang, Shao-Yun Fu, et al. Transparent and Light-Emitting Epoxy Super-Nanocomposites Containing ZnO-QDs/SiO2 Nanocomposite Particles as Encapsulating Materials for Solid-State Lighting [J]. Journal of Physical Chemistry C,2008,112(47):18616~18622.
    [16]Soumyananda Chakraborti, Tanaya Chatterjee, Prachi Joshi, et al. Structure and Activity of Lysozyme on Binding to ZnO Nanoparticles [J]. Langmuir,2010, 26(5):3506~3513.
    [17]Haibo Zeng, Zhigang Li, Weiping Cai, et al. Microstructure Control of Zn/ZnO Core/Shell Nanoparticles and Their Temperature-Dependent Blue Emissions [J]. Journal of Physical Chemistry B,2007,111(51):14311~14317.
    [18]D. Haranath, Sonal Sahai, Prachi Joshi. Tuning of emission colors in zinc oxide quantum dots [J]. Applied Physics Letters,2008,92(23):233113-233115.
    [19]Shrabani Panigrahi, Ashok Bera, Durga Basak. Ordered dispersion of ZnO quantum dots in SiO2_matrix and its strong emission properties [J]. Journal of Colloid and Interface Science,2011,353(1):30~38.
    [20]N. O. Dantas, A. F. G. Monte, W. A. Cardoso, et al. Growth and characterisation of ZnO quantum dots in polyacrylamide [J].Microelectronics Journal,2005, 36(3):234~236
    [21]L. Chen, Z. Q. Chen, X. Z. Shang, et al. Effect of annealing temperature on density of ZnO quantum dots [J]. Solid State Communications,2006,137(10): 561~565.
    [22]H. Z. Wu, D. J. Qiu, Y. J. Cai, et al. Optical studies of ZnO quantum dots grown on Si(001) [J]. Journal of Crystal Growth,2002,245(1):50~55.
    [23]A. N. Georgobiani, R. G. Maev, Y. V. Ozerov, et al. Investigation of deep centres of chlorine-doped zinc sulfide crystals [J]. Physica Status Solidi A,1976,38: 77~83.
    [24]H. Amekura, Y. Sakuma, M. Yoshitake, et al. Defect-band-free luminescence from ZnO nanoparticles fabricated by ion implantation and thermal oxidation [J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2007,257:64~67.
    [25]S. T. Tan, B. J. Chen, X. W. Sun, et al. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition [J]. Journal of Applied Physics,2005,98:013505~013509.
    [26]Lili Yang, Jinghai Yang, Xiaoyan Liu, et al. Low-temperature synthesis and characterization of ZnO quantum dots [J]. Journal of Alloys and Compounds, 2008,463:92~95.
    [27]K. Vanheusden, W. L. Warren, C. H. Seager, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders [J]. Journal of Applied Physics, 1996,79:7983~7990.
    [28]A. B. Djurisic, Y. H. Leung. Optical properties of ZnO nanostructures [J]. Small, 2006,2:944~961.
    [29]D. Li, Y. H. Leung, A. B. Djurisic, et al. Different origins of visible luminescence in ZnO nanostructures fabricated by the chemical and evaporation methods [J]. Applied Physics Letters,2004,85:1601~1603.
    [30]Bixia Lin, Zhuxi Fu, Yunbo Jia. Green luminescent center in undoped zinc oxide films deposited on silicon substrates [J]. Applied Physics Letters,2001,79: 943~945.
    [31]Lisheng Wang, Xiaozhong Zhang, Songqing Zhao, et al. Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives [J]. Applied Physics Letters,2005, 86:024108~024110.
    [32]Heqing Yang, Yuzhe Song, Li Li, et al. Large-Scale Growth of Highly Oriented ZnO Nanorod Arrays in the Zn-NH3·H2O Hydrothermal System [J]. Crystal Growth & Design,2008,8:1039~1043.
    [33]Huan-Ming Xiong, Dmitry G. Shchukin, Helmuth Mohwald Mohwald, et al. Sonochemical Synthesis of Highly Luminescent Zinc Oxide Nanoparticles Doped with Magnesium (II) [J]. Angewandte Chemie International Edition,2009,48: 2727~2731.
    [34]T. J. Sun, J. S. Qiu, C. H. Liang. Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays [J]. Journal of physical Chemistry C,2008,112: 715~721.
    [35]Supab Choopun, Niyom Hongsith, Sornchai Tanunchai, et al. Single-crystalline ZnO nanobelts by RF sputtering [J]. Journal of Crystal Growth,2005,282: 365~369.
    [36]Y. Q. Chen, J. Jiang, Z. Y. He, et al. Growth mechanism and characterization of ZnO microbelts and self-assembled microcombs [J]. Materials Letters,2005,59: 3280~3283.
    [37]A. van Dijken, J. Makkinje, A. Meijerink. The influence of particle size on the luminescence quantum efficiency of nanocrystalline ZnO particles [J]. Journal of Luminescence,2001,92:323~328.
    [38]S. Barik, A. K. Srivastava, P. Misra, et al. Alumina capped ZnO quantum dots multilayer grown by pulsed laser deposition [J]. Solid State Communications, 2003,127:463~467.
    [39]Y. Kayanuma. Wannier exciton in microcrystals [J]. Solid State Communications, 1986,59:405~408.
    [40]Yosuke Kayanuma. Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape [J]. Physical Review B,1988, 38:9797~9805.
    [41]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004,217~218.
    [42]H. Zhou, H. Alves, D. M. Hofmann, et al. Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure [J]. Applied Physics Letters,2002,80:210~212.
    [43]Gustavo M. Dalpian, James R. Chelikowsky. Self-Purification in Semiconductor Nanocrystals [J]. Physical Review Letters,2006,96:226802~226805.
    [44]Y. D. Jiang. Philosophical [M]. Thesis: Georgia Institute of Technology,1999.
    [45]G. H Bogush, C. F Zukoski IV. Uniform silica particle precipitation: An aggregative growth model [J]. Journal of Colloid and Interface Science,1991, 142:19~34.
    [46]H. Z. Wu, D. J. Qiu, Y. J. Cai, et al. Optical studies of ZnO quantum dots grown on Si (001) [J]. Journal of Crystal Growth,2002,245:50~55.
    [47]Shrabani Panigrahi, Ashok Bera, Durga Basak. Ordered dispersion of ZnO quantum dots in SiO2 matrix and its strong emission properties [J]. Journal of Colloid and Interface Science,2011,353:30~38.
    [48]D. H. Zhang. Fast photoresponse and the related change of crystallite barriers for ZnO films deposited by RF sputtering [J]. Journal of Physics D:Applied Physics, 1995,28:1273~1275.
    [49]D. J. Leary, J. O. Barnes, A. G. Jordan. Calculation of carrier concentration in polycrstalline films as a function of surface acceptor state density:application for ZnO gas sensors [J]. Journal of the Electrochemical Society,1982,129: 1382~1387.
    [50]T. Yang, B. Yao, T. T. Zhao, et al. Sb doping behavior and its effect on crystal structure, conductivity and photoluminescence of ZnO film in depositing and annealing processes [J]. Journal of Alloys and Compounds,2011,509 5426~5430.
    [51]陈四海,任新民.ZnO纳米粒子的光物理性质:微量水对光性质的影响[J].感光科学与光化学,1994,12(3):268-272.
    [52]Xiang Wu, Peng Jiang, Yong Ding, et al. Mismatch Strain Induced Formation of ZnO/ZnS Heterostructured Rings [J]. Advanced Materials,2007,19:2319~2323.
    [53]J. Yan, X. Fang, L. Zhang, et al. Structure and Cathodoluminescence of Individual ZnS/ZnO Biaxial Nanobelt Heterostructures [J]. Nano Letters,2008,8: 2794~2799.
    [54]Feijiu Wang, Jie Liu, Zhengjun Wang, et al. Interfacial Heterostructure Phenomena of Highly Luminescent ZnS/ZnO Quantum Dots [J]. Journal of the Electrochemical Society,2011,158:H30-H34.
    [55]Yonghong Ni, Sen Yang, Jianming Hong, et al. Fabrication, Characterization and Properties of Flowerlike ZnS-ZnO Heterogeneous Microstructures Built Up by ZnS-Particle-Strewn ZnO Microrods [J]. Journal of Physical Chemistry C,2008, 112:8200-8205.
    [56]G. Wary, T. Kachary, A. Rahman. Electrical and Optical Properties of (n) ZnO/(p)CdTe Heterojunction and Its Performance as a Photovoltaic Converter [J]. International Journal of Thermophysics,2006,27:332~346.
    [57]O. Gomez-Daza, Jose Campos, Aaron Sanchez, et al. Mechanism of Formation of Highly Photosensitive CdSe/ZnO Composite Coatings Obtained by Sintering CdSe/ZnCl2 Screen Printed Layers [J]. Journal of the Electrochemical Society, 2001,148:G330~G335.
    [58]Masanobu Izaki, Ko-taro Mizuno, Tsutomu Shinagawa, et al. Photochemical Construction of Photovoltaic Device Composed of p-Copper (I) Oxide and n-Zinc Oxide [J]. Journal of the Electrochemical Society,2006,153:C668~C672.
    [59]Tadatsugu Minami, Toshihiro Miyata, Kazuhiko Ihara, et al. Effect of ZnO film deposition methods on the photovoltaic properties of ZnO-Cu2O heterojunction devices [J]. Thin Solid Films,2006,494:47~52.
    [60]Liu Ci-Hui, Chen Yu-Lin, Lin Bi-Xia, et al. Electrical Properties of ZnO/Si Heterostructure [J]. Chinese Physics Letters,2001,18:1108~1110.
    [61]R. R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides [J]. Acta Crystallographica Section A,1976,32:751~767.
    [62]B. Elidrissi, M. Addou, M. Regragui, et al. Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis [J]. Materials Chemistry and Physics,2001,68:175~179.
    [63]Hongchao Ma, Jihui Han, Yinghuan Fu, et al. Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple. carbothermal reduction [J]. Applied Catalysis B:Environmental,2011,102:417~423.
    [64]Feijiu Wang, Jie Liu, Zhengjun Wang, et al. Interfacial Heterostructure Phenomena of Highly Luminescent ZnS/ZnO Quantum Dots [J]. Journal of the Electrochemical Society,2011,158:H30~H34.
    [65]Joshua Schrier, Denis O. Demchenko, et al. Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications [J]. Nano Letters, 2007,7:2377~2382.
    [66]景磊,潘登余,任兆玉,等.Mg掺杂ZnO纳米晶的低温共沉淀法制备及光学性质[J].发光学报,2010,31:561~565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700